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PROBLEMS PRESENTED BY PARTICIPANTS IN THE CONFERENCE

Donald Davis

There was no formal problem session, but rather partici-
pants were invited to submit problems in writing. The following
were submitted:

TODA
1. what is a complex of the smallbest number of cells in
n

which pp is non-trivial (n>3)? Is the smallest, number of

cells n+27? It is known that the smallest complexes are

o O, oPI Ly oPT g0

S v e?  for n =0, S n =1,

o ﬁl P

2 2 2

O o pe(p -Da-1 , Pa-l , P9 g5 =2, and probably

Bl dl ‘

3_2 3_1yan 3. 3

Lo J(P-Pa | (pP-Da-l o pia-l [ o PTY gop po3,

e' (p-1) ﬁﬁ’ oy p

a b
2. Let 1:8 —K, f:% K—=K, 7 :K——SO be stable maps’

such that fr = ﬂfri Eﬂ‘ib-'_a(so) (p) is non-trivial for all «r>1l.
Is b = 2pn -27? Are K = V{(n) (essentially) and £ a power

a
of T](n) ? Also change S and SO to complexes.

3. Assume V(n) exists for n>4. Can the first element

(n

“1 )—series be represented by a bracket of 2n-2 variables? 1In

. . (4)
particular, 1is “l = {al’p’ﬁl’7p~l} and



(5) _ { (41 ,) (3)
’ 1 12 I 7 I ’ ’ o & = 3, = N =
ﬂl oy /P 'Bl p o p Y1 np—l etc For n 121 N
= a. B and for n = 2, n(2) =B (one variable) .
17p-1 1 1
4. (Converse of Problem 3.) Show that nin) cannot be re-
presented by a bracket of less than 2n— variables. 1In par-
ticular, is Ilin) inde¢omposable for n>47?
5. If V(n) exists, is nin) nonzero for all i ?
2_ +1
6. For an odd prime p, is gp p = 0 for any
0] . pz—p—l
:,_,.,i(s )(p)' i>07? For example, ,31 #0 for p>5 and
N 0, and for -3, 8%-0
P - ’ 'B]_ - ’ p = ’ Bl - .
7. Does there exist a chain complex C(n) over BP*(BP) ,
n>4, so that we can construct BP(n), Hp(n) , VB(n), B((S)) for

large primes p?

8. If the answers to Problems 2 and 7 are "ves", does the

series {fn} survive in BP/n) (a®) up to degree pnq—2 ?

(a') . . . (a')
(BP(n 1s a realization of the a'-skeleton C(n) for
some a' = a (med q)).

9. Construct the spectrum B((S))_ for small primes p.

10. Given an integer n>4, what is the smallest integer
k> 1 such that we can construct a k'-stage generalized

Postnikov system Xp’ k' <k, satisfying



lim(rank Z HfX Z)) = a<w?
p i<phgq-2

11. In problem 10 for such a smallest integer k, is

n+ (5 !
ax>?2 ? Is this best possible? Can we take Xp = Hp(n)

for large p?
. ) b |
12. Does Yp = {ﬁp_l,p,al,ﬁl,e (p l)}
— 1 . P (n) (n ]. *
Yp = {Bp—l'e (p-1) .8y o /P }? Does {n (Kaeaa ¥ },
(n+2) —-variables, and n(n) = {ﬂ;n l),*,...,* }, n+l variables,
for lijip—l?
L p - p-1
Remark. ‘Bp = {ap_llﬁlldllp} {Olp_llp:dllﬁl IB]-} 1

and . ={a_,,*},l<'<—l.
Blp 5P <j<p

JOHNSON-WILSON

13. Let k{(n) Dbe the connective spectra associated to
Morva's extraordinary K-theories; these arise naturally from the
study of Brown-Peterson homology. These spectré induce hoﬁology
theories k(n)*( ) with coefﬁ%pients k(n), = Fp[vn], where the
dimension of v is 2(pn—l). There are natural transforma-
tions of homology theories: gn(x) :k(n)*(X)—f-H*(X;Fp). For a
finite complex X, it is true that if gn(X) is epic, then

n+l(X), gn+2(X),... are also epic. (See our "BP operations and
Morava's extraordinary K-theories".) We can define an invariant

of the space X ‘by taking the lowest integer n such that

gn(X) is onto. (This is always finite for a finite complex.)



Can the above invariant be computed directly in terms of BP_(X)?

If so, how?

RAVENAL
l4. Give a geometric construction of BP. Give a construc-
tion of MU which will yield more insight into the role of for-

mal groups in complex cobordism.

LIN
1. Projective, flat and injective modulesvare three basic
modules in homological algebra. For stable homotopy ring of
spheres, the projective and flat modules are known: they are
essentially the stable homotopy modules of Moore spaces of free
and torsion free groups. On the other hand, there are no expli-
cit examples of injeétive stable homotopy modules besides trivi—
al ones (e.g. the rational numbers Q = q*(K(Q)). According to
Freyd's generating hypothesis, the stable homotopy modules of
torsibn finite CW—complexes (i.e., the identity map is of finite
CW-complexes whose stable homotopy modules are injective (it is
known tﬁat they are torsion spaces). For example, is the stable

homotopy modules of Moore space of Zp injective?

DAVIS-MILLER
16. Do there exist analogues for odd primes of the vanishing

theorem of [Anderson-Davis, Comm. Math. Helv., 1973].



DAVIS
17. can modified Postnikov towers for nonorientable bundles
(Nussbaum—Robinson—McClendon) be used to determine whether

24 , , 38
RP immerses in R .

18. What is the smallest Euclidean space in which ]RPn can

be immersed for n = 3(8) ? Conjecture:
2 0(4)
) 2n - 2a(n) - 0 if a(n) = 1(4) .
1 2,3(4)
DAVI S-MAHOWALD
* Sl
19. H (bJ) begins [0 8], so that the

Sq8 k

attaching map for the 7-cell is an Arf invariant map 62. Can
we mimic the way in which bJ is formed from bo, using the
splitting of bo Abo [Milgram, these Proceedings], to realize
higher Arf invariant classes? 1In particular, does bJ abJd

split into a wedge bJ‘vY&_vVY&, such that the fibre of bJ—Y,

begins

1
@ B
16

Sq

If so, can this procedure be iterated?

MAHOWALD

2n-1 282n+l.

20. Let W(n) be the fiber of S — Q0 wWhat is



the structure of W(n) ? Conjectures: 1) W(n) should be an

/

H-space anq/the above fibration should be principal. 2) cConsid-

er the two maps:

2
a) Q284n+l Q (2) Q2S4n+l and
b) thé composite
2 4n+l QH 2 8n+l 22 4 8n+3 02 2 4n+l
QS — (S —_— 0 s —————EL——Q S
which we call £.
2 2 4n+l -
Then the sum £+qQ (2) lifts to ¢ :Q°S ot -—-S4n 1 and the

fiber of ¢ 1is BW(n). 3) If W(n) is not an H-space then in
part 2 take one more loop at every stage.
Remarks. 1) W(l) is a triple loop space. Indeed if
. . 4 . ,
Y4 is the fiber of § —eK(Z,4), B3W(l) is the fiber of
7 . . 7 4 . . .
S -—--Y4 which lifts S —=3S . 2) The conjecture is valid at

the E2 term of the unstable spectral sequence constructed from

the /~algebra consideration.

21. Recall that if one takes S3—i——B30 be a generator and
loops twice giving an H—map of 0283--Bo then the Thom spec-
trum of  is K(Zz). The spectrum with Ty = Z and only the
2-primary homology of K(Z,0) in higher dimension can be real-
ized similarly. Also there is a map of QZSS—*-BF whose image

includes all the Kervaire invariant characteristic classes. Thus

the Thom spectrum is a ring spectrum whose homology algebra is a



polynomial algebra on generator

2i+l 1 .
x; €H (X) and ¢i'iU = UlJ(Xi)

What other spectra can be realized as Thom complexes in such a

fashion.

MILGRAM

22. In the bo-resolution of So

s —»bo—*boAabo ———— boaboabo ——

R Q

: 8
VK(Z,) v E'bsp v ... VE(Z,) viobo'?) v ..

we know the Eilenberg-MacLane spaces are acyclic for 6s> t.
What can be said about the remaining K(Zb)'s ? In particular

if (s,t) = (3,20), (2,20}, (3,21), and (3,22), there seem to be

nontrivial classes coming from these and representing homotopy.

SCHWEITZER

23. Compute the homotopy and cohomology of the classifying
space for foliations BF; , which classifies codimension g
foliations of differentiability class c’. It is known that the
Godbillon-Vey invariant gives a surjecﬁion of nB{BTi) onto the
additive group of reals R provided r>2 (Thurston). {See

Lawson, Foliations, Bull. A.M.S., 1974.]



SCHULTZ
\ ' , } fr
24. Which framed cobordism classes in Qn are representa-

ble by exotic spheres bounding plumbings of (linear) disk

p !

bundles over S and S8* (p+d = n+l) ? Presumably this would
require formulas for these classes invoiving the bundles' clas-
sifying maps and "reasonable" homoFopy operations. Hopefully
such formulas should allow explicit calculation, at least when
Ip—ql is relatively small.

» Despite the geometric simplicity of the plumbing con-
struction, this problem has proved to be difficult: various

partial results are due to D.Frank, A. Kosinski, R. Schultz, L.

Smith, Cc.T.C. Wall, and V. Giambalvo.

25. Framed cobordism may be filtered by setting

£ k . , .
Fk* = Ker(Q*r———ni >), where the codomain is the bordism theory

associated to BO{(k). Is there a more algebraic description of

Fk/Fk+l? For example, Fk,* for =+ <2k-1 1is easy to calculate,
. . a .

and determination of Fk,2k—l an Fk,2k is closely related to
Problem 24. If k<4, Fk . is well-known, and Giambalvo's work
gives some nontrivial information about F8 o Wall's results
on highly connected manifolds yield upper bounds for Fk k-1
and Fk,2k depending on k mod 8.

Probably the most to hope for in studying Fk . is

detection of some systematics phenomena.

26. The stabilized spaces of equivariant self-maps of



spheres FG introduced by Becker and Schultz have‘the homotopy
type of Q(BG+) but also admit E_-structures in their own right
that generalize the composition structure on F. What are the
Pontryagin ring structure and Dyer-Lashof operations on H*(FG)?
Results of Kochman, Madsen, May, Milgram, and Tsuchiya
give partial information. Becker has suggested that the E_-
structure may be equivalent to the smash product structdre if G
is abelian. Tsuchiya has suggested formulating the problem in
terms of classifying spaces for finite G-sets in the spirit of

Segal's Nice Congress paper on edquivariant stable homotopy.

(¢]
27. Let t :S(CPQ+) —=S be the Umkehr map in stable homo-

topy associated to the universal Sl—bundle over CP . What is

+

. s ® s, O
the image of t,  :#, (S(CP )) —=7 (87) ?

It is not onto the 2-torsion by results of Becker-Schultz
|
and Loffler-Smith. Conjecture: It is onto the odd torsion. Even

stranger. Let Xg;S(CPm+) (p odd) be the subcomplex of the

(p)

- - 3q— .
a-1 2q-1 q-1 v..., g = 2(p-1). Then t*Inf(X) is

Sy %p “S(p)

onto the p-primary component.

form






H* (MO) AS AN ALGEBRA OVER THE STEENROD ALGEBRA
(*)

E.H. Brown, Jr. and F.P. Peterson

ABSTRACT. A theorem is given relating H*(MO)
as a free module over the Steenrod algebra
and as a module over H*(BO).

1. The Main Results

It is well known (see [4]) that H*(MO) = H*(MO;ZZ)' is a
free module over A, where‘ A is the mod 2 Steenrod algebra. -
H* (MO) is also a free module on one generator over H*(BO)
given by the cup product. For various applications, it.is im-
portant to know how these two structures are relatéd. In this
paper we give some results which partially solve the problemn.

Let N Dbe a coalgebra and let 6 :N—=H*(MO) be a mono-
morphism of coalgebras such that §(N) is an A basis for
H*(MO). Then 8§ extends to 5:‘A®DJ—~H*(M6), an isombrphism
of left A-modules and of coalgebras. The Thom isomorphism
¢ : H* (BO) —=H*(MO) defines a right A-module strucﬁure on HﬂBm
by (u)a = @_l(x(a)(é(u))), (see [1]. Hence, § defines

(*)
The authors were partially supported by the N.S.F.
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6' : N®A —=H*(BO), an isomorphism of right A-modules and of co-
algebras. Taking vector space duals, we obﬁain F:H*(BO)*N*QA*,
an isomorphism of right A*-comodules and of algebras. The- prob-
lem is to find the coalgebra structure on ' N* @ A* which is de-

fined by F and the coalgebra structure on H*(BO) .

Theorem 1.1. One can choose N and § in such a way that
l@gkeN*eA* is primitive. Furthermore, such N and 8 are

unique up to a coalgebra isomorphism.

Let 7 :N®A-—=A be projection onto the summand generated

by the unit in N. Let {SqR} be the Milnor basis for A. De-

fine a different multiplication on A by SqRosqS= (R;S) SqR+S,
ri+s,

where (R;S) = -ﬂ-( ];: 1). This multiplication is, of course,
i i

the multiplication dual to a different diagonal in A*, namely

the diagonal where is primitive for all k. The following

gk

corollary comes immediately from the ‘fact that
F—l

1® A% CN* @ Ax——=H_(BO)

is a map of Hopf algebras.

Corollary 1.2. With the choice of N and 6 in Theorem
1.1, 1'r(6')_l : H¥*(BO)—*=A 1is multiplicative with respect to the

o-multiplication in A.

As an example, we recall that the Wu class vi=6'(19 Sql).
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-1, i+j _ ,is] i+]
((i)Vi-)—(i)Sq -

|—l = ¢
Hence, n(8') (ViVj) = 7(8") +3

Browder [2] and Papastavrides [3], in their studies of the
Kervaire invariant, have shown that the second k-invariant for

the spectrum MWu(n+l) —= MO comes from the relation

2 n+l-1i :

Y sq (v, °v;"0) =0

i=0
in H*(MO). One of the difficulties of using this formula is
that vi-vn+l-U is not expressed in terms of the A-basis for
H*(MO). 6' :A @ N—» M*(MO) can be realized by a homotopy

equivalence between MO and a wedge of K(Zz,i)'s and hence

17(9‘)_'1 can be represented by a map g :K(Zz,o)-——MO.

corollary 1.3. With the choice of N and @ in Theorem
1.1, g* on the above relations gives the relation

* n+l-i n+l+i ntl+i
> s xsa™ ) = o,

i=0

Similar considerations apply to H*(MU) = H*(MU;Zp), where
p is an odd prime, as a module over 'AcCA, the algebra of re-
duced powers. Theorem 1.1 and Corollary 1.2 carry over verba-

tim.

2. proofs

Let w be a partition of n = n(w). Then {sw} is a
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basis for H*(BO). Also, {W } is a basis for H*(BO), where
w

W =W, ...W, . Let {b } be the dual basis to {s } and
w ll ll’.‘ w u

{WZ} be the dual basis to {Ww}. Then H*(BO)==Z2[b(D,bQ),n.].
Let A: H*(BO) —>H*,(BO) ® A* Dbe the dual to the right A-module

structure on H*(BO). The following lemma is quite easy and we

leave to proof to the reader.

Lemma 2.1. Wfi) is primitive if i> 1. Wfi) is indecom-
osable if and only if i is odd. Wr_, = (Wx.L )2,
P ¥ (21) (1)’

. R
Let DcH*(BO) be the decomposible elements. Let {Sq }
be the Milnor basis for A. The following lemma is key to our

results.

Lemma 2.2. Let n(R) = 2k—12 Then (l)SqRe D if and only

if R # Ak' where Ak is the sequence with all zeros except a

one-in the kth spot.,

We procede the proof of Lemma 2.2 by some preliminary re-

sults.

Lemma 2.3. Let eHl(RPm). Let I be an admissible Adem
sequence. Then X(SqI)(L) # 0 if and only if 1 = (2k—I).

k k-1 k-2
- , 2 1 ,
Proof. x(Sq2 l)(J.) = Sq Sq2 ...qusq (L) #0 |is

well known. For the converse, let I = (il,i2,...,it). If
I i iy , j
x(8a7) (b)) = x(8q 7)...x(Sqa ") (i) # 0, then i, =2°-1 and
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iy 23 ' 23
x(8a ") (v) =+ . However, if aeA, then a(.” ) =0 if
dim a<27. But i2_52i1 and hence 12 <27-1, so x(SqI)(L) =0
if t>1.

Lemma 2.4. Let SqR = zaIx(SqI), where SqR is a Milnor
basis element and I is admissible. If n(R) = 2k-l, then

a g # 0 if and only if R = A
(27-1)

K’
Proof. Apply the equation to eHl(RPm) . The excess of
R is the sum of the entries. Hence SqR(L) # 0 if and only if

R=4,. xa X(SqI)(L) # 0 if and only if a # 0 by 2.3.
k I (2k-1)

Lemma 2.5. Let I be admissible, Then (l)X(SqI)zD if

and only if I = (n).

. n . .
Proof. If I = (n), then (l)x(Sq) = Wn' If I—(1l,...,:|.t),

then

i i i
(x(sa Oxisa & = (w, )x(sa ©TH =
t

it i -3 .

t-
¥ (Uy(sa © yesadw, ) ep
j=o t

il

as lt_lZth.
We now prove Lemma 2.2, (l)SqRGIJ if and only if
(l)ZaIx(SqI) £D if and only if a K # 0 by 2.5 if and only
(27-1)
if R = A by 2.4.

k
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As a corollary to 2.2, we have the following result.

Corollary 2.6. Let g+n(R) = 2k—l. Then (Wé)SqRﬁfD if

and only if R = A, and q = 2K ot

. S .
Proof. Since Wé = (1)Sg mod D for various S, we need

. A
to study when SqSSqR = Sq k+others. That is, we must find a

Milnor matrix with a single one in it. This happens if and only

if R=4, and q = 2K o1,

Using these results, we now prove our main calculational

theorem.
* & * 2i
Theorem 2.7. A(W )y = 2w )2 ge,
—_— k k-i i
(27-1) i=0 (2 -1)

Proof. Since {Ww} is a basis for H*(BO) and {SqR} is

a basis for A, we get the following result.

) R
Afu) = wZR <(Ww)Rq SUW @ gL

where E&_ = g lg 2... . We apply this to u = W . Since
R 1?2 k
(27-1)
((W)Sq W kD # 0 if and only if .(ww)SngD, we obtain
(27-1)
*
AW L) = Z((W)Sq o ) Wreg, Zw ; ®8.
(27-1) a,R (27-1) i=0 (2 )
\ * * 2i
by Corollary 2.6. Finally, W ki = (W ki ) by 2.1.

(2%-2") (2°71-1)
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An alternative way of constructing F :H_(BO) —~N*@A* is
the following. Let JcH,_(BO) be an ideal with generators one
indecomposibie in every dimension of the form 29.1. Then the

composition

FyoH, (BO) —A—H* (BO) ® A* —=H_(BO) /T @ A*

is an isomorphism of algebras and right A*-comodules. That is,
we take N = (H*(BO)/J)* and construct 6 by

F* o .
N—-=N@LcN®A ——J-—H*(BO)—L—H*(MO) .

Furthermore, up to an algebra isomorphism of N*, any F can be

constructed this way by taking J to be the kernel of
H*(BO) — N* @ A% —=N*,

In order to prove Theorem 1.1, we must choose J such that

* *

F_(W ) =1@®E, , since W is primitive by 2.1l. Let
AP k (2%-1)
J be the ideal generated by w* a . d9>1l. Then, by Theorem
(27-1)
2.7, F (W* ) =1 ®¢ . The uniqueness of J follows from
J k k
(27-1)
the fact that A(W’kk )y = W k ® 1 + other terms.
(2°-1) (27-1)

We conclude by giving an N and 8' :N—eH*(BO) which

satisfies Theorem l.1l. Let N = & c., where Ci is a coal-
i#29-1
gebra with one generator *x of dimension ki, kK =1,2,...,

(k)
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i i i . ,
and ¥ ( x(k)) =3z X(j) ® x(k—j)' We define 8 lCi and extend

to N multiplicatively, i.e. e'(ci@cH) = ci°cj. If i |is

even, define 8' y = sw, where w = (i,i,...,1), k-times.

i
(%%

If 1 is odd, let a,,a ,...,aj<aj

135 , be the integers such

+1
a

that 12 J_1. Further, ay is in the list if and only if

a,, a, a,
(2 3'-1) 4 (2 7-1) for any §'<j. Let ig =2 J_1. pefine

w'(m,3) “w"(m,3)

o (k) = s, X s
3 m=1

where w = (i,...,1)}), k-times, s , o= (i,...,1), k-mf, times
‘ ( ) o' (m,3) ( ) ,%
a a,

and = (2 J—l,.‘..,2 J—l), m-times.

Sw" (m,3)
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84L+7
THE IMMERSION CONJECTURE FOR 1RP +

o (%)
Donald M. Davis
Seven years ago Gitler, Mahowald, and Milgram made a well-
known conjecture about immersions of real projective space in
Euclidean space. Conjecture {4,6]. If n = 7(8), the smallest

. . . n . . .
Euclidean space in which 1RP can be immersed has dimension

0 o(4)
2n - 2¢g(n) + 1 if «f(n) = 1,2(4)
-1 3(4)

where a«(n) denotes the number of ones in the binary expansion
of n.
In joint work Mahowald and I have proved the immersion part

for small «f(n).

Theorem 1. If n & 7(8), the smallest Euclidean space in

. n . . .
which IRP can be immersed has dimension =

(0] - o(4)
2n -2g(n) + 1 if a(n) = 1,2(4)
-1 3(4)

—_—
(*) The author was partially supported by N.S.F. Research Grant

GP-25335.
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if ~(n) = 4,5,6,8, or 9.

At the Conference and in [3] the non-immersion result was
also announced. There was found a gap in the evaluation of the
-indeterminary of the secondary bo obstruction. That result is
thus not proved.

The approach is to use obstruction theory to find the geo-
metric dimension of the stable normal bundle (ZL—n—l)gn, where
L is any sufficiently large integer and gn denotes the canon-
ical line bundle over ]RPn. Recall that the geometric dimen-~
sion of a vector bundle is the smallest N such that there is a

lifting K of its classifying map f :

The first step is to evaluate the bo-primary obstructions
for multiples ka of the Hopf bundle over quaternionic projec-
. k . .y
tive space QP . We show that they are effectively the symplectic
. . ~
Pontryagin classes e, - To be more precise, let BSpN denote

the classifying space for symplectic vector bundles of real geo-~

metric dimension N. Let BO denote 555 A bo, the fiber-
N N " BSp
wise smash with the spectrum bo localized at 2 . We show in

[2] how to form the fiberwise smash for fibrations without a
section.

Recall that the fibre of E\’SpN —=BSp is V_=1lim V
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-1
which has the same 2N-type as P = .'1RP°°/]RPN . Thus through

dimension 2N the fibre of Bg —~BSp is PNAbo, whose homo-

topy groups are well-known [1,6] cyclic 2-groups. For example,

if N = 4m+l, we have "i(P4m+l)

— ()
H&
w ¢
*—0—0—0
q
[

~J

i = 4m+ 11 15 19

where the number of dots indicates the exponent of 2
vim,(

(2]

P4m+l)) and the height s is Adams filtration. We prove

Theorem 2. If N> 2k, pH, lifts to B; if and only if

. P . . v
for all i<k, v(i) 3v(1r4i_l(PNA.bo)). Since the coefficient of

ei(ka) is (lj)_) , the condition of the theorem may be restated

as

ple;(PH)) = O0¢ H41(QPkm4i_l(PN Abo)) .

Theorem 2 is proved inductively by writing. p = 2l+p' with

o<p' 521, and noting that PH, is classified by the composite

i '
0Pk Ao (gpK 4 gp¥)(4K) = |y gpA x gpK* 2 HxXP'H _pgyy BSp —BSp,
L
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where A 1is a skeletal map homotopic to the diagonal. Let

N(p,k) denote the smallest N such that ka lifts to Bg.

There is a pairing B§><B3--BE+M compatible with the Whitney

k-A lifts to Bo , . Since

i
N(27,8)+N(p',k-K)
ﬂ4i(PN,Abo) = 0 there is no obstruction to fitting lifting to-

sum pairing, so QP'Q x QP

gether, and so N(p,k)5_?gx(N(2i,£)+N(p‘,k—1)). It would be
nice if that were sufficient to make the induction work, but un-~
fortunately the desired value of N(p,k) is often several less
’than mix(N(Zi,1)+N(p',k—£)), and various technical difficulties
had to be overcome to make the induction work. See [2].

42+3

The immersions of IRP

nonical map 1RP41+3—E——QP'Q

are obtained by using the ca-
and modified Postnikov towers
(MPT) [3,5]. Suppose that to prove a certain immersion we are
, L
trying to show gd( (2 _41_4)542+3)'5N'
Consider the diagram 1, where the spaces E;, form a

~ (0]
(4443) -MPT for BSpN'—-BSp and Ei a (4K+3)-MPT for

B§+A-——BSp. Here A 1is such that by Theorem 2, QPx lifts to
o . . .
BN+A7 A will be approximately 3 or 4. By observing the tables

of [7] we see that through a fixed range the Adams chart for
"*(PN) goes several (D) higher than the Adams chart for

"*(PN+A Abo) . QP’Q lifts to EZ and we would like to show that

it lifts to Es. The obstructions to this lifting lie in

H4l(QP7ﬁ _l(fibre(Es-—>E2))). Let F_ = fibre(ES-—bBSp). Then

43 ]

ﬂ*(FS) consists of those elements of ﬂ*(VN) of Adams
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VN VN+A Abo
~ (o]
BSpy -~ N+A
Es+D Es

|
}
E
s
i
BE — EO

P i\\\- _'3/// i
._\\\ | V%

2 _g-1m)

RP41+3 h QPn —
(2

Diagram 1.

, . . o .
filtration <« s, and fibre (ES ES) = flbre(FS—-VN_,_A Abo).

Thus if 7 (PN) contains nothing except the tower which

4i-1
0
.. . . th . . -
clearly injects into 174i_1(PN/\bo) then 114l_l(f1bre(Es——Es)) 0
so QPI lifts to E_. The tables of [7] show this is often

(p.); this is the reason that we can only

t
true through Taris Py

assert the immersions for small values of g(n). There is a
naturality argument by which we can often show that the first

occurrence of a non-bo-primary element in Lo l(PN) cannot ob-
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struct QPl [2,3], but an entirely different argument will be
required to obtain immersions for large «(n).
4R+3

1 i L w ] =
Having lifted QP to Eg we lift TRP to Es+D

= gEEN by indeterminacy computations [2,3].

Northwestern University
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VECTOR FIELDS ON 2-EQUIVALENT MANIFOLDS

Henry H. Glover and Guido Mislin
Introduction

It is known from the work of [3], [7] and [13] that if M
and N are homotopy equivalent closed differentiable manifolds
of dimension n and if k<n/2, then M admits a k-field if
and only if N does.

We generalize this result to the extent that we only assﬁme
the manifolds M and N to be equivalent at the prime 2, in a
sense made precise in Section 1. The result is proved using the
technique of localization of homotopyltypes (43, (9], [10] and
relies on the main pullback theorem of localization.

We call a space p-good, if it is good with respect to the
ring Z/p in the sense of Bousfield and Kan [4] (see also Sec-

tion 1). Our main theorem is then the following.

Theorem 0.1. Let M and N Dbe connected closed orien-

table differentiable manifolds of dimension n which are 2-good.

Suppose that .ﬁzgzﬁz and let k<n/2. Assume that N admits a

k~field. Then

(i) M admits a k-field if n-k 1is odd,
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(ii) M admits a (k-1)~field if n-k is even.

A slightly different version of Theorem 0.1 could be ob-
tained using partial Z/2-localization, localizing all higher
homotopy groups of the manifolds M and N, and using the tech-
nique of [2].

:N . Recall

We say that M and N are 2-equivalent if fi 5

2
from [5] the definition of the semi-characteristic of a closed

n-manifold M,
1/2 xM, if n even,

r
( z rank Hi(M;Z/Z) ) (mod 2), if n = 2r4l.
i=0
(xM the Euler characteristic of M). We get from Theorem O.1

the foliowing corollary.

Corollary 0.2. Let M be a 2-good n-dimensional closed
differentiable manifold which is 2-equivalent to a g-manifold.
Let p(n+l) denote the Hurwitz-Radon number (i.e. the span of
Sn) and let x*(M) denote the semi-characteristic of M. Then
one has the following.

(i) If dim M = 7 then M admits a 2-field and if
dim M = 15 then M admits a 6-field.

(ii) If x*(M) #0 and n # 7, 15 then M admits a

N
L3

2(p(n+l) /2]-field.

(iii) If X*(M) = 0 then M admits a (n-2)/2-field if
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dim M = 0(4), (n-1)/2-field if dim M = 1(4),
(n-4)/2-field if dim M = 2(4), (n-3)/2-field if

dim M = 3(4).

In case n = 7, (ii) of Corollary 0.2 does not hold.
Sjerve gave an example of a lens space which is not parallel-
izable, but which is 2-equivalent to the 7-sphere [12]. However,
in case M 1is any spherical space form with fundamental group
of odd order, then (ii) of the above corollary is sharp if
p(n+l) is even; if p(n+l) is odd such an M admits a p(n+l) -
field as was proved by Yoshida [14]. A complete solution of the
vector field problem for generalized spherical space forms Was
given by Becker [i]. |

The plan of the paper follows. In section 1 we give the
facts about localization and spherical fibrations needed.

In Section 2 we prove a lifting theorem and generalize the
results of Sutherland [13] and Dupont [7] to our situation.

In Section 3 we prove Theorem 0.l and Corollary 0.2.

1. Localization of Spherical Fibrations.

All spaces we consider are supposed to be of the homotopy
type of well-pointed connected CW complexes.
Let Zp denote the integers localized at (p) and Z/p

the field with p elements. According to [4] a space X has a
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zp-localization and a Z/p-localization, which we denote by Xp
and ip respectively. For the following definition compare

with [4].

Definition 1.1. X is called p-good if the canonical map

X-—»ip induces
= A
H, (XiZ/p) —H, (X,:2/p) .

For instance, if X is nilpotent or if Hl(X;ZVp) = 0, then X

is p~good.

r . .
Let £ . F—»E:—EL—-X denote a fibration over X. Then we

call the mapping cone of pr the Thom space of g€ . and denote
it by TE. 1In case the fibration in question is of a sbecific
éype, classified by some map X—B, we will often use the same
letter & to denote the classifying map.

Denote by SF(n) the monoid of degree one pointed maps of
s" ana let SF = USF(n), with classifying spaces BSF(n) and
BSF. Recall that BSF(n) classifies oriented Sn—fibrations
with cross section. The obvious maps S0(n)—»SF(n) and
SO—+SF induce maps of classifying spaces, which we will denote
by the same letter J : BSO(n) — BSF(n), J : BSO —BSF respec-
tively. The composite of a map f: X—eBSO(n), (g : Y—BSF(n))
with the canonical map BSO(n)—=BSO, (BSF(n)—BSF) will be °
denoted by f (g .). Since BSF is l-connected and since all

st st

homotopy groups of BSF are finite, one has (BSF) ® (BsF)”
p p
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and therefore, for a p-good space X, the canonical map X-—’X;

induces a bijection.

~

A
% ,BSF ] = [X,BSF
(x,/BSF,] ¥ o)

by the universal property of Z/p-localization for p-good spaces.
All manifolds we consider are supposed to be orientable,

closed, connected and differentiable.

r .
Lemma 1.2. Let Sk——aE-—EL—-M denote an oriented sphere

fibration with cross section over some manifold M and let
g : M—BSF(k) be the classifying map. Suppose that M is p=~

good. Then

(i)  (pr)” : B —=f# has fiber §k,
P P P P

(ii) B is p-good,
(iii) The fibration §k-—°ﬁp-—’ﬁp is fiberhomotopy equiv-
alent to the fibration induced by Ep :ﬁp——*BSF(k);

from the universal §:—fibration over BSF(k);,

. A A A
(iv) T(§)p ~ (T(§p))p-

Proof. As Sk——*E-—BE—-M is induced by the universal
fibration Sk-—-ESF(k)——-BSF(k) and since ﬂlBSF(k) = 0, we‘
conclude that ﬂlM operates trivially on the homotopy groups
niSk of the fiber of pr. Hence (i) follows by [4:;II, 4.8].

To see (ii), we consider the induced morphism of Serre spectral

sequences, associated with the map of fibrations
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R

N> @«—0«
™

> —
<
-— =

k A
— —_— M
P P p
where «, 8 and y denote the canonical maps. As

induce isomorphisms in mod p homology and as ﬂlM

and B

operates

k. . . .
trivially on H_S , it follows that g induces an isomorphism

in mod p homology. Hence E 1is p-good. Since #.BSF(k) = O,

we obtain by Z/p-localization a fibration

ék—-ESF(k>‘—- BSF (k)"
p p p

and using the universal property of %/p-localization of p-good

spaces it is immediate that there is a canonical map of fibra-

tions of degree 1 on the fiber

ak ak
S —— S
p p
o) X
p
pr q
p
ol
p

where g denoted the fibration over ﬁp induced by

proves (iii). For (iv) we consider the diagram

. This
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A
E £
p
pr Pr
p
M E - f
o
h L A
T ., Y
(€) Ep)

with ;f’ g and h the obvious maps. As f and g induce
isomorphisms in mod p homology the same is true for h. There-
fore, h induces a homotopy equivalence T(a);——a(T(ép)); [4:1,
5.57 and the proof of the lemma is completed.

This allows us to reformulate Proposition 4.1 of [8] to get

by the same kind of argument the following result.

Lemma 1.3. Let M and N be p-good oriented manifolds

and 2\ s M _—’ﬁb a homotopy equivalence. Then

p

A _ A . o A
(Tv (M) )pox = (Jv(M)st)p in FMP,BSFP] = [M,BSFP].

t

where Jv( )st denotes the classifying map for the oriented

stable normal fibration.

2. The Lifting Theorem.

The following theorem is an unstable analogue of [8, Prop.
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3.57.

Theorem 2.1. Let M be an n-dimensional manifold and let
g denote an oriented R"-bundle over M, classified by
€ :M—BSO(n). Let s>n/2 be an integer. Then the following

are equivalent.

(i) g lifts to BSO(2[s/2}+1).
(ii) ézng :M-——BSF(n); 1lifts to BSF(2[S/2]+1);
(52 :BSF(n)———BSF(n); denotes the canonical map.)
Proof. Of course one has only to prove that (ii) implies
(i) . Consider the diagram

BSO(2[s/27+1)—=BSF( 2[s/2]+1)——-BSF(2[s/2]+1)“

—*’BSO —'BSF(n)————"BSF(n)

2

Case 1l: n odd. If n 1is odd, one has isomorphisms
can :ni(SF(n),SF(2[S/2]+l))——oni(SF(n);,SF(2[S/21+1);)

for 1i<4[s/27+2, (see for instance [8, Lemma 2.27) taking into
account that all thé homotopy groups of SF(k) are finite in
case k 1is odd. Since 4[s/2]+2>4[n/4J+2>n-1 and dim M = n,
it follows by an obstruction argument first observed by

Sutherland ([13] (c.f. Lemma 2.3 of [8]) that the existence of
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the 1ift h. By a result of James [11)
can :ﬂi(SO(n),SO(2ES/ZW+1))——~ﬂi(SF(n),SF(2[S/2]+1))

is an isomorphism for 1i<4{s/2742. Hence, again by obstruction

theory, the lift k exists if one has the lift h.

Case 2: n even. We will first show that if ézng lifts

to BSF(n-1) then £ 1lifts to BSO{(n-1l). For this consider

S

the diagram

BSO(n~1), BSF(n—l);
BSO(n) BSF(n);
« . _ X
E E,
loc A
K(Z,n) R(Z, )

with ﬁg the first Postnikov invariant of BSF(n—l);-—hBSF(n)g;

Since the coefficient homomorphism

n n A [l
9 :H (M;Z) = Z—H (M;ZZ)= za

is injective, we see that if ézng ‘iifts to BSF(n—l); then
é;(éng) = 0(E(f)) = O and therefore E(E) = 0, which implies
that § 1lifts to BSO(n-1). As n-1 is odd, the proof is then
completed by proceeding in the same way as Case 1.

The next lemma is a special case of a theorem of Sutherland

[137.
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Lemma 2.4. Let M be an.oriented even dimensional mani-
fold with oriented tangent bundle t. Suppose £ 1is an ori-
ented n-spherical fibration over M with cross section such
that

i g = :t M BSF,
(1) 5st J(T)st -

(ii) E(£) = E(7).E : BSO(n)—=K(Z,n) and E : BSF(n)—~K(Z,n)

the Euler classes. Then £ = J(7) : M—*BSF(n).

An analogous lemma in case dim M is odd may be formulated
by using an invariant introduced by Dupont [7] in place of the
’Euler class. Let M denote an n-manifold with n odd and let
£, :M—=BSF(n). If gst = nst : M—=BSF then either € =17 or
£ = x*n where X.EﬂnBSF(n) is the characteristic element asso-

ciated with the tangent bundle of Sn and

* :ﬂnBSF(n) x "M,BSF(n) ]— [M,BSF(n) ]
is the operation induced by the usual cooperation
M—eMVS"

coming from the attachment of the top cell of M (see (61).
Dupont defines then [7] an invariant b(g) ¢ Z/2 for
€ :M—=BSF(n), which is well defined in case there is an

M :M—BSO(n) with £ # J(7) but §s¢ = J(M) . Further,

A~

b(JN) is well defined too and in this situation b{g) # b(Jﬁ).

We extend his definition in the following way: Let £ : M—BSF(n).
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Then

b(g), if Db(g) 1is well defined
D(g) =
0, 1f b(£g) is not defined.

It follows then that the invariant D has the following proper-

ty.

Lemma 2.5. Let M be an oriented n-manifold, n odd, and
let € Dbe an oriented n-spherical fibration over M with cross
section such that

i = : M B
(i) g, =J(r)  :M—>BSF

(ii) D(g) = DJ(r).

Then € = J(r) : M—»BSF(n).

There is a local version of Lemma 2.5. Namely, for n odd
BSF(n) ~ HBSF(n)b and as the element x,eﬂnBSF(n) associated
with the tangent bundle of s® hés order at most 2, it follows
that for E£,7 : M—=BSF(n) with gst = nst one has epog = epon
for all odd primes, and hence

p
g ~1 if and only if ezog ~ e,en
(eé :BSF(n)——»BSF(n)P the canonical map). Also, it makes per-
fect sense to define D for § :M-—bBSF(n)Z, n odd, since
[M,BSF(n) ]—>[M,BSF(n),] is surjective, by defining D(6) =D(§),

where § is any lift of § to BSF(n).

The following lemma follows then immediately from the above
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remarks.

Lemma 2.6. Let n be odd and let M be an oriented
2-good n-manifold. ILet § : M—=BSF(n), T(M) : M—=BSO(n) be
such that

) A J (M A
(i 52:: T )2
(ii) ¢

~ ( .
st — JT M)st

Then £ ~ Jr(M).

Lemma 2.7. Let n be odd and let M and N be oriented

. g} ~ .
n-manifolds. Let ) :M2 ~ N2. Suppose M (and hence W) is

2-good and suppose given E : M—+=BSF(n), such that

(1) §_., ~ JT(M)S

st t
(ii) g3 = Ir(mjen. |
Then D(g) = D(JT(M)) and hence & = Jr(M) : M—BSF(n) .

The pfoof of Lemma72.7 follows from the proof of Theorem
5.1 of [7] using naturality and the good behavior of the Thom
spaces of spherical fibrations under localization (c.f. Lemma 2.2).

We can now prove the following local version of [7, Lemma

5.3 and Theorem 5.77.

Theorem 2.8. Let M and N be closed oriented differen-
tiable manifolds of odd dimension which are p-good. Suppose

PO NP Then
P~ p

A= (N)® o M*,BSF 7.
J‘r(M)p J‘r(N)p Aef b (n)p]
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Proof. For p odd, the theorem féllows from Lemma 1.3
since [M,BSF(n)p]——*[M,BSFp] is then a bijection. In case
p = 2, choose £ :M—=BSF(n) by putting épog = époJT(M) for
p odd and é2°§ = Jr(N);oxoéz.' Then, in view of Lemma 1.3, one

has

Esp = IT(M gy

and by construction

A _ A,
£, = JT(N)2 A

Hence £ ~ Jr(M) by Lemma 2.7 and therefore 52 = JT(M); =
= Jr(N) e
An analogous theorem for even dimensional manifolds would

follow from Lemma 2.4 in case one assumes for instance that

x (M) = O.

3. The Proof of Theorem 0.1 and Corollary 0O.2.

Notice that for 2-good manifolds M and N, ﬁz ~ &2 im-

plies thét the Euler characteristics X(M) and x(N) agree,

since they are determined by the mod 2 homology of the spaces

involved. To prove Theorem 0.1, assume that ) :ﬁz-—‘ﬁz is a

homotopy equivalence. We distinguish two cases.

case 1l: n odd. By Theorem 2.8, we have JT(N);ox = JT(M);.
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As N has a k-field T(N) lifts to BSO(n-k). Hence

JT(N);oA = JT(M)Q lifts to BSF(n—k)z_ and since n-k>n/2, we
conclude by Theorem 2.1 that r(M) Llifts to BSO(2[(n-k)/2]+1).
Hence M admits a n-2[(n-k)/2]~1 field, which completes the

proof of Theorem 0.1 in case 'n is odd.
)

Case 2: n even. If y(N) # O, there is nothing to prove

s%nce then k = 0. Hence we may assume that y(M) = y(N) = 0.

A
]

This implies that J-r(N)2

xéz lifts to a map ¢ :M——vBSF(n)z,

where BSF(n) denotes the fiber of BSF(n) K(Z ,n). Notice
that BSF(n) = HBSF(n)p since all homotopy groups of BSF(n)

are finite and HlBSF(n) = 0.

Because by assumption E(r(M)) = O we can lift Jr(M) to

B : M—=BSF(n). ©Now choose

o : M—=BSF(n) = IBSF (n)

such that for odd primes epo& = epoB and for p =2, e_ou = o,

and define

; can
w:M-—u'-’BSFin) ——— BSF(n) .
Then % will be a map such that

w = Jr(M)

- st (using Lemma 1.3)

Hence  ~ J7(M) be Lemma 2.4. But, by construction, ézow
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lifts to BSF(n-k);, since N admits a k-field, k<n/2. Hence
T(M) 1lifts to BSO(2[(n-k)/2]+1) from which Theorem 0.1 follows
in case n 1is even.

A

. To prove Corollary 0.2, let N be a g-manifold with ﬁzC:Nz.

Notice that the semi-characteristic of M and N must agree:
x* (M) = x*(N).

Suppose now that y*(M) # 0. Then N admits a p(n+l) field
by [5]. For n even there is nothing to prove; for ‘n odd,

n #1,3,7,15 one has p(n+l) <n/2. Hence (ii) follows from
Theorem 0.1 in case n # 1,3,7,15; if n = 1,3 the conclusion
of (i) is trivial. 1If x*!M) = O, then N is parallelizable.
Hence we can choose k = [(n-1)/2] in Theorem 0.1, from which we
get (iii) of the corollary; (i) is a special case of (iii) in
case x*(M) = 0. If yx*(M) #0 and dimM = 7(15) then N
‘has 7(8) fields by [5]. Hence we can use Theorem O.l with

k = 2(6) to get the result.

Ohio State University, Columbus

Eidgendssische Technische Hochschule, Ziirich
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BOUNDARY HOMOMORPHISMS IN THE GENERALIZED ADAMS SPECTRAL
SEQUENCE AND THE NONTRIVIALITY OF INFINITELY MANY
Yy IN STABLE HOMOTOPY

D.C. Hohnson, H.R. Miller, W.S. Wilson,
and R.S. Zahler

We apply the computation announced in [8] to prove the fol-
lowing result on the nontriviality of an infinite subset of the
family {yt: t> O} in the stable homotopy of the sphere.

S o . .

Theorem. Ye X 3 2 (S') 1is essential
2(p -1)t-2(p " -1) -2(p-1) -3

if t=rp, r=2,...,p~1, s>0.

The elements Ye have been detected for t = ap+b,
O<a<bgp-l, by E. Thomas and R.S. Zahler [12,13]. Several .
programs for detecting the whole gamma family are currently
under way, but as far as we know, none has yet succeeded.

Our approach is to reduce the theorem to an algebraic ques-
tion in E2 of the Adams spectral sequence for BP homology
and then appeal to [8] and arithmetic to deduce the result.
The arithmetic actually shows Y # 0 for éther values of t
in a set of density éero.

Our methods allow a systematic deéection of elements in in-

finite families in stable homotopy. We illustrate this by pro-
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—

ving that all the elements in the alpha and beta families are
nontrivial, assuming only the existence of the self-maps required
for their construction. The same technique could be used to
detect the known members of the epsilon family, again assuming
their construction.

The link between algebra and homotopy theory is provided in
the first section by a folk theorem relating algebraic and geo-
metric connecting homomorphisms. The second section defines the
stable homotopy elements of interest to us and uses [8] to detect

many of them.

Acknowledgements. We thank the organizers and participants

of the August 1974 Northwestern University homotopy theory con-
ference for creating such an exciting atmoéphere: conversations
there led to this paper. We also thank Idar Hansen for useful
and sympathetic discussions. The last three named authors were

partially supported by the National Science Foundation.

1. Algebraic Boundaries and Geometric Boundaries.

Our goal in this section is to prove a general result (1.7)
relating connecting homomorphisms in E2 and in the abutment of
generalized homology Adams spectral sequences.

We recall the construction [3, III, §15] of an Adams spec-

tral sequence based on a homotopy-associative ring spectrum E
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o] (] 0 ' s+1

with unit 7 : S -—E. Let F =S and for s>0 let F

complete the cofibration sequence

(1.1) Fo

in which ks has degree -1 and

. ] s (0] s s
jS= MAF :F ~ S AF —EAF .

The sequences (l.1) splice together to form an Adams resolution
for SO. When smashed with a connective spectrum X, they form

an Adams resolution for X. Note that

(1.2) B, (i_AX) = o.

S . ’ .
If we apply ﬂ*( ), we obtain an exact couple whose associated

spectral sequence is the E-homology Adams spectral sequence

* %
B (X) .
r
Define a filtration of nf(x) by
s S . S S
(1.3) Poro(x) = image frS(FS AX) — i (0},

, s s , s
Lift X€F wf(x) to yEﬂ*(FS/\X). Then (js/\X)yEn*(EAFS/\X)=

S, . .
= El *(X) is a permanent cycle and projects to an element of

ES'*(X) which depends only on x modulo Fs+lﬂS(X). Thus we

-] *

have a homomorphism of bigraded modules

* 8 *k
(1.4) Eon*(X)——"E°° (X) .
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) O . . .
Now suppose E, = E_(8) is commutative and E,(E) 1is

*

flat over E, . The left unit nL :E —E_(E) is split by the

. 1 .
multiplication map so the cokernel, E*(F ) by (1.2), is also

flat. Then E*(Fl)18E E*(—) gives a homology theory naturally
*

1 , .
equivalent to E*(E‘ A-). Using the observation that

t t-1

F o~ Fl/\F , we prove inductively that:

(1.5) EJFTAX) TE(F)® B, (X
*

for any connective spectrum X . Then [2,3]

* %k ,: * X
E, (X) = ExtE*(E) (E,,E (X)) .

This Ext 1is an Ext of comodules over the "coalgebra" E*(E);

it is computed using extended E_(E) comodules as injectives.

t,*

e (5) BarEn (X)) is said

Definition 1.6. The class §<5Ext

S .
to converge to x¢€n, (X) provided that

(i) x 1is a permanent cycle representing the class

{z}eri "m0

(i1) xePro(X); ana

(iii) The homomorphism (1.4) sends the coset X+Ft+lnf(x)

to {i}.
We define a map f : X—Y to be E-proper provided that

E,(f) = 0. (This terminology was suggested by Larry Smith.) If

in the cofibration sequence
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the map h is E-proper, we obtain a short exact sequence

E,(f) E,(G)

E, (%)

O—'E*(W) E*(Y)—-O.

In turn, this induces a long exact sequence

* %
Ext (E) « B, (W) —~Ext (E*,E (X))
E (E) B (Y))

where the connecting homomorphism &6 1is as in [4, p. 55] and

has bidegree (1,0).

Theorem 1.7. (Geometric Boundary Theorem) Let E be a
homotopy associative ring spectrum with unit such that E, is
commutative and E*(E) is flat over E, is commutative and

, h '
E _(E) 1is flat over E,. Let W £ X g Y SW Dbe a cofibre

sequence of finite spectra with h an E-proper map. If

t,*

X X
€E tE (E

)(E*,E*(Y)) convergés to :{ENE(Y), then 6(x) con-

verges to h_(x) Eﬂf(W)-

Proof. Smash the Adams resolution for the sphere with the

cofibration sequence W-—X—=Y. Part of the resulting diagram
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S, _t .
is displayed in (1.8). Let yen (F AY) Dbe such that (Jt/\Y)y
- t’*
represents x 1in. E2 (Y) and
(1.9) (10...1t_1AY)y=x.

By (1.5), the E /\Ft/\— row in (1.8) is short in homotopy,
so 0 = (E /\Ft/\h)(thY)y = (jt/\W)(Ft/\h)y and there exists

S, _t+l
ylE'n'*(F AW) such that

. t
(1.10) (1t/\W)yl = (F Ah)y.
We come now to the main geometric step.

Claim 1.11. There is an element y2 enf(E /\Ft/‘\ X) such

that
(3. AY)Yy = (EAFC Ag)
jt Y g y2'7
_ t+1
(kt/\X)y2 = (F /\f)yl.

To see this, pass to the Spanier-Whitehead dual cofibration

sequence DWe+—DX+— DY. Take maps y# and yﬁ dual to y and

yl. We have

DX +— DY «—— 8§ TpW
]
[}

#1 # -1 #
v

t t t+1
EAF «—F «—F 7,

Let yg comple te the map of cofibrations (see [16], p. 170).
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Then the map Y, eﬂf(E /\Ft/‘\Y) dual to yﬁ: satisfies the con-

ditions of the claim.
Now it is e-‘asy, using the definition of the connecting

homomorphism 6, to chase (1.8) and see that

. S t+1
(Jt+l/\W)ylE1r*(EAF A W)
- . t+1 . .
represents §(x). Because it factors through F AW it is a
- . , s+1 s ,
permanent cycle. Since (ls AW) (F Ah) = (F Ah) (ls AY) for

all s, we have by (1.9) and (1.10)

-1 AY)y =h(x).

. . . . t g .
(10...1t/\W)yl—-(1 celd -1 AW)(F Ah)y=h (10...3.t

o t

That is, 6()—c) represents h(x).

£+l t+l
EAF T AW—=EAF 7T AX

y

1 e+l 4
PP A — A x — oMl Ay

NOINTTN

t
EAF AW——=EAF AX—EAF AY

/ / |

t t t

FAW———=F AX—F AY

2. Detecting Stable Homotopy Families.

In this section we show how the Miller-Wilson results may
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be combined with the geometric boundary theorem to detect stable
homotopy. First we recover known results on homotopy elements
of BP filtration 1 and 2; then we prove our main theorem on

the gamma family.

Recall that BP,( )} 1is the Brown-Peterson homology theory
associated with the prime p; it has coefficient ring
- - . . _ n .
BP, = Z(p)LVl,VZ,...J with \vnl = 2(p -1l). Define
I, = (p,vl,...,vn_i) with the convention that Vg =P and
IO = (0). All of the results of Section 1 hold for BP. 1In

fact, there is an Adams spectral sequence

*% s
EXtBP*(BP) (BP*,BP*(X))=> ﬂ*(X)
converging to nf(X)@:Z . Henceforth we shall delete ”mﬂ@P)“

(p)
from our Ext . notation.

o}
Let V(-1l]) =S . For n =20,},2, or 3, and p>2n, there

is a cofibre sequence

5 N o) a h n_
2.1) %P 2y(n-1) — % v(n-1) — 2 v(n) —2= %P “Ly(a-1y,

in which hn is BP-proper, inducing the short exact sequence

\4

9}
o— .
BP*/In——— BP*/In—-—>BP*/In+l-—’ o}

(n=1:[1}; n=2:[10]; n=3 :[15].)
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On the E2 level of the Adams spectral sequence, these
short exact sequerices induce exact triangles

*k Vn kK
Ext (BP,,BP,/T ) —EXt (BP,,BP, /T )

where 6n has bidegree (1,2—2pn).

Now we need to quote two theorems.
Theorem 2.3. (Landweber 7], or see [5]) Let n>0; then

O,* ~ co
Ext (BP*,BP*/In) —IE‘p (v, i-

* %
Thus Ext (BP,,BP /I ) is a module over IF [v . When
*" T p- n

o,* ' o~ .
n = 0, Ext (BP*,BP*) =Z(p) , concentrated in degree zero.

Theorem 2.4. (Miller-Wilson [8, passim) Let n = 0,1,2, or

- ll*
3. If O#p (x) cExt (BP*,BP*/IrH_l), then Vn+lpn(x) £0.

Lemma 2.5. Let n = 0,1,2, or 3, and p>2n. If

gnen:(v(n)), s> 0, is such that

O#BP*(gn) € Hom (131?*,139*/1n YETF [V

BP ,BP +1 pt nsl?

S S
then O# hngn er, (V(n-1)). Furthermore O# hn_lhngnew*(v(n—z))

for n#O.
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Proof. By (2.3) the exact sequence induced by (2.2) begins,

P ' 6
p 0 - 0 1,*

2.6 o—Z —_— Z F v -— EXt BP, ,BP
( ) (p) ) b ll (BP, /BP,)
and for n>0;

v
fo! 1)
.. n - n - - n
© IF“Vn.J IE“‘VnJ II':‘p"vn+lj

(2.7)

1,* y Ya 1,* y
Ext (BP*,BP* In) — EXxt (BP*,BP* In) .

In either case, 6n(BP*(gn));£O since 9, has positive degree.

By Theorem 1.7, § BP*(gn)) is a permanent cycle converging to

o ¢

hngn; see (l1.6). Differentials increase homological degree by

at least two, sO hngn survives nontrivially.

Now by (2.7), vnén(BP*(gn)) = 0. Thus by (2.4), Gn(BP*@nD
cannot be in the image of Po-1 (in (2.2)). Hence, by exact-
ness of (2.2),

£ 2, % Y ~_2,%

0#6 _,0,(BP,(g))) €Ext"" (BP,,BP, /I _,) =E," (V(n-2)).

By Theorem 1.7, én_lén(BP*(gn)) is a permanent cycle which

converges to hn_lhngn; see (l1.6). A glance at (2.3) shows that

6n_16n(BP*(gn)) cannot be hit by any differential so

Gn_lﬁn(BP*(gn)) survives nontrivially to E_ and hn—lhngn# 0.
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1 t t-1
finiti .8. = and = , t>1 i
Definition 2 ¢, ¢n n ®, ¢n¢n (using
the same symbol for a stable map and its suspension) .
We now consider some examples. For >0 and p>2,
S o . . Cys
« €7 (S7) is defined as the composition

t " T2(p-1) t-1

t
® hy 1

. a '
2(p-1)t 0 SZ(p—l)tv(o) 1 v (0) gl

Notice that

'

t t ~ *
Bp*(alao) =V, € IE‘p[Vl] = Ext (BP*,BP*/(p)) .

By Lemma 2.5 we have:

Corollary 2.9 (Toda [14]). at;éo for all t>oO.

For t>0 and p>3, ﬁtérrs (SO)

2(p?-1) t=2(p-1) -2
as the composition

t h
¢ 1

2 a.a 2
S2(p -1)t 10 S2(p —l)tv(l) V(1) S2p_lv(o)

Notice that

BP  ( ta a ) ver [v 1= Ext *(BP BP./(p,v,)
= ] =
*¢2].O 26 p- 2 * ! * p’]_

By Lemma 2.5 we have

is defined

h

0 2p

S

) .

corollary 2.10 (Smith {10]). ,gt;éo for all t>o0.
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Remark 2.11. 1In (8], Extl'*(BP*,BP*/In) and the maps Py
are described éompletely for n =0,1,2, and 3. We have stated
in (2.4) only the minimal result necessary to study the beta and
gamma families. Using the more complete information availble in
[8] one can use techniques similar to these to detect all of the

epsilons of oka [9], Smith [11], and Zahler [17] assuming only

the spaces and self maps used in their definition.

Let p>5 and t>0. There are elements

, S
YL ET 3 5 (v(0))
2(p -L)t-2(p -1)-2(p-1)-2
and
S (e}
Ve €T 3 2 (87
2(p -1)t-2(p -1)-2(p-1)-3
defined by the following diagram.
t
3 ¢
Pt 3 Ly
h2
2_
2(p l)+lv(l)
(2.12) azalao hl
2_ _
. S2(p lY+2(p l)+2v(o)
Y
h

0

Sz(p3-1)t Y Sz(p2-1)+2(p—1)+3
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Observe that
BP*(¢'ta aa) =voeT (v, 1% Exto’*(BP (BP_/(p.v.,v )).
3.210 3 p- 3 * * 1772
By Lemma 2.5 we have the following folk result.
corollary 2.13. y't;éo for all t>oO.
In this case, the proof of Lemma 2.5 showed that

209(%) (p_,BP,/(p),

t
0 # 6152(V3) € Ext
3 2 :
where w(t) = 2(p -1)t-2(p -1)=-2(p-1).

Lemma 2.14. Suppose for some t>O ‘that

t2,w(t)

I
o

EX (BP, ,BP,)

Then Ve #0.

Proof. With k = w(t) we have

2,

t k
0#6,6,(v;) € Ext™'"(BP, .BP,/(P))

and the exact sequence

)
2,k P k 3,k
0 =Ext (BP*,BP*)——JQ# Ext? (BP*,BP*/(p))-——Qo Ext™ " (BP,,BP,).

Thus 6 .6.6

t
%1 (VB)#(L By Theorem 1.7, this is a permanent cycle.

2

’

. .
Since Ext l(BP*,BP*) =0 for i #Z 0 modulo 2(p-1l), no non-

zero differential (bidegree = (r,r-1)) has range Ext3”“t%ﬁiap*p
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So 6.65.6 (vt) survives nontrivially to E and by (1.7) con-
o172 '3 ®

verges to yt.

2,w(t ’
We are not so lucky as to have Ext ( )(BP*,BP*) = 0 for

all t., 1In [6] it was opserved that Extz'w(l)(BP*,BP*) = 0,
giving a confirmation of the theorem of Thomas and Zahler [127

that yl;éo. From Theorem B of [8] and the discussion following

it we have

Theorem 2.15 (Miller-Wilson). Let p>2. Extz’n(BP*,BP*)
is the direct sum of Jj nontrivial cyclic 2 -modules where J

(p)

is the number of times n appears in the following list.

(i) [p (p+l)-ilq s>0, O<isps
(ii) [a(p+l)-1]g
(iii) [ap(p+l)-ilq o<i<p

(iv) [aps(p+l)—i]q s>1, O<i5ps+ps -1

where 1l<a, (a,p) 1, @ = 2(p-1).

Proposition 2.16. For r = 2,3,...,p~-1, >0, and
3 'k
k = w(rps) = 2(p —l)rps—2(p2—l)—2(p—l), Ext2 (BP,,BP,) = O.

Proof. It is easy to check that k = w(rps) is not in the
above list. For example: k/q = rps—l modulo (p+l); a(p+l)-1 =
-1 modulo (p+l):; rps #Z 0 modulo (p+1) since 2<r<p-1; and V
thus k cannot be of form (ii). The other cases require equally
elementary and entertaining arguments.

This gives us our main result.
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Ccorollary 2.17. ¥y s;éo for r =2,3,...,p-1 and s> 0,
rp :

Proof. (2.14) and (2.16).
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HOMOLOGY OF THE BARRATT - ECCLES DECOMPOSITION MAPS

) (*)
Daniel .S. Kahn

Section 1.

In this paper, we propose an approach to the calculation of
the homology homomorphism induced by the Barratt-Eccles maps
which decompose T?+X ({2]). The interest of these calculations
is suggested by two applications given here as well as in some
recent work in progress of Barratt and Kirley. The first appli-
cation gives a new proof of.the Kahn-Priddy theorem [6; along
lines suggested by an argument of G. Segal _14] except that the
details are carried out by means of homology calculations. . We
conclude by sketching a result of the present author and L.

Finkelstein which generalizes the first result.
Section 2.

For a finite group G, let WG denote a contractible

countable CW complex on which G acts freely and cellularly.

* : ) .
) The author was partially supported by NSF Research Grant

GP-25335.
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BG = WG/G 1is a classifying space for G. 1In this paper, all
actions of G are on the left; actions of G on products of
G-spaces will be the diagonal action. We will denote the quo-
tient space of the diagonal action on A xB by A xGIB. In the
special case where Gc:zn, the symmetric group on n opjects,
and B = a" with the evident G-action, we denote the gquotient
space WG x A" by WG x a,
G z
Consider the infinite loop space QA = lim QnSnA (47,
—
where (" is the n-fold loop space functor and s’a = A/\Sn for
a space A with base point. For each integer m, QSO has a
O . . n n
path component QmS which is represented by a map S -— S of
degree m. We use the symbol [m] to denote both a point of
0O . - O
QmS and the singular homology class [m]j eHO(QS ;R) repre-
sent by that point. (R is any ring with unit.) Letting xxy
denote the Pontryagin product of x and y derived from loop
0
sum on QS , we have [m]*[n] = [m+n]. We denote by
_ 0 o} . . .
*{m] : 08§ — QS the map given by adding to each loop a fixed
loop of degree m Thus *[m](Q SO)C:Q So
P g o ! n m+n~

For any infinite loop space A, there exist the Dyer-Lashof
maps en :WZn legh—-A [47]. (zn = symmetric group on n sym-
bols, or to be more specific we will take Zn to be the auto-
morphism group of the set n = {l,2,...,n}.) Consider the com-

. . o)
posite [N ,an QnS

_ n : o, n 0]
BL = WL xz[l] —Ws x.(Q,87) —Qs
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where the first map is induced by the inclusion of [1] in QiS

. . . o, n (0]
and the second map is the restriction of en :WanZ (QS) —QS.

. - 0] .
We define Py :BLn———QOS to be the composite

B Pn 0 SO._i;:El*.Q S
_—
Zn n 0

Following Adams {1, for a prime p>2, we set

L = (BL .
P p p J

clusion 2 —p, and p(A) is the p-primary factor of A. For

CBZ2) where j :Bzz——.BX is induced by the in-
P

p =2, we set L, = B . The inclusion j :BY -—L is the
-2 2 o p

identity for p = 2 and induces a Zp—homology isomorphism if

p. 2. Also for p>2, Lp is simply-connected. This follows

from the van Kampen theorem. It follows by obstruction theory

that the composite

(6} e}
BZP'—:ﬂ*QOS -———’p(QOS)
Pp ’p

extends to a map J L, — (Q SO) (Her is the projec

T L . e -
pp | p O yp P
. O . . O
tion of Q_5 on its p-primary factor (0. S).)
0 p 0O
. o . s
Since p(QOS ) is an infinite loop space, the map

]

. 0 , -
L — (0 extends to a ma s QL — (Q.S £7.-
P ) B p P( 0 )

S
P b p O

We wish to prove the following

Theorem 2.1. There exists a map o: p(QOSO)—--'QLp such

that wog is homotopic to the indentity map of (QOSO).
p
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(2.1) is equivalent to the Kahn-Priddy theorem. See (1]

for a discussion of the different forms of this theorem.

Proof. We construct the homorphism ®, p :Zn_’ZNanP used

by Barratt and Eccles in [2], where N = (;) and ZN;FEP is
the wreath product [5]. (In our notation Zlezp is a semi-
N

direct product of ZN with (Zp) .)

Let %(n) be the set of subsets of n of cardinality p.
The cardinality of P(n) is N. For notational convenience,
we shall think of 57(n) as the set of monotone functions

f:p—n. FEnumerate these functions: f.,f

1 ,£_ . ERach ¢ EZn

gt iy

permutes the elements of fp(n). Thus we obtain g EZN defined

f.=f . i . [ .=]—I L
by go i o(1)°° also defines elements Tl-ezp i 2 P

. - -1 . .
by demanding that Tilof (i)ocofi be monotone increasing. (7
o)

may be thought of as the internal permutation on fi(E) induced

i

X eoeo XT. ). It

by ¢.) Finally we define ¢ (c) = 5-(Tl XT, N

n,p

is easy to see that a change in the enumeration of P(n) only

changes by an inner automorphism of ¢ £ . Thus the
g P, N p

1, P
homotopy class of

N
Boy b :an—»B(zszp) = Wiy x5 (BZ)

is well-defined.

Consider the composite Mo
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B e' .

n.p N N Q3J w 0
—_— W B —es OB L S

BZn ZN Xs. ( Zp) OBZ Q p p(QO )

where 6& is the restriction of the Dyer-Lashof map
6. : Wz x_ (QBZ )N-—'QBZ
NN g P P’

We also set

£, = GNB‘?n,p : Bz — QLp

The remaining sections of this paper are devoted to proving the

following two results.

Lemma 2.2. The diagrams

are homotopy-commutative, where irl :Zn——’2n+ is induced by

the inclusion ncpn+l.

Using the homotopy extension theorem, we obtain from (2.2)
amap r : BE,—QL_~ such that clen: ¢

n.

Proposition 2.3. (wel). :H.(BxY ;2 )—eH.( (Q SO);Z ) is
proposition x PH{IBR T2, i'p' o p

an isomorphism for i3> O.

An immediate consequence is that the composite
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or -

(QBZ )
P @

. 6}
is a homotopy equivalence. Let 8 :Q(p(QOS ))——»p(QBzw) be a
0} (¢}
i . : and h_: S S
homotopy inverse. Let h, QQLP-—’QLp n 5 Q&JQO )Y—’p@o )
be the canonical maps derived from the infinite loop structures

O
of QL and (0 S7), respectivel 77.
o 0% p y [7]

Cconsider the following commutative diagram:

) 0
opz, ——2%w 001, —20(_(9,5°)

P
B by hy
0O w e}
Q( Q.S QL ——> Q.S
(p oS ) o p( oS

Let :p(QOSO)——-Q(p(QOSO)) be the standard inclusion [7].
Then Id = hzoL::honmoQCOBOL = LothQCOﬂoL. Thus, by setting

o = hloQCoﬁoL, we have completed the proof of (2.1).
Section 3.

In this section we recall the results of Nakaoka [12] on
H*(Bzm) and of Dyer and Lashof [4] on H*(QA) for a prime
p>1l. For the remainder of this paper, p shall be a fixed
prime >1 and H,_(X) shall mean homology with coefficients in

Zp’ the integers moduls p.
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Let w7 cCX be the subgroup generated by the cyclic permu-
tation T = (12...p). For notational convenience, we denote by
. r .
A the space Wn>%TAP. Then, for example, if z(p ,p) 1is a

p-Sylow subgroup of Zp' we may take

BE(p .p) = O T ... Bm
p I Lp J.p’ll.Lp
and
r
r P :r——:-
WZ( ’ ) X A =T D o..0 A.
PP z PP P
2 p-1
The standard model for Wr has cells ei,Tei,T ef.n,T ei
in dimension 1 [8;. If x,xl,...,xp are cycleé of C*(A),

then ei‘fx = ei®>f) is a cycle of C*(?pA) as is

eoi® (xl® .. ®xp) . To simplify notation we shall frequently use

the same symbol to denote a cygle as well as its homology class.
Let us recall the description of H*(?pA) 8. ’Let

X ,X.,... be a basisvfor H,.(A). Let @ be a set of orbit

representatives of the action of ¢ on sequences

ﬁjl,...,jp)ljiz_l}. Then the set

k. [‘xj\ig_l,jzl}u feo @, ®...®xjp) [(Gyoeenidy) co}

1
is a basis for H*(FpA).
If 1 = {il""'ik} is a sequence of non-negative integers,

we denote by e the element of H*(BE(pr,p)) represented by
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eil féiz o fei and we denote by éI its image in d

or H (BT ). (Recall that Hd_ (Bx )—H, (BZ ) is a monomorphism
* o * n * ©
(3, 11].) We use % to denote the juxtaposition product in
H_(Bx ).
* n

We may now state Nakaoka's theorem on H, (Bz ) ([12].
(=]

Theorem 3.1 (Nakaoka). H,(BZ ) 1is the free commutative
- (=]

graded algebra over Zp on {eI[I e;i}.

(See [12] to see exactly what o is.)

We now recall the results of Dyer and Lashof on H (QAa).
Let A be a countable connected CW complex and let x_,x
be a basis fo£ H, (A). I1If I = {il,...,ik} is a sequence of
non-negative integers and x eH*(A), QIX shall denote the image

of e.ll [... Ieik'fx under the evident map

(If I 1is empty, we set QIX = x.)

We can now state

Theorem 3.2 (Dyer and Lashof [47). Let A be a connected

countable CW complex and let x.,X. ,... be a basis for ;&(AL

1772

Then H*(QA) is the free commutative graded algebra over 2
on {QIXjIQIXj € }.

(see [4] to see exactly what _g° is.)
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0
We next state the results of Dyer and Lashof on H*(QOS )

as modified oy Milgram [9].

Theorem 3.3 (Dyer and Lashof t4]). H*(QOSO) is the free
I
commutative graded algebra over Zp on {(QI[l]*DP‘\]|IE-‘f}’

where II] =k if I = {il,...,ik}.

It is important to know that the A of (3.3) is the same
as the 4 of (3.1). For our purposes we do not need to know

exactly what . is.
Section 4.

Recall from Section 2 the map Cn :an——vQLp. We wish to

examine the behavior of Cn with respect to the juxtaposition

product BE_ x By —BX .
m n m+n

The inclusion i L XY — 5 induces an action of
m,n m n m+n

zm;<2n on fﬁ(m+n) which has orbit representatives
{1,2,...,k,m+l,...,m+p—k}, O<k<m and O<p-kgn.

It follows that with an appropriate ordering of P(msn), the

map

Bz )8 = ("
p

i : B —_
Bi (2m><2n) , WEN X p

B
¢m+n,p° m,n z

may be written as a composition
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diag t
B(Em X Zn) :Bzm X BZn —_— (BX.‘m X B)Zn)

Tho e f(zkxzp_k))

My
k G (o
vy HB(E("‘)( o) I%)
k’ "p-k
“Bn T B((Iz n o )j’zp)
G (ol
N
WB(ZN ,fzp) = WEg X, (B2 )™,

where p,p = Cm and Mo = gn. Here, the product ranges over

O<k<p and O<p-k<n and t isg the number of such k; Vi

is induced by the inclusion Zk xzp kczp' h is the evident

isomorphism and i is the inclusion s cx .
Wy N
k’ ‘p-k

The map

Cm+n°Blm’n : Bzm X BZn—>QLp

1s obtained by composing 9N°B¢m+n,p°BLm,n with Qj: QBEP—-QLP.
Using the fact that any map B(zk xzp_k)—»QLp is null-—homotopic
» » N* .

if O<k<p (since H (szxBZ:p_k) = 0 and 7ri(QLp) is of

s ,
order p - for some s), we obtain

Proposition 4.1. The following diagrams are homotopy-



commutative:

(1) BZm__BZm XBZ1
)ﬂ
>m
i L
Blmtl / Q P
‘ r
S
By m+1
m+1
(i1) fof m_p, n_p
Bim "
B —
Banx Zn Bzm+n
Cm Cn Cm+n
*
QL x QL ———-———*QLP

Note that (4.1{i)) is just (2.2).

(0] .
Corollary 4.2, £ : B — QL and B — (Q_S") induce
w p o P (@]

ring homomorphisms in homology.

The proof of (2.3) will be completed by an examination of

the behavior of on the ring generators of H*(BL»). This

H oy

is the subject of the next section.
Section 5.

This section is devoted to the proof of

Proposition 5.1. Under the homomorphism
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0o n
by P H (BE ) —H ( (Q,87)), for Ted .u,ep = tO [T]*[-p ]

modulo decomposable elements, for some t prime to

Remark. Combining (5.1) with (4.3), (3.1) and (3.3) we

obtain (2.3) as an immediate corollary.

We define subgroups An of T , inductively.
p

o : A — . is defined. We take An as the image of

n-1 n-1 n-1
p

the composite

-
TX8, 1 TTyaiag ~ ™Aao1 1 o1 o

Note that An is transitive on pn and hence that

to conjugacy) the regular representation of An (since

pn elements) .

P.

First set

nfe  _,cE

o
n

A, = n(:zp. Assume we havebalready defined the inclusion

pn

is (up

4
n

has

Proposition 5.2. If I€ .« , then éI is in the image of

(Bo{n)* : H*(An)—>H*(an)

modulo the subgroup generated by elements of the form

This is an easy consequence of Quillen's result on detecting
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cohomélogy classes and certain formulaé of Adem {8, (9.1)] and
Nishida [8, (9.4)].

Now suppose Ic¢ .o and xIe;H*(BAn) is an element such
that (Ban)*(xI) = éI modulo a linear combination of the
In view of (4.3), we only need prove that (Baa*c%)=QIUJ*Dpn]

modulo decomposables in order to complete the proof of (5.1).

(Note that e0,j2,---,jn is decomposable in H*(Bzm).)

Consider the composite homology homomorphisms

N 9 (Q3) u, o
(5.3) H (Wg o« (sz) )———H*(Qsz) ——H*(QLP)——H*(p(QOS ))

and

G 8 % (PN

4 N, * (e}
(5.4) ® (W (BZ,) )———H*(BZPN)-——H*(p(QpNS )—>H*(p(QOS ))

o N Ay

where ¢ 1is induced by the inclusion EN‘erC:EpN and both 8's
refer to appropriate Dyer-Lashof maps. By a well-known argument
[97, (5.3) and (5.4) agree modulo decomposables. Thus, the
proof of (5.1) will be complete after we have shown that under

the composite

Bo _ ) .
Ba), np* o 8 o

q,60) — 8,65 ) —EPen @ 2 ) —rn,er )—wn (0 0,
n * pn * P * pN * pN

xI goes to tQI[l] modulo decomposables, for some number t

prime to p.
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In order to prove this, we first study the composite

A >3 =2Nj>:p.
n p pnlp

Consider the action of An on Ez(gn). Since the cardinality

of by is pn, the transitivity of A, ©on En demands that

. . . n-1 n
each orbit must contain either p or p elements of
5Z(pn). An easy counting argument shows that the number t of
orbits containing exactly pn_ elements is prime to p. Let
{@l,..., @t} be the set of those orbits and let {O'l,..., O'S}

be the remaining orbits. The inclusion g :ZNIpr——»ZpN may be

viewed as letting EN‘pr act on Nxp [5]. Since

n=o]ll'--1lolloll---1l6;.

we can write

Nxp = (@lxp_)J_l--e .

The proofs of the following two lemmas are easy if one re-

calls that 8, is transitive on En and that A, has pn
elements.

Lemma 5.5. The action of A under gogp on
n p”.p

Ck Xp, i = 1,...,t is transitive and hence conjugate in

Aut(éﬁi)<g) to the reqular representation.
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Lemma 5.6. Up to conjugacy in % = Aut( &' xp), the
o= pn+l J L

action of 4, on 653><E factors as

A __JL,Z —£L+Z J‘Z cx
n n p

p p pn+l

where § 1is the inclusion of g n as a semi-direct factor of
P

We summarize the above discussion in the following -

Proposition 5.7. The following diagram is commutative up

t ) i :
o conjugacy 1in ZpN

i} > 3 » Lo
n dn pn (0] n Nf P
P .P
diag
t s
(An) x(An) g
(an)t+s
\
t s t s t s
(2 ) x(z ) ——(z ) x(z [z ) —(2 x (T ) — 3%
pt pt lxds p" pnd P pn) pn+l pN

Using the fact that the image of the composite

is generated by decomposable elements, it is now easy to complete
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the proof of (5.1).
Section 6.

In this section we outline some joint work with
L. Finkelstein. We now use the notation of [2]. 1In particular,
+ . n . +
the PnA shall mean the image of W%ijA in " A, the latter
having the homotopy type of QA if A is a connected CW-complex.
Let A be a connected infinite loop space of finite type.
Consider the composite
(6.1) I A——»(T+D2A) xA——»(I‘+:°2LA) xA—f—>F+AxT+A—>T+A.

1 t , 3 £y

, A
In (6.1), the first component of f is the map h2 of {2:

1
p. 201] and the second component is the natural map & for in-
finite loop spaces [7]. The second component of f2 is the
identity map of A while the first component is the evident map
. . + o+ + +
derived from the homotopy equivalence T ;2A::(F D2A) x (I""A)
proved in [2; Lemma 3.1]. The second component of f3 is the

. . \ : . + .
natural inclusion while the first component is F+;fh? T;A. Fi-

nally f4 is the map representing the loop sum.

Theorem 6.2. The composite (6.1) is a mod 2 homology equiv-

alence if A 1is an infinite loop space of finite type.

The proof of (6.2) uses the general methods of Sections 4
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and 5 although it is rather more complicated. One presumes that
a similar resuit will hold with 2 replaced by an odd prime, but

the details have not been worked out yet for odd primes. Details
will appear elsewhere.

We note that (6.2) says that, after localization at 2, the
stabie homotopy of A is a direct summand of the direct sum of
the stable homotopy of D2A and the unstable homotopy of A. In
the special case A = Sl, we obtain as a corollary the Kahn-
Priddy Theorem since DZSl = SRP . (D2A is also known as the

quadratic construction on A.)
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ON THE BIRTH AND DEATH OF FLEMENTS IN COMPLEX COBORDISM
' (*)

Arunas Liulevicius

In this paper we investigate a filtration on the ring of

cobordism classes of stably almost complex manifolds QE and
the structure of the associated graded algebra E . The fil-

* %
tration is defined in terms of normal characteristic numbers: an
element is said to have filtration s if all of its normal
Chern numbers involving cy with i>s vanish. It is surpris-
ing that the structure of E, is quite different from the
) ‘

analogous algebra associated to unoriented cobordism and inves-
tigated in [6]. We also investigate a related question ~given a
cohomology class u in H*(BU; 7), what is the smallest positive integer
d(u) such that it isa normal u-number of a stably almost complex manifold.

The paper is organized as follows: in the first section we
state and comment on the results,. in the second we give a sketch
of the proofs, in the third we give tables of characteristic
numbers, incidence relations, and numerical invariants which
express a given element in QH in terms of our basis for real
dimengions < 1lo.

I am grateful to M. Boardman, P. Landweber and F. Peterson

*
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for their comments.

U
1. A filtration on (Q, and the structure of the ass

associated graded algebra.

We shall use the complex dimension rather than the real
. . . U . U ., . C s .
dimension as the grading of 1, . that is Qn is identified with

7 n(MU), where MU 1is the Thom spectrum of the unitary group.

2

2 . U .
Let M°" be a representative for x:eon with normal structure

v : M—=BU. The symbol I = (il’i2'°") denotes a finitely non-
: I 1 ip
zero sequence of natural numbers and ¢ = <y c2 ... the corre-

sponding monomial in the Chern classes.

s u . *
Definition. We say x EFEQn if (v cI,[M]) = 0 for all

monomials cI with ikséo for some k> s.

Remark 1. 1In terms of the Hurewicz homomorphism
U
: 12) , i
h .ﬂ2n(MU)——*H2n(MU ), XE€ FSQn if h(x) comes from

H2n+2S(MU(s);Z) —we say x 1is born homologically on MU(s).

We let E = {Es t} be the associated graded object with

E =F QU /F QU . Since the filtration is well behaved
s, t s s+t s=1"s+t

. . U . . '
with respect to the product in Q E is'a bigraded algebra.

% !

Theorem 1. E is free abelian and an integral domain. In-

deed E®Q 1is a polynomial élgebra on generators in El L®0.
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Remark 2. E is of finite type with rank E, o =

2t .
rank H (BU(s);Z). In particular E z for t>O0.

1,t
Remark 3. E 1is definitely not a polynomial algebra.

Let E = {ers t|s+t>0}, OE = E/E-E the group of inde-

composable elements of BE.

Theorem 2. The group QES £ is a finite torsion group if

s#1 and QEl,n=El,n=Z if n>o.

- Remark 4. The second half of the theorem is immediate

i = i f .
since EO,t o i t#0
Remark 5. For O<s, O<s+t<5, OE t;£0 (see the next
1

table) so there are many more indecomposables in E than in

H*(MU;Z).

In the following table the elements o 3 and ﬁz N will

’

be specified more precisely later.

TABLE 1

Indecomposables in E 1in degrees <5

s+t = 1:

o
5]
[
=
|
N
[¢]
=]
[

s+t = 2:

| @]
[}
|
N
[e]
=
Q
=
n
R
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OB, ; =B T2 o0 o,
E0,2 =0
s+t = 3:
QE3,O = 22 on Cls»d3,0
QE2,1 = Z6 on cls a2,l
QEl,Z = El,2 = Z on dl,2
EO,3 =0
s+t = 4
CE, , =3, on cls'q4lo
QE3,1 = Z2 on cls a3,l
QE2,2 = 212+Z2 on cls 3;12, cls 3212, respectively
OF) 3 = Fy,3 ©0 o 3
EO,4 =0
s+t = 5
QES,O = 22 on cls dS,O
QE4,1 = 22 on cls a4,l
QE3'2 = Z6 on cls 3; 5 and cls Bi 5 = 3 cls ﬁ% 5
QE2,3 = Zl2O+Z6 on cls ﬂ;,3' -4 cls ﬁ;l3-+cls 5213
QB 4 =By 4 T2 o0 o gy
EO,S = 0.
Remark 6. It is not true that QEn,O_= Z2 for n>1l. 1In-
deed QE6,O = 0. This is related to the following:

Theorem 3.

(i) All polynomial generators g€ Qg for n<5 have
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filtration n,
. . . U .
(ii) there exists a polynomial generator 9e 606 of fil-
. . 8) .
tration 5 and no polynomial generator of Q6 has smaller fil-

tration.

~

- U .
Definition. We shall say that an element of e is young
(or born today} if its filtration is precisely n; if its fil-
tration is less than n, we'll say that it is old (or born yes-
'

terday) .

Theorem 4. An infinite number of the Hazewinkel generators

U
for G, weren't born yesterday.

Remark 7. It is probably true that the preceding theorem
can be improved to say that all Hazewinkel generators are young

(not just those in gradings one less than a power of a prime) .

. \ U
Theorem 5. If 9, is a polynomial generator for i, and

n>1 then 9, cannot be very old (that is, filtration gn>-l).

Let us present the complete multipliéative structure of E
in gradings <5 . Let P -be the cobordism class of the com-
plex projective n-space with the usual complex structure: T+l =
(n+l) 1, where 1 1is the canonical complex line bundle over CPn
(the conjugate of the Hopf line bundle). Define polynomial gen-

U
erators for (. by
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9y T Py
g, =P —P2,
2 2%
1 1 3
93 T P3P Py +EP) .
g, = —p4+9pipz-9pi,

1 2 134 3 5
= = 5 -% - == +
6P5+ P1P4 zPle 3 Ple 45Pl

e}
]
[

. . U . . .
and specify a basis for ., (here Yo ¢ indicates a basis ele-

’

ment of filtration precisely s) by letting

.0 " 91

%2,0 9

8,1~ "292+gi
“3,0 93

%1 T 7293199,

3
@ 5 = 1293-89;9,+9,

"4,0 " 9a

93,1 T T294%79,9,

1 = 604 4527 1007 2—4176 2 +629 4
By P 91937 9, 919 9

2 - _1380g9 -10344 23009° +9541q° 1437
By .2 9q 94193 9, 919, 91

2 2 a
:—4 — —_ + —_

al,3 2 94 180glg3 4Og2 1669192 25g1

% ,0 T 95

%1 T 295+59,9, - 69,9,

! = 39584g_+200587 - 56007 - 90538g°g. +2088q"
B3 =885 9194 9,93 9193 91
2 1720689 4874974 -244306 -394933g°g.+9108g°
B35 68 dg 919 9,93 9193 9
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1 2 2
= 3 3 -73 4 +
32,3 62676g5+ 5725 glg4 7 121g2g3+l 6242glg3 557llglg2
267764 3 +43960 >
919 91
2 2
= 4 42832 -29234
3213 25058 95+l 2 8glg4 92 89293+58469Oglg3
222740g g2 -1070545q7g, +1757564"
+ 919, 919, 9,
2 2 3
= - -4104 - - .
-d1,4 720g5 0] glg4+840g2g3 1680glg3 64Oglgz+3076glg2
5
—505gl
Remark 8. The generators g, were chosen so that their

projections into E yield basic indecomposables.

Remark 9. The choice of @ is unique up to sign.

Remark 10. The are really second choices —they were

r
Bs,t
chosen to make the multiplication table of E 1look as simple as

possible. Here it is:

TABLE 2

Multiplication table of E

°‘:2L,1 =20 4

% 0%,0 - 2%,0

4 o%,1 - %%

% 0%,0 = 2%,0

4 0% ,1 = 2931
2

% 0% ,2 = 2By



20

-6
“1,1%2,0 31
2 1 2
= 12 6
o By 2 8By
2
=4
%0 %0
% ,0%,0 = %% o
% ,0%,1 = T2
1 1 2
% 0By, T 3B3 5, By,
2 2
*1,0P2,2 T %85 ,
2
=3
*,0%,3 98, ;3
%, 0%,0 = %% o
% 0%,1 T %% 3
2
% 0%,2 = %85,
% ,1%,0 T 0%
L eal
4 1%,1 T OB3 ,
' = -24 +68°
“.1%,2 By, 3708, 3

Remark 11. No, it is not true that = 12

o[l,OO‘vn,O oln+l,O

= o . We shall return to this later.

ample,
For example dl,0d5,0 6.0

Remark 12. The first really interesting multiplicative

1 2
i i i + - = 0. t i
relation in E is 2al,0ﬁ2,2 dl,132;2 al,lu2,l 0 It is
2 2 3
represented by —l72glg4 —4gzg3 —l288glg3 —284glg2 +1188glg2 i

l79gi which projects to ~4B;I3 +2165§I3.

Theorem 6. Let A(n) be.the smallest natural number sat-
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*
isfying A(n)|(uMcn,[M]) for all stably almost complex manifolds
with normal structure Yu :M—BU, then A(n) 1is always an even

integer, moreover for low values of n we have

Remark 13. It is easy to see that A(n) 1is always a power

of 2, since if we let x = —Pl, then the normal number of X
determined by ¢y is 2, so the normal number of x" deter-
mined by c is 2n, so A(n) divides 2%, This was pointed

out to me by P.S. Landweber.

Remark 1l4. Elmer Rees and P. Emery Thomas have determined
{117 A(n) for all n. F. Peterson told me on the flight to
Vancouver that the power of 2 in A(n) as determined by Rees
and Thomas is given as the minimum integer .k such that
a(n+k) <2k, k>1, where «fs) is as usual the number of ones in
the dyadic expansion of s. This gives in particular that

A(n) =8 for n = 29 for the first time.

Remark 15. In the table of Theorem 6, A(n) =4 if and
only if there is a polynomial generator = of Q: which was
born yesterday (and not any earlier). The preceding remark

indicates that there is a polynomial generator 999 having fil-

tration 27 and no polynomial generator can be chosen to have
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smaller filtration in that dimension.

s e n
Definition. For x EHZ (BU;2Z2) we let d(x) Dbe the
L . * - 2n
greatest common divisor of the integers <VM(X)'EM 1> where
. ' 2
Yy : M—>BU 1s a stably almost complex structure on M n.

TABLE 3

Values of d(cE)

C C2 (o c_.C 3 C C C2 C2C C4
€1 2 1 3 152 <1 4 153 2 152 1
2 2 1 2 2 2 2 1 1 3 1
C C c_C 2C c.C c.C C5
5 152 293 513 12 152 1
2 2 1 2 2 4 2
c.cC c_C C2 c.c_cC c.C C3 C2C2 C4C C6 C2C
6 “195 2% ©3 ;%3 ©€3 ¢y 6, ce, e cjc,

2. Methods of proof.

The main technique involves a careful scrutiny of charac-
teristic numbers. The first step in the process is the familiar
reduction to homotopy and homology. Under the Thom-Pontrjagin

. . U . e
1somorphism Qn = n2n(MU) the subgroup FSQ: is specified by
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the pullback diagram

( F oU — (MU)
s'n "2n

h

A

(MU(s) 12) —>H n(MU;Z)

H2s+2n 2

where Ks is the direct limit map and h is the Hurewicz homo-

morphism. Let 0, :H*(MU;Z)——»H*(BU;Z) be the Thom isomorphism.

We specify polynomial generators bn for H, (MU;Z) by the con-
dition

1 if E = (n,0,0,...)
E \
(¢ .o,
n 0 otherwise.
We should not be tied down to the presentation H*(MU;Z) =

Z[ b .,bn,...], for although this is convenient for the study

1"
of Im xs (indeed, Im As is precisely the subgroup spanned by
bE with algebraic degree bE:gs see [7], for example), it is
not convenient for the study of Im h —for example polynomial
generators of g, (MU) tend to have complicated and unreasonable

expressions in terms of the monomials b . There is fortunately

a set of generators much better suited. for the study of Im h:

define mn by h(Pn) = (n+l)mn, or alternatively consider the
, 2 n+l \
formal power series y = t+blt +...+bnt +..., and write
2 3 . ,
t = WA, W MW +eee . Of course, we must have an interpretation
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of Im xs in terms of these new generators if they are to be of
use.

Let A, :H, (MU;2Z2)—H
i n

2 _zi(MU;Z) be defined as the dual

2n
homomorphism to taking the cup product with c, (under the

identification ¢, :H*(MU;Z)———H*(BU;Z)). It is immediate that

A.b =0 if 1i#0,1, A

Py lbn =b . Since Ai(xy) = z Aj(x) Ak(y)

n-l jik=i

it is convenient to consider the total A operation
A :H*(MU;Z)——vH*(MU7Z)[s]

which preserves grading if we let grade s = 2. Now A 1is a
homomorphism of algebras over Z, moreover it turns out that

X € Im Xn if and only if a(x) has degree <n as a polynomial
in s.

It is not difficult to derive formulae for Amn from

b = b +: S.
ab, et
TABLE 4
value of A on mn
Aml = ml-s
m, = m_-3m s+2s2
2 2 1

2 2 3
m_ = m3—(4m2+2m1)s+10mls -5s

+15mi)52—35m s3+l4s4

= -(5
m m, (vm3+5mlm2)s+(15m 1

2

mg = m5—(6m4+6mlm3+3m%)s+(21m3+42mlm2+7m%)s2



95

2, 3 4 5
—(56m2+84m1)s +126mls -42s

2 2 2
m, = m6—(7m5+7m1m4+7m2m3)S+(29m4+56mlm3+28m2+28mlm2)s

3.3
-(84m_+252m.m +84ml)s +(210m

2. 4 5 6
3 1™, +420ml)s -462m.s +132s

2 1

The sequence 1,2,5,14,42,132,... is a famous sequence of
natural numbers, the so-called catalan numbers [13] which go
back to von Segner [12] and Euler. Indeed, Anmn = (—l)nCn,

where the n-th catalan number is specified by
c = 1 (Zn)
n n+l n

n+1l
C

and satisfy the recursion relation Cl =1, = 4-—3%5,

n

which shows that the Catalan numbers grow at a good rate ‘(for
example C19 = 1,767,263,190) a fact useful in the proof of
Theorem 4.

A few words about the proof of the other theorems: The
first part of Theorem 1 uses the fact that the filtration FS
is a direct summand of Fs+i since they are specified in terms
of kernels of the maps Ai. The second part is a consequence of
the theorem of Milnor [l10] that h®1 :ﬂ*(MU)®Q——»H*(MU;Q) is
an isomorphism and a result of Newton on the algebra H*(BU;Q)
(see [7], for example). Theorem 2 follows without difficulty
from Theorem 1. Theorem 3 is a consequence of techniques for

investigating characteristic numbers which we described above.

Theorem 5 uses the theorems of Stong [14] and Hattori [3] in the
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formulation of Adams and Liulevicius [2] —to check that an ele-

ment in the homology of MU is in the image of h it is neces-
sary and sufficient that it satisfy the Riemann-Roch integrality
relations (see [4] for a formulation of the integrality relations

which are specially convenient for the proof of Theorem 5).

3. Incidence matrices and characteristic numbers.

The aim of this section is two-fold. First, we wish to
present the iH;idence matrices for the basis of H*(MU;Z) in
terms of monomials in the polynomial generators m, and the
basis of monomials in the Chern classes for H*(MU;Z) (which we
identify with H*(BU;Z) under the Thom isomorphism). Second,
we wish to enable the reader to read off the class of an element
in E in terms of our basis provided he knows the normal Chern
numbers of the class. Our tables will be presented in the fol-
lowing format: for a given grading we shall first present the

D , . E . .
incidence matrix (for each monomial m the row indexed by it

gives its Chern numbers), and right below it the normal Chern

r

numbers of the appropriate ai,j' Bs,t'

The matrix following is
the inverse of the incidence matrix —it allows one to read off
the expression of h(x) in terms of the monomial basis mE
provided one knows the normal Chern numbers of x. Our tables

go up to complex dimension 6 for the incidence matrices. For

"incidence numbers for the bE and coF bases the reader is
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reffered to vandevelde's thesis [15].

GRADE 1
GRADE 2
2 2
2 1 T ™
m2 2 3 c2 2 =3
2 2 | _
ml 1 2 cl 1 2
d2,0 2 1
“m, 1% ©
GRADE 3
c c.c c3 3
3 %1% 1 my MM, M
my -5 -10 -16 Cy -3 12 -10
mlmv2 -2 -5 -9 clc2 3 -14 13
3 3
ml -1 -3 -6 cl -1 5 -5
a3,0 -2 -2 -2
012 0 (e] -2 -2
dl,2 (@] 0 =24
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wn < < (o) < ™ (o] @] < O n n o~ — <
< — ~N o} n ™ N )] @] [e)] Q o~ a2l < o [Te) —
4] ! — < o a0} — 1 1
1 o~ a_u 1
o @] o~ O O —
U N el @] o o~ — < o) <t @) O o~ sl ~ o
o~ ~ (%) ™ — — w — [ o~ 1 1 |
U 1 —
o o r~ ~N o
oo [Tel o ~ o (o] o \O s} O O — e~ —
] < ~ — — 1 ™~ t 1
o0 (@] ™ O ™ (o]
[¢] [Tq] n 3] ~ <t Te] o~ o O @) [N o — [\
— [a2] — —i | | [}
0
<r < |Te] < o~ — o~ (@] o o o < < o < ~
9] — 1 1 1
™ o~ O — o ~ ™ ™ o~
E g - 4] 4]
< — NN N~y <t ™M NN — <t — NN N~ A
= = = £ £ 3 o Q. @ L] o} 4} 9] &} U

GRADE 4
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GRADE 5
S5 C1% %3 Cic3 c)5 ©1%2 3

m _42 -126 -196 -336 -441 -756  -1296
mm, | -14 -49 80 -145 -195 -350 -625
mm, | -10  -35 =60 -107 -148 -266 -480
m§m3 -5 -20 =35 -66 -92 -172 -320
mlm% -4  -16 -29 -54 =77 -144 -270
mimz -2 -9 -17 -33 -48 -93 -180
m? -1 -5 =10 -20 -30 -60 -120
o o 2 16 -111 -524 -1242 -3664  -9956
% 1 0 -2 122 -578 -1290 -3772 -10142
3%12 o o -2 -4 -58964 73532 622906
3§,2 0 0 0 24 -257112 321024 2717892
3%,3 0 0 o 0 6 20 -62606
33’3 0 0 0 o 8 -250544
o 4 0 0 ) 0 0 720

m m._m m_m m2m m m2 m3m -m5‘

5 174 2"3 13 172 12 1

c. -5 30 30 -105 -105 280 -126

1%, 5 -34 -30 125 115  -340 161

c,Cy 5 -30 -36 114 129 -336 156

c21c3 -5 34 33 -131 =127 374  -181

ce | -5 32 36 -124 -136 372 -178

cicz 5 -34 -35 134 137 =399 196

c? -1 7 7 28 -28 84 -42
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GRADE 6
o o5 o0, %0, 2 ooy oloy ol ol oho, o
mg 132 462 840 1470 1008 2352 4116 3136 5488 9604 16807
m g 42 168 322 588 392 973 1764 1323 2394 4320 17776
mom, 28 112 223 402 275 695 1240 945 1710 3100 5625
m§ 25 100 200 360 250 620 1120 856 1552 2816 5120
mfm4 14 63 129 243 160 420 785 585 1090 2025 3750
mmymy | 1045 95 177 120 315 587 444 828 1544 2880
mg 8 36 18 144 99 261 486 372 693 1296 2430
m%m3 5 25 55 106 70 193 370 276 528 1008 1920
m% g 4 20 45 86 58 160 306 231 442 846 1620
mm, 2 1 26 51 34 98 192 144 282 552 1080
mf 1 6 15 30 20 60 120 96 180 360 720
m6 m1m4 m2m4 m§ m1m4 m1m2m3 mg m'?m3 mfmg ’ll‘,}.lﬂ2 m?
Ly 6 -42  —~42 =21 168 336 56 -504 =756 1260 =462
o5 |6 47 42 21 -198  -366 56 609 861 1540 588
o0, | -6 42 50 21 -180 =316 =76 564 906 -1510 567
ciey 6 -47 =46 =21 206 386 66 =649 -941 1695 -658
c§ -3 21 21 15 =84 -204 -28 282 450 -750 281
0,504 12 -89 -92 <51 378 820 132 1242 -1935 3346 -1285
0%03 -6 47 46 24 -206 -413  -66 674 1001 -1805 708
c% 2 ~14 =18 -7 62 132 30 -198 -333 554 =211
c%cg -9 68 73 36 -298  -626 -1 980 1535 -2690 1048
c'%o2 6 -47 -48 -24 209 425 T2 =692 -1052 1896 =750
o$ -1 8 8 4 =36 =72 =12 120 180 =330 132

The University of Chicago
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ON THE UNSTABLE J-HOMOMORPHI SM

*
Mark Mahowald( )

We are interested in the following diagram of sequences:

. i P d
15(80(m) —F—= 7, (50) ——L—r 7 (V) ——L— ...
5 J P!
i H ® 82

nj(nmsm)—g——wj(n‘”sw) nj(n“s Qs —E— ..

The maps J and jl’ induced byrthe inclusion of S0c S  and
SO(n)c:QmSm, are the stable and unstable J homomorphism respec-
tively. The map J is completely detérmined now. If 2m-1>j>16
then al is a monomorphism onto a direct summand [2]. It is
also known that j2 is on isomorphism if j<2m-1 [6]. It is
well established that jlal is not a monomorphism but all the
elements known to be in the kernel occur for values of j larger
than or equal to but near a power of 2 except for the‘Kervaire
invariant family in dim 30 and 62. For example if j = 16,

32, or 64 and wm< j-3, there is an element in the ker jlal

*
(*) The author was partially supported by NSF Research Grant

GP-25335.

g
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[{5]. Also if j = 30 there is an element in the kernel for
m<22. 1In this case the element « in 173O(Q°°S°°) such that
p,o generates ker 32 is the Kervaire invariant element in
dimension 30. Our goal here is to prove that this phenomenon
is typical for the behaviour of jl.

First we need some notation.. If n = 4a+b, 05b53 let
@(n) = 8a+2b. Let p(n) be defined by n = Zp(n)mod 2p(n)+l.

We will prove the following result.

Theorem 1. For each integer n the map jlal is a mono-

morphism for 3j<n-1 and m>n-p(p(n)).

In [1] Adams .introduces a spectral sequence based on the

o(n-k) o olnk)
periodicity of the spectra I P ~P
k= o (n-k)
k+2
E2 =27z ®n (8)
p,q 2 g
Z S, O
= Torl(Zz,n'q(S )) .

This spectral sequence is defined for all pe¢Z. The proof of

Theorem 1 also proves the following result.
[+-]
Theorem 2. E =0 for qg+p<-1.
Laeorem p.,q P

The argument can also be applied to show the following:

Theorem 3. Ext-;'t(zz[x,x—l],z) =0 if t<O0 and

2
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s-t#-1 or if 3s> t+4.

* % _
In particular this shows that the edge of ExtA’ (Zz(x,x 1),22)

% ok -] .
is the same as ExtA (H (S ),Zz) . These two results give some

evidence for the conjecture in [1].

2. Some general results.

The connection between Theorems 1 and 2 is implied by the
following result which is "well known" but I am not sure where a
proof or a statement of it occurs. First some notation:

Recall that H is the map

H tn. (078 )—n.(27s”,a"%").
n ] J

By a theorem of Toda (67, nj(Qwa,QnSn) :nj(annPn) for

j < 3n-2.

Theorem 2.1. If uenj(QmSw) has Hn(oz)iéo for n>J;—2

then H (q) is in the image of nj(okzkpk)—-nj(QnEnPn) where

Proof. Consider the following diagram:

//////'

o"s"p
n
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Clearly if Hn(a);éo then PH (o) #0 and this is the theorem.

We will use this to prove Theorem 1. The key step will be

the following result which also needs some additional terminol-

. i
ogy. Let n = O mod 2%, Let A :P:+2 2——»Sn be the cofiber
. i .
. . -1 -
map of the projection P:ti ——>P2+2 l. Clearly A desuspends
n~21+l times. Let (i) be the vector field number, i.e., if
. . b
i = 4a+b, 0<b <3 then (1) = 8a+2 .
i S n+21~2
Theorem 2.2. Suppose j«<n+2 -2. If B enj(Pn )

S 2i~
projects non zero into ‘rr.(Pn+ i 2 ) then X3 #0 and hence
n+2 "= (1)
. . . s, _n+21-2 ns2t-2
£ .
8 1s not in the image o nj(Pn_l )——:-nj(Pn )

Combining 2.1 and 2.2 we get a proof of Theorem 1. Theorem

2 follows from 2.2 by choosing n correctly. 1In particular if
2t ne2 2 . -2
n = 2 -2 then Pn is stably equivalent to P "; and
-2
thus all classes which have filtration between -p(i) and -2
are eilther not cycles or are boundaries in P—2i .
-27-1 :
) . n+2t-2
Now we will prove 2.2. First observe that Pn is the
Thom complex of ng i where 52 is the Hopf bundle over rpd.

27-2

i
Thus by (37 and the vector field problem we see that P2+2 -2

desuspends at least n—21+¢(i) times. We have the following

diagram
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z—(n—2i+¢( i))Pn+2i—<p(i) S Z—(n—2i+<p(i) )Pn+2i—2 . Z—(n—21+<p(i))Pn+2_l—2

n n o2t - (d)
P\ X h
. i i . i
—en (i -1 2~ - -
SZ p(i) n<p(1) s 1 22 ¢(1)P2i 2
27 -p(1)
Lemma 2.3. The map h is a homotopy equivalence.

Proof. The map' 3 carries a functional qu for all
j52l—l and thus the map h has positive degree in dimension
be tween 2-21—2¢(i) and 2-21—¢(i)—2. Thus h induces an iso-

morphism in homology and so is a homotopy equivalence.

To complete the proof of the theorem we need the following

diagram and another lemma.

E—(n—2i+¢p(i) )Pn—¢p(i)+2i -1 _»2-(n—2i+¢p(i) )Pn—2+2i_‘ 2—(n—2j'+ q;(i))Pn-2+2l

n n n—w(i)+2i
A h'
i+l .
- -2
Qn 2 +¢(1)Pn ‘ G
n-2%
xll hll




los8

_(n-2i+¢>(i))Pn-2+2l

Lemma 2.4. If «C¢ ﬂj(Z ) for

p(i)+2”
. i+l . L . = --1
j<2 ~2-¢p(i) 1s in the image of ¢ then OZ\"(@ (a)). Thus

o« 1is not in the image of the map induced by the projection

n-242" n-242"
—’P

Pn—l

n-p(i)+2*
Proof. The first part follows immediately since h"h' is
a homotopy equivalence. The second statement follows from the

24 Lip(1) 1 n-2+421

fact that the fiber of )" is QLP~ ol

through

the range of groups we are considering.

This completes the proof of 2.2.
Northwestern University
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PROBLEMS IN INFINITE LOOP SPACE THEORY

J.P. May

This will be a rambling discussion of the status of infini-
te loop space theory, with the emphasis on unsolved problems in
geometric topology, algebraic K-theory, cobordism, homology
operations, and the general abstract theory. Many of the prob-
lems will involve E_ ring spaces and spectra. This is not
solely a reflection of my personél interest. Implicitly or ex-
plicitly, these structures are central to most of the applica-
tions. The basic reference is [9], which will contain the mate-
rial of the preprints "Coordinate-free spectra", "4 -functors
and orientation theory", ”E°° ring spectra" (with Frank Quinn and
Nigel Ray), and "On kO-oriented bundle theories", as well as
the material on E°° ring spaces about which I talked at the
conference and other material developed since (some of which is
ske tched below) .

We now have a coherent theory of infinite loop spaces and
spectra, and it has gradually become apparent what the theory
can and cannot do. I know of very few significant examples of
H-spaces which are suspected but not known to be infinite loop
spaces and there are no outstgnding theoretical problems con-

cerning the recognition of infinite loop spaces. The only pos-
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sible exception might be Quillen's old conjecture that the re-
presenting space of a functor with an appropriate transfer is an
infinite loop space. It is by now well understood that this
conjecture is wholly implausible, but that any counter-example
would be sufficiently ugly as to be wholly uninteresting (see
Lada [47).

The situation as regards the recognition of E_ ring spec-
tra which are suspected but not known to be BE_ ring spectra.
The only Thom spectrum not yet accounted for is MPL (and Quinn

is working on this). A very provocative example is BP.

Problem 1. Does the Brown-Peterson spectrum admit a model
as an E_ ring spectrum?

The point here is that the notion of an E_ ring spectrum
seems not to be a purely homotopical one; good concrete geometric
models are required, and no such model is known for BP. For
much the same reason, we have the awkward state of affairs re-

vealed by the following question.

Problem 2. Are localizations and completions of E_ ring
spectra again Em ring spectra?

Of course, we can use global E_ ring spectra to obtain
infinite loop space information and can then localize or complete
(as must be done even to make sense of some of the geometric
problems below) .

One way to handle the local version of Problem 2 would be
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to carry out the following program, which is certainly well

within reach and should have other useful applications.

Problem 3. Develop recognition principles for passage from
"p local" E°° spaces and E_ ring spaces to p local spectra
and E_ ring spectra.

The idea here is to reconstruct the entire machine of [7,
8, 9] with the full symmetric groups replaced by suitably com-
patible p-Sylow subgroups.

The situation as regards the recognition of infinite loop
maps 1s still less satisfactory. The machine does produce lots
of infinite loop maps and does show that once certain key maps
are proven to be infinite loop maps then it will follow that
various other maps are so as well. Unfortunately, many of the
key maps have yet to be proven to be infinite loop maps. I sus-
pect that this is in the general. nature of things and that im-
provements in the abstract theory will be of little help with
the remaining problems. However, a solution to Problem 3 would
be of some use since the machine has a marked aversion to vir-
tual representations and the localization at p of a global map
defined in terms of virtual representations can sometimes be
defined in terms of honest representations.

Of course, we need not rely only on haturality properties
of the machine to construct infinite loop maps, since all of the

- familiar techniques of stable homotopy theory are also available.
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There is as yet no analog of this statement Ffor maps of E°°
ring spectra: the only technique currently available is the con-
struction of models acceptable-to the machine.

Given this picture of the abstract situation, let's turn to
concrete applications. We would like to have a complete under-
standing of Adams' analysis of the groups JO(X) ana of
Sullivan's analysis of KTop(X) away from 2 on the level of co-
homology theories or, more or less equivalently, on the level of
infinite loop space structures on the classifying spaces of var-
ious fibration and bundle theoretic functors. Explicitly, we
would like to decompose the localizations or completions of all
relevant infinite loop spaces into products (or, at 2, fibra-
tions) of specific atomic pieces, namely BCoker J and pieces
obtained solely from BO (such as B IM J, the various factors
of BO at odd primes, BSpin, etc.). The following three con-
jectures woulg supply the key infinite loop maps necessary for

this purpose.’

Conjecture 1. The complex Adams conjecture holds on the
infinite loop space level.
This means that, for each r, the composite

r .
-1 B
BU L —+ BU J + BSF

is trivial as an infinite loop map when localized away from r.

The real analog is wildly false. With r = 3 and U replaced
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by O, Madsen [5] showed that not even the first delooping is
null homotopic. The splitting of BSF as an infinite loop
space at odd primes (Tornehave [167 or [9]) shows that the con-
jecture is at least plausible, and several people seem to be
working on it.

To state the next two conjectures, we require some prelimi-
naries from [9]. Let G be a bundle theory (O,U,Spin,Top,F,
etc.). Let B(G:;E) be therclassifying space for E-oriented
stable G-bundles and let g :B(G;E)—+*BG correspond to neglect
of orientation. An E-orientation of G 1s an H-map
g : BG—»B(G;E) such that geg~1l. Thus g specifies natural
E-orientations, with product formula, of stable G-bundles. When
E is an E_ ring spectrum, B(G:;E) is an infinite loop space.
Say that g is perfect if it is an infinite loop map and if

dog~ 1l as infinite loop maps.

Conjecture 2. The Atiyah-Bott-Shapiro orientation

g : BSpin—»B(Spin;k0) is perfect.

Conjecture 3. The Sullivan orientation

§ : BSTop—B(STop;k0[1/2]) is perfect.

Quinn is working on the second of these.
To relate these conjectures to BCoker J, we compose g
and g with the natural infinite loop maps from their ranges to

B ( SF:kO) (suitably localized) and then apply the universal can-



1lle

r . . .
nibalistic class c(yp ) : B(SF;k0) —»BSpin where BSpin is

®' ®
the 2-connective cover of the special unit infinite loop space

= - r(p) .
qu = SFkO (see [9]). At p, the fibre of c(y ) is
BCoker J, where «r(2) = 3 and, for p>2, r(p) is a power of a
prime q#p such that r{p) reduces mod p2 to a generator of

the group of units of 2 ¢ An affirmative answer to the fol-

p
wing question would imply that c(wr) is an infinite loop map.

Problem 4. Is wr :kO[l/r]——’kO[l/r] a ﬁap of. E_ ring
spectra?

As our abstract discussion makes clear, we are not yet
close to an answer. To avoid this question, we turn to discrete
models and algebraic K-theory. Recall from [9] that "bipermuta-
tive categories™ naturally give rise to E_ ring spaces and
thus to Em ring spectra. For a commutative topological ring
A, we have bipermutative categories OA and HLA of orthogo~
nal and general linear groups. The E_ ring spectrum kO used
above is obtained from OR. ILet kO6 denote the completion
awéy from q (as above, when thinking of p) of the E°° ring
spectrum obtained from (7Eq, where Eq is an algebraic closure
of the field of q elements. Braver lifting yields an equiva—
lence & :koé——oﬁb[l/q] of ring spectra. A local version of
this result (in the complex case) was proven by Tornehave [157;
on the completed level (which is the one of topological interest),

the result is in fact eéxtremely simple [9].
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A 6
Problem 5. 1Is )\ :kO

—¥O[1/q] a map of E_ ring
spectra?

Again, we are not yet close to an answer. The Frobenius

automorphism ¢r: oﬁq——’aﬁq (r==qa) is a morphism of biper-

. . r
mutative categories, and the induced map (again denoted ¢ ) on
6 . r . A r ) .8
kO is transported to via X. c(¢ ) :kO —a-BSp1n® (the
2-connective cover of qu ==SFk06) is an infinite loop map.

Its fibre at p, with r = r(p), is BCoker J endowed with an
infinite loop space structure. This fibre admits a more concep-
tual description as B(SF;jOG), where jO5 is a certain E_
ring spectrum which is a discfete model for the fibre 3jO of

r(p)_l : kO—+kSpin at p (see [9]). 'In view of Problems 4

v
and 5, it shogld be apparent that, at present, Conjectures 2 and
3 would be much more useful if proven with kO replaced by koq
So reformulated, they and Conjecture 1 would complete the desired
analysis of Adams' work and of Sullivan's work away from 2. The
sketch above is philosophically sound because kO6 and ﬁb[l/q]
are indistinguishable on the motivating level of multiplicative
cohomolbgy theories and because qu and éb® {1/q9] are
equivalent as infinite loop spaces at p#q.

Here the last clause follows from a recent result of Adams
and Priddy'which shows that, up to equivalence, there is only
one p-local or p-complete connective spectrum with zero space

equivalent to BSO localized or completed at p. Again, maps

are more difficult.
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Problem 6. When is an H-map between two infinite loop
spaces, both equivalent to BSO localized or completed at p,
an infinite loop map?

3 : . :
Adams's map p :BSO-—BSO 1s a good test case. The

S

cannibalistic classes pr :BSpin——vBSpin‘g will be infinite
loop maps when completed away from r 1f Conjecture 2 holds (in
its original form) and (a weakened form of) either Problem 4 or
Problem 5 has an affirmative answer. The Adams-Priddy result
shows that F/Top and BO® are equivalent as infinite loop
spaces at each p>2. If Conjecture 3 holds (in its original
form) , then the Sullivan L-genus equivalence F/Top-ﬂbBO® away
from 2 will be an infinite loop map.

We are still very far from understanding F/Top at p = 2,

and the following problem is probably beyond reach at present.

Problem 7. Describe F/Top and F/PL as infinite loop
spaces at p = 2; the describe BTop and BPL.

Madsen [5] showed that B3(F/Top) does nct split at 2 as
a product of Eilenberg-MacLane spaces; Madsen and Milgram [6]
have shown that BZ(F/Top) does so split.‘

We return for a moment to the categories RAfA and OA
for a discrete commutative ring A. Let kA and kOA denote

. 1

the resulting E°° ring spectra. Quillen's algebraic K-groups

are KiA = nikA for i>1 (and the E_ ring structure gives

K,A a ring structure). Quillen's work suggests that it may be
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reasonable to define KOiA = nikOA for i>1 and to regard the

natural map KO A-—K.A as analogous to complexification.

:Problem 8. What are the images of the stable stems in
KO*Z' and K, 2 under the induced maps on homotopy groups of the
units e of the spectra kO0Z and kZ?

' Quillen showed that, in degrees 4s-1, the image of J
maps mopomorphically to K,z (onto a direct summand exXcept pos-
sibly for 2-torsion when s is odd), and the image of J maps
monomorphically onto a direct summand of KO, 2 in all degrees
{91. Beyond the obvious stable families of order 2, which map
monomorphically onto direct summands of both KO, Z and K_Z,
nothing is known about the behavior of the cokernel of J. While
one‘really wants to know all of K Z, such a calculation seems

unlikely to come out of infinite loop space techniques.

Problem 9. What is the precise relafionship between the
machine-built spectrum kA and the Gersten-Wagoner spectrum KA
{2, 18}z

One would hope that, modulo adjustment necessitated by KOA,
kA 1is the connective.sﬁectrum associated to KA. This problem,
and the category A, are closely related to Hermitian K-theory
and algebraic L-theory, an area which abounds in bipermutative
categories whose associated E_ ring spectra have yet to be
studied. A good solution of Problem 9 should also yield the

conjecture of Karoubi [3, p. 397 and 392] in the topological
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form stated by Wall [19, p. 292]. 1Incidentally, the theory of
E_ ring spectra should answer the question about products

raised in [19, b. 292 although here, and in various other ap-
plications, a solution of the following problem may eventually

be required in order to obtain a really complete picture.

Problem 10. Develop a theory of E°° pairings of E_ .
module spectra over an E_ ring épectrum.

We turn next to homological calculations in geometric topo-
logy. On the infinite classifying‘space level, the calculations
are quite complete (and will be summarized in [11]), although we

still know relatively little about how to interpret them.

Problem 11. Find fibration-theoretic interpretations of
characteristic classes for spherical fibrations.

Ravenel [13] and others have given such interpretations of
certain classes, but not enough to generate H*(BSF) (under all
structure in sight, including the duals of the homology opera-
tions) .

* *

We can read off H (BSF(n);Zp) from H (BSF;Zp) when

p =2 or n 1is odd, and similarly for G(n+l). The following

problem should not be too difficult.

Problem 12. Compute H*(BSF(n);Zp) and H*(BSG(n+l);Zp)
for p odd and n even.

Provided that PL(n) and Top(n) are interpreted in the
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(comparatively uninteresting) block bundle sense,
G{n)/PL(n) ~G/PL for n>3 and Top(n)/PL(n) ~Top/PL for
n>5. Thus the following problem should be solvable by compari-

son with the infinite case.

Problem 13. Compute H*(BPL(n);Zp) and H*(BTop(n);Zp)
for all primes p.

The analog for the usual PL(n) and Top(n) is still
beyond reach (and iterated loop space téchniques probably have
little relevance).

On the Thom spectrum level, there is still much to be done.
At the prime 2, Brumfiel, Madsen, and Milgram [1] in the unorien-
ted case and Madsen and Milgram [unpublished] in the oriented
case have obtained essentially complete information about Top
and PL cobordism. At odd primes, Tsuchiya [17] showed that
the kernel of the natural map A-—*H*(MSTop) -is the left ideal
generated by the Milnor elements VQO and Ql. Unfortunately,

that now seems to be the easiest step in the following program.

Problem 14. Compute H*(MSTOP;ZP) as a modgle over the
Steenrod algebra A; then compute g MSTop by use of the Adams
specfral sequence; find representative manifolds for the result-
ing cobordism classes.

See Peterson [127] for a possible approach to the first step.

The following easier. problem is also still open.
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Problem 15. Compute s MSF explicitly; use the Levitt
exact sequence to read off the oriented Poincaré duality cobor-
dism groups and find representative Poincaré complexes for the
resulting cobordism classes.

Sinpe MSF splits as a product of Eilenberg-MacLane
spectra (see Peterson [12]), the first step (on the additive
level) requires only a counting argument from the known struc-

*
ture of H (BSF).

The previous problems deal primarily with the cohomology of
spectra MG for stable bundle theories G. Since the MG are
B ring spectra, their zeroth'spaces MOG are E°° ring spaces
and their unit spaces FMG(:MOG are infinite loop spaces. The
infinite loop map Be : BF— BFMG 1is the universal obstruction
to the MG-orientability of stable spherical fibrations [9]. Even
when MG is just a product of Eilenberg-MaclLane spectra, the
spectrum determined by FMG may well be complicated. The fol-
lowing would be a first step towards understanding these spectra.
Define an AR-Hopf bialgebra (with ) to be an A-coalgebra to-
gether with two structures of R-algebra (and a conjugation
for the additive structure) subject to all requisite commutation
formulas between the various pieces of structure [10, 11]. (The

less appropriate term "Hopf ring" has been used by other authors.)

Problem 16. Compute H*(MOG;ZP) as an AR-Hopf bialgebra;

then compute H*(BFMG;ZP).
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When G = {e}, MG is the sphere spectrum and H*(MOG;ZP)
is the free AR-Hopf bialgebra with yx generated by H*So be-
cause the "mixed Ccartan formula" and "mixed Adem relations" com-
pletely determine the multiplicative homology operations in

terms of the additive homology operations [1l]. Similarly, the

free AR-Hopf bialgebra (without yx) is realized by

Ravenel and Wilson [14] have computed H*(M0U7Zp) as a
Hopf bialgebra (without homology operations) .
While the theory of homology operations on E°° ring spaces

is well understood, there should also be a related theory of ho-

motopy operations.

Problem 17. Analyze the homotopy operations implicit in
the definition of E°° ring spaces.

Kahn's u&—products on the stable stems are consequences of
"~ the E ring structure on QSO, but their definition uses only
a very small part of the total structure available. I suspect
that this problem is intimately related to the Art invariant
question in the (25—2)—stems.

The notion of Ee° ring space is clearly essential to infi-
nite loop space theory. There are ghose who feel that the ab-
stract theory cannot be regarded as complete until the structures

used are shown to be homotopy invariant.

Problem 18. 1Is a space of the homotopy type of an E
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ring space again an E, ring space?
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*
THE STEENROD ALGEBRA AND ITS DUAL FOR CONNECTIVE K—THEORY( )

R. James Milgram

A basic spectrum of modern algebraic topology is the spec-
trum for connective real K-theory, bo. Its cohomological struc-
ture was described by Adams [1] and Stong [10] at the prime 2
and W. Singer [9] at odd primes. In this note we will only be

concerned with 2 where
H*(bO,Z/V(Z)) = d(z)/d(Z){Sql,qu }

and A(2) is the mod (2) Steenrod algebra.

Mahowald in [6], [7] and Don Anderson (unpublished) initi-
ated the study of the Steenrod algebra for connective K-theory
(b)) = {bo,bo}* and 7, (b Ab_). This latter is useful (in-
deed essential) for constructing and studying the bo general-
ized Adams spectral sequence [3]. Acutally though what is most
needed are not the homotopy groups but the homotopy ;ype.

In general, if # is a spectrum, then the techniques of
"classical" homological algebra are app}icable to the studf of

the o -generalized Adams spectral sequence only if
J
NN \J/,z ) .

*
(*) This research is supported in part by NSF grant GP 43967.
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‘For example, the Eilenberg-MacLane spectra K(Z/p,0), and the
Brown-Peterson spectra have this property. It is easily checked
though that bO/\ bo cannot split in this way (already true by
the 7 skeleton) so comparatively little attention has been given
to the resulting Adams épectral sequence.

In this note we obtain the homotopy type of bo/\ bo at the
prime 2. It turns out to be associated not to bo alone but to

b bSp and certain spaces obtained from bo, b by using

sp
K(Z/2,0) resolutions of b_, b . (Here b is the 3 connec-
o sp sp

ol

tive cover of bo, and again from [10]
* ~ 1 5
H (b, .2/2) % of (2)/4(2) {sa",5a” })

In terms of these spaces whose precise definitions will be

given in 2 our main theorem is

4 8
Theorem A. b _Ab_ ~ \/ZJK(Z/2,O)Vb Vb Vz b(3)
_— 0 e} J o Sp 0

28 k-4b

2k-1-a(k-1) Vv z8kak-c:t(k) V

V...V sp o

This decomposition is actually explicit. Let ¢p3 be the

Adams operation ¢p3 :B_ —»B

3
0"B0'¥ IBorek,exs1,...) 2nd looped

. . k 3 .. . ,
8k times is 9 Y : hence localizing at 2, so 3 is a unit, we
’|

have Lk ) define an operation in the bO spectrum
9

Borsx, ...

which we also denote ¢3. Consider the polynomial

o, = (¢3-1)(¢3-9)...(¢3-9“‘1).
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We prove

Theorem B. Let b(n)

be the space which is universal for

(0]

maps X-—.bo which are trivial with respect to all higher 2/2

cohomology operations of order < n; then

(1) 0 admits a factorization

6
b 2n Z:8r1b(2n—ot(n)) A

8 3
o 0 z nbo 25

where ) is the universal map and j the usual

inclusion given by Bott periodicity.

admits a factorization
n+l -

(i1) @,

]

—_—

b
o} sp sp

The en's defined in Theorem B allow us to define maps

EBnbéZn—a(n))
by Ab — 8n+4, (2n-a(n)) (
sp

z

using the ring structure of bO and the bo module structure

of b .
sp

(n)

(n)
Th . b
eorem C 0 and bsp

are filtered modules over

(i.e., there are universal maps

8n+4._(2n- j j
2n+l . n+ b(2n aln)) A 28n+4b J 28nbo Jj

0"

0



130

(n+1i)
(0]

u o b(()i) A b(‘)“) —b

(1) (n) (n+i)
n :bo /'\bSp —-bsp

so the diagrams

(1) (n)____ 4 (n+i) i) A pn) LY

bO Absp sp o A 0] 0]

'u\x | lx XA X

b Ab  —ab p VA — 1

0 sSp sp (0] (0] 0
1AJ 3

bo/\ bo———obo

n
commute and there are minimal models for the b b so that

the maps

8n, 2n-wa(n)
by Abs—>3 “bo

defined as the composites
\

1As
2n 8n 2n-g(n) p 8n, 2n-g(n)
b
bO/\ o————bo/\z bO —_— bo

1Ag
b Ab 2n+1 b A28n+4b2n—d(n) m 28n+4b2n—d(n)
O O 0 sp sp

together with (usual) maps into the Eilenberg-MacLane spectrum

K(2/2,0) defines the splitting in Theorem A.
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Remark. These theorems represent part of the foundation
for ongoing work with Mahowald which will appear in due course.
For now let me observe that the splitting above implies that
while the techniques of classical homological algebra are not
appropriate to the bo—spectrum we can modify homological algebra
by introducing valuated or filtered categories and filtered reso
lutions which implies filtered Ext groups, etc. With these modi
fications a beautiful theory seems to emerge which contains deep
information about homotopy and is easily handled, using tech-
niques developed in ordinary homological algebra for Abelian

rings.

1. Some techniques from homological algebra.

We may write H*(bO,Z/Z) = 04(2)/g¢(2)521 where z&& is
the subalgebra of «£(2) generated by Sql and 'Sq2. Under
such circumstances we can use change of rings techniques to
reduce the study of the ordinary Adams spectral sequence for

spaces XAb, to Ext‘Al(H*(x),z/z).

Lemma l.l1 (Change of rings). Let M have the form

N®(L(2)/£(2)B) where N is an od(2) module and B

I
|

sub-Hopf algebra of d(2). Suppose, moreover, there is an

A£(2) action on B so



132

(2) ®B—=B

T

B®B—=B

~

commutes; then Ext‘d(z)(N®.,¢(2)/-.¢(2)B,Z/2) = ExtB(N,Z/Z)

(well known).

d satisfies the hypothesis of 1.1 since we can con-

* ~
struct a space X with H (X,2/2) = e.etl as a module over e.e!l.

~

' *
Thus Ethd(Z)(H (bo),Z/2) = Extdl(Z/Z,Z/Z) which has the form

; L

g

O DNWb UG

0123456789 1011 12 13 14 15 16 17 18

T

Figura 1.2
Next we recall the result of wWall [11].

Theorem 1.3. Let Q(c.ﬂl) = [Sql,'qu]i then 02 =0 and

if M 1is a connected locally finitely generated .ﬂl—module,

then M is <y free if and only if

~

H*(M,Sql) H,(M,Q) = O.
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Definition l1.4. Two modules M and N over 411 are

stably equivalent if there exist connected locally finitely gen-

erated projectives L L2 so that

ll

MGBLi = NGBLZ.

As a corollary to 1.3 we can easily check that the only.
connected locally finitely generated projectives are actually

L are free.

free, so we can assume Ll' 9

=

Corollary 1.5 (Anderson-Brown-Peterson [4]). M s stably

equivalent to N if and only if there is an ail-mag f:M—N

. . . . 1 . .
inducing isomorphisms of Sgq and @ omologies if M, N are

connected and locally finite.

The stable equivalence classes of finitely generated udl-
modules form a ring ff under direct sum and tensor product.
The O-module acts as additive unit and the module 2/2 acts as
the multiplicative unit. Adams ana Priddy have extensively

analyzed M . However, we do not need their results here. What

we need is the subring generated by daf

Here are minimal models for modules in the stable classes

of (.,dl)®...®;21 for some i.

S —
—

i-times

module with genera-

Definition 1.6. et Y, be the dﬂl

tors
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. 2,1,2 1 2,1,2
S , S = 0, , = 0.
and relations Sq Y4(5-1) T Y,y STY, 0, Sq Y4, =0
Here is a picture of Yl
qu Sq2 Sq2
(1.7 /\\//é;\/
Sql Sql Sql

Again we have

Definition 1.8. Let z, be the Udl module with genera-

tors ZO'Z4""'Z4i and relations
1 2 2,1,2 1
Sq (zo) = 0, Sq (Z4i) = 0, Sq z4J Sq z4(j+l)
qu qu Sq2
o N O T D>
. sq z S 2
1 1 ql

Definition 1.10. (a) Let Si be the “41 module with gen-

erators S _,S.,...,8.,: h and with relations
- 4 4i I
S l(s ) =8 2'1'2(5 Y., S l(s ) =0
d 4(r+l) 4 ar’+ 4 o]
3 2,1,2
8q (h) = s8q """ (s



[
W
(V)]

(b) Let T, be the ,_,dl—module with generators

ce.,t ., k with
tO' 41 —

Sql'(t ) = Sq (t 0

4(r+l)

0
Q
=
.o
o_~
1l

3 2
Sq t4i = 59 k.

(1.10) s

(1.11) . T

Legma 1.12. All four of these modules are minimal in their

stable classes and any .,g{l—map Tl—>Ti, -Si—- Si' Zi—— Zi’

Yi_-Yi which is non-trivial in degree O is an isomorphism.

2,1,2

o N D
proof. ' From the relations Sq (y4(r—l)) =51y, 1t

follows that the vy., 2., s.+ _tii'al{l;'mia.p non-trivially.- :This
is the proof for Y., Z < For k- in ‘Ti we see that k goes

either to k ,or k+ 8q (ti') . and 1in e,ithe-lz: case the map is an

e s a0

s

isomorphism, similarly for - $;.
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Lemma 1.13. (a) The Sq1 homology of any of these modules

is generated by the bottom class,

(b) H(Y..Q) = z/2{Sq2y4i}
H,(2;.0) = 2/2{z,,}
H,(8,.,0) = Z/2{h+Sq2(s4i)}
H (T;.@) = Z/2{Sq1k+Sq2t4}
(obvious) .
Theorem 1.14. (a) Y21+l is a minimal model for .2?4i+3.
(b) Z2i is a minimal model for Jz4i.
(¢) T,, is a minimal model for L.
(& §,, is a minimal model for L2,

(The proof is a tedious but routine construction. We take, for

example, the obvious map of free ) modules onto Z_, and
P 1 21

verify the kernel is T, .. Similarly, for T .. and

24 21’ 524
Y21+1. Then check the first three stages of an actual resolu-
tion of 2Z/2, note that the bar resolution has kernel «f* at
stage 1 and verify that the stable class of the kernel at

stage i does not depend on the particular resolution.)

As an easy corollary we have

corollary 1.15.  {s,} = {¥,0¥,}
{Yl} = {Yoo z,}
{Tg+1 } = {Yo° Sx}

{zl+1 } = {Yoo Tg.}
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and in general this set of stable modules is closed under tensor

products.

2. The spaces associated to a resolution of 2Z/2 over ddl

The map 3, : g’o—’z/z. go can be written as

‘da(el) + ...+-u¢l(e ) and associated to 3  we choose a map
n

n .
dim(e,)
dy by V= r'K(2/2,0)
1
. *
defined by doL(er) = ao(er)I. The cofiber of do and the

associated map
k
M(do) —_— ):bo

provides the first filtration space b(l)

o of bo. Next, asso-

ciated to 3, : ..dl(fl) D...8 ..dl(fm)——z‘,.,dl(ei) there is a map

n dim(e..) dim £,
a:\V =  Trz/2,0—vz k(22,0
1
defined by
2.1 da '
(2.1) l("j) = Z<al(fj), &> Ly -
Since aoal = ?, dldOC:o and there is a lifting
(1) dim £5 . . (2)
£:b —eVZ K(Z2/2,0). The cofiber of &£ is b and

o 0

the composite
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(2) k Zbél) Tk 2

(2.2) - bO x bO

gives the second filtration of bo. We now iterate the proce-

dure obtaining the sequence

(l)——>z_l+lb(l—l)——..,.-—.b

-i
. —3 b
(2.3) T b, o o

associated to our resolution of Z/2 over ¢ﬁ:
Observe that the cohomology maps (mod 2) in (2.3) are all
trivial and the cofiber at each stage is a wedge of suspensions

of K(2/2,0). Hence (2.3) represents an Adams resolutions of

bo.

Theorem 2.4. Let the resolution of 2Z/2 over ddi be

minimal; then

* o (4i43), ~
H (b ) = A«z)/.d(znal@szzi”

TR CE NPV
B (b ) T (2)/(2) L@ 2,

as modules over “dl

Indeed, it is easily seen by induction that, for example,

(41i)

o ) is given by

*
as a module over «£(2), H (b

ud(2) (eo) ®A(2) (e4) B .. ®ef(2) (e8.)

1

1,2 1
(2 S5q” (e )

. . 1 B 2, ~
subject to relations Sg (eo) = 0, Sq 4r) = 4(r+l)

and Sq2(e8i) = 0 and similarly for H*(bé4i'l)).
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Corollary 2.5. For the minimal resolution

S+

3

Ext® H*(bj z/2) = Ext
xtg2)® YPor R
(4)

Thus, for example, in the case of bO

the Ext groups

have the form

]

t-s—= 0123456789 1011 12 13 14 15 16

(5]

Figure 2.6

The Adams resolution (2.3) has certain universal properties.
Thus, for example, by obstruction theory as in [8, Chapter 2]

from the map we obtain the lifted maps

L (1) (3) __ , (i+3)
ig iPo AP, Py

Moreover,. for any other Adams resolution of bo we obtain simi-

lar maps and maps

so the diagrams
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~(1)  =(3) __ =(i+3)
bO N\ bO bo

| l

(1) A p(3) . (i43)
bo /\bo bO

commute up to filtration degree -1 homotopies.
3
3. The Adams map

In the introduction we described how the Adams operation
¥ is defined in bO' Here we give some more explicit proper-

-3
ties of certain polynomialg in -

Definition 3.1. The Postnikov degree k of a map ¢:X—X

is the biggest Postnikov connective cover of X through which

¢ factors:

(p .
// 1(3)
/
X —X
©

Definition 3.2. The Adams deqree s of ¢ is the largest

Adams filtration of X through which ¢ factors:

x(S)

t 4
/l
X

I'd
x_.
®

N6
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Example 3.3. ¢3—1 has Adams and Postnikov degrees 3 and 4,

respectively, hence factors through a map @:

/
o 3.

b

4

o I
i
bO

1

*
Lemma 3.4. 8 (Isp) = Sq4(I).

Proof. ($3-l)(q) = 8q. Hence in dimension 4, (¢3-l)* is
multiplication by 8. On the other hand, the cohomology map of a
torsion free class to the ith stage of any Adams resolution
takes the generator to 2i times the corresponding generator in
Xl. Thus i* is already multiplication by 8 in dimension 4 so

(3.4) follows.

Next consider the operation ®p defined in the introduc-

tion.

Lemma 3.5. ¢ , is O in homotopy in dimensions <4n
n

and in dimensions >4n is multiplication by Ai with each xi

24n-a(n) 4n-g(n)

divisible by and Agp = 2 (0dd) .

In particular, this shows that the Adams filtration of

<pn54n—ot(n) and the Postnikov filtration <4n.

Proof. The generator in dimension 43j in homotopy gj is

mapped by ¢3 to 9jgj, hence
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(93-1)...(93-9""Lyg

wn(gj) 3

]

(93-1) (9371o1y ... (9370

r
-1)97 (g.)
gJ
3
which equals O if j<n-l. Also on the torsion is the

identity so °, (torsion) = O. Now, it is well known [2] that

i 3+\32 (i) ' .
(97<1) =2 (odd) where vz(i) is the exponent of 2 in

the prime factorization of i. Thus the exponent of 2 in dimen-
sion 4i is (vz(i)+3)-+(v2(i-l)+3)-+... +(v2(i—n+1)+3) but

r-o(r)

Vz(i)-+... +v,_(i-n+l) = vz(ii/(i-n)l). Now r! = 2 (odd)

2

S
vz(il/(i-n)l) = n-g(i) +a(i-n)

which takes its minimum when 1 = n since «(n)+a(m) > a(n+m)
for all positive n, m.

Now Theorem B amounts to proving that these bounds are best
possible. Special circumstances gave the result for ¢3—1
since the groups in which obstructions could appear were all
zero, but to prove the general result we cannot hope to argue
one stage at a time. Instead it will depend on makiné extensive

calculations with Adams spectral sequences.

4. Mahowald's theorem and the homotopy type of boA'bo

In this section we recall Mahowald's theorem [7] giving the
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*
structure of H (bo,Z/2) as a module over Jal and using it
and Theorem B gives the proof of Theorems A and C.

Mahowald's result depends on

Theorem 4.1 (Anderson, Brown, Peterson (47 -
* -~ 1 ~ 4
H (A(2)/ A4(2) uﬂl,sq ) = P(!;'l)

* ” 2 .2 2
H (of(2)/ L(2) A .Q) E(gyrk5rererfpene)e

*
Proof. Let «£(2) be given as P(gl,...,gn...) with

n-j
gp(gi) = )::gj@(-;i_j . Then the @ homology can be calculated by

- - I - I I I . .
dualizing (@,§ ) = Z(Q,gﬁ@gé where g = ):,51@&;. This is
a derivation and on generators Q(gi) = gi—z' i>2, Q(gz) = 1.
. * 4

But as a coalgebra over «&£(2) . H*(bo,Z/Z) = P(El:f;’;:&y---) .
The second statement now follows. Similarly for the first

—1 2 . —1 . . . .
Sq (gi) = gi_l, i>1l, Sq (gl) =1 and this again gives a deri-
vation so (3.1) follows.

Next we have

Theorem 4.2 (Mahowald). There exist .,41 modules M '
2

i>2, and surjections o, ¢ A2) /4L (2) .;zl—vz;zlmzi satisfying

ne

(l) M2i Y2i—2.;l

1 (-1 1
(2) H*(ud(2)/u¢(2).x¢1,8q )———H*(Mzi,Sq—).
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H, (A(2) /(2) £, ,0) H,(M_.,0)

2

i
* 2 * 2
jecti ith = ’ =84
are surjections with ¢ (gSql) £, 10 (gQ) £

Proof. Again we work with the dual algebra. Consider the

sequence
2 2 4 4 2 4 43
€i417857 8385 0085 178385 o 8y 18  preee il B0 BT
r+3

45 2542 4(j+1) ,2s-2 4(j+1) 2
E i-r- 2£1 -r- llEl rei—r—z €J. -r-1' g1 r-2 E i-r- l""'gi -r-2°°"°

terminating in

4 i_ i_ : i
e3ezsl ® ezei ®lege ThE2d ol

. =1 ,
The sequence is closed under Sqg . We show it also closed

— — — —1 . —1
under Sq2. Note Sq2(ab) = (qua)b-+a(Sq b) + (Sg a) (Sqg b) ;
-—2 -—2 25 28— 2
hence Sq (gi) = 0, Sq (gi ) (gl 15 . and from these two
formulas the result follows.

Now (4.2) may be extended. Consider,. for example, the

composite 0y .,d/d..e{ ——‘L—.xl/..cﬁd ®..¢¢/u¢-.¢ -——M ;®M 5
2

* 2.2
Clearly, q:ij(g@gsql {gl gl } ¢lJ(g®g ) = {gigj} . More

generally, on iterating we obtain ail—maps

0. with

i ,i,...,1
172" "Tr

Ao ..dl——Mzil® ...emzil
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1
¢* (g® ®g ) = {gz ' 52 r}
11...1r Sql i 1

*

2 2
€1 ...i (98- @59 = {511‘ "'Eir}'

Of course, we may substitute for these tensor products their
minimal stable l—module representatives, and we assume that

done. Consequently we have

Theorem 4.3 (Mahowald). There is a free ng-module F

and an isomorphism of Jdl-modules

z: 2(il+...+ir)
F® z {Yi_2 ®...0Y , , }

1<1l<.,.<1r 2 1 -1 5 r -1

= ..¢(2)/.¢(2).21.

Using (4.3) together with Theorem B we prove Theorems A and

C as follows. Note that in the minimal resolution of Z/2 the

(n)

corresponding space bO have Jil—module structure

n - -
{d }9 oL [l ..Jl where &  is represented by its minimal model.

Moreover, an easy calculation shows that

4
91 :bo—-E bsp N B 2
) satisfies @ i_2(g 1) (gl,)'

2lb(2l' -1) 2 sq
)

e . :b —2
21 2 (0]
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since this latter class is the restriction of the integral gene-
*

rator and the calculation in (3.5) shows @ (L i) = (odd) (inte-

gral generator) But from this an easy calculation shows

2
6 i—Z(gQ) = (§;) . Next we construct maps

*

. 2n 4n-o(n)
ezn .bo—’z bo

and similarly the 92n+1° For example, to construct 96 use

the composite

"

8 ]
4 -10,. 7 2 24 (10)
(4.4) by ——Z (b)) —2—wz’ b

where 8 is the lifting in the Adams filtration of §

2 2

through seven stages. Next we construct out of these maps the

desired map b Ab_—svVy 28nb4n-—a(n) \V 28n+4b4n—a(n) using the
¢) 0 0 sp
composites
6, N1
2n 8n, 4n-4(n) 8n 4n-¢(n)
bOAbO z bO A bO z bO

Then the calculations above show “* for ‘Sql and @ homology
are both isomorphisms. Also by minimality “* is an injection
in cohomology with  f(2)-free cokernel. We extend now to a
homotopy equivalence by simply mapping iﬁto Zn(K(Z/z,O))'s 1

for each free generator in the cokernel.

5. The proof of Theorem B

*
. . s *
We begin by calculating Ext Z(2fz/2’H (Dbol\bo)) for
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s> 0. Here Dbo is the Spanier-Whitehead dual of bo.

*
Lemma 5.1. If as a module over ydl, H (X) = M1}9M2, then

*
as a module over ‘“‘l’ H (D(X)) = D(Ml) @D(Mz) . Moreover, the

dual of ., is again “‘1'

Proof. As the splitting is clear we need only show the

second statement. We write “41

(5.2)

This picture is symmetric and that is the result.

Lemma 5.3. (a) The dual of 'Yi has generators eo,wl,...,wi

with relations

2,1 1 2,1,2 1 ..
Sgq 9l = Sq 92,...,Sq wj_1 = Sq wj, j<i.

3 1 a Z eeerZ, with
(b) The dual of Zl has generators zo, 25

relations

2,1 2,1,2

sq z, = 0, Sq (zj_ ) = Sqlzj, j<i-1.

Proof. (a) The module described has picture

(5.4) O RAYECRAYE Yo
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which is clearly the reverse of Yi. (b) Is similar.

Lemma 5.5. Let L, be the mbdule with generators

eo,el,...,ei and relations

2,1,2 o1 .
sq (ej) = Sq (ej+1)' J<i;

then there are exact sequences

(a) O—e3M —*D(Ti)—-Li—\- o,

(b) o——N——D(si)—- 'zLi——o,

where
1 2,1,2
= S ’ =
M ..dl/..ll(q,Sq )7 Y,
N = of, /A ST
s Uns et B
Proof. Turn diagrams (1.10), (l.1l) on end; then N and

M are the modules on the second lines in each case.

Remark 5.6. The extensions are given by Sql(eo) = %I in
1 ' .
(a) and sg (zeo) = quI in (b).

Similarly we have

Lemma 5.7. (a) There is an exact sequence

: 2
o—>P——»D(Yi)——z Li_l—»o

where
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2
- P fdl/AISq .

(b) There is an exact sequence

0—>5(2/2) —+D(Z;) —L; ;=0

. . l R
and the extensions are given by Sqleo = qu' £I in (a),
Sql(eo) = yI in (b). (From (5.3).) \
ok . : ' 4
Lemma 5.8. Ext , (L,,2/2) has generators e .,..-.,&; and
_— aﬁl i 0 L
relations

=h
r 'Oer+l

all r. In particular, Exts't(L.,Z/Z) =0 for t-s>4i.
adl i —

Proof. There is an exact sequence
' 1 4
o, /A Sq” —L,—T'L;

consequently a long exact sequence of EXt groups. Note using

. 1
change of rings Ext , (. /L. 8a,2/2) = Ext (z/2,2/2) =
A 1“1 1
1 : E(Sq’)

. 3

P(ho)eo. Induction produces all of (5.8) except qer = hoer+l'
But through a range L.l = {541} and the desired relation holds
s,t

for EBxt  (

=4i
A
A—dl

ne

s+4i,t

dl (Z/zlz/z)l s> 0.

,2/2) ExXt

Now from (5.l1) we have
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Theorem 5.9. s a module over g

~ g0 (=8j+2a(])~-1)

H*(D(bo),Z/Z) S z D(Z )

(3-a(3) 72)

 p83+2a(]) -1

b3 D(Y )

(J-@(3)+1/2)

-, ~85+2 () -2 i
\/ R P(S(5_a(3)/2) 7

-8i+2a(3j) -3
AVAR: DT (5 (a(3) +1/2))

Here 3j =1,2,3,..., and

o]

is a free Jl-module. Also, D{( )

as its lowest generator in dimension O.

Thus, ignoring the free part the first few terms are

7 15 31

DY)V 5 2D(s))V 2 DY) V L

o -
(5.10) (sH)vze 1 3

D(YO)V z

i i
Proof. TLet j = 2 l-+... +2 r' then stably



' Z5 gy r=0(4)

Yyg(esyy T

(5.11) Y(2i1_1)® ...®Y(2ir ., = S5y (r42) r=2(4)
_ Tig(rs1) T304

Now, the dimension of Z, is 4k+l, that of Yk is 4k43, that

of 8 is 4k+6, that of T is 4k+5. Thus, for example, the

k k
dual of
45 ~ “43-4(j-%a(j)) -1 =
R e D2 (5 q(5)]
_ om8j+2a(3]) -1
=7 D(Zj—zd(j))

and these are the first wedge summands in (4.11). The others
are handled similarly.

We next need -

Lemma 5.12. (a) EXt0¢ (D(Y l,Z/2)) has the form
1

2i+

(5.13)

= 7481
4i43

t
1
0]
|

n
fl
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(b) Extdl(D(Yzi),Z/Z) has the form

!

(5.14)

‘/ﬁ/l : t-s = 348i

4i42

n
]

Proof. Immediate from (5.7), (5.8).

Similar calculations can be made in the same way for D(Z),
D(S), D(T). We leave the details to the reader.

What we need to observe is that after suspending the
correct number of times toiput this into DH*(bO) the first
spike generator for the piece {Dzsr(Xr)} occurs in t-s = -8r
and in s filtration 4r-e(r). Similarly, the first spike for
D(28r+4(W£)) occurs in t-s = -8r-4 and s filtration
4r-g(r), and since f(r) = (4r-g(r)) 1is a monotone increasing
function of r it is easily checked that these generating
spikes and indeed all the spikes represent infinite cycles in

the Adams spectral sequence.

To complete the proof we need

Theorem 5.15. Let I, M be connected modules of locally-

finite type over _f(2); then
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(L,M) = Ext (D(M) ®L.,Z/2) .

EXt £(2) A(2)

Proof. Let

—c —C, —C _—>L—0

2

. be an (2) free resolution of L which we may also suppose

to be of locally finite type‘. Then Ext (L,M) is the homology

‘0of the complex

6

. 1
OﬁHomd(Co,M)e»Homd(cl,M)

—_— e o

On the other hand, we have

Lemma 5.16." Homd‘(L,M) = Homd(D(M)AQL,Z/z) where the

isomorphism is expl_icitly given by the formula
h(f) (g®L) = {g.£(R)).

(Here we régard D(M) as Hom(M,Z/2) with .f{-module action
given by a(g)(m) = g(x(&)m) where x is the canonical anti-

automorphism.)

Proof. h(f) € Homz/z'('D(M)Q L,Z/2) is certainly well

defined. We must check that it is an & (2)-map. Notice

h(f) a(g@ L)

n(£) e, (9) © o} (0)

It

£{ay (9) Ea} (R))
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By assumption f 1is an f-map so this last sum is

(o (@) a0 = 59 x(ay) a}£(2))

]

(g, (2x(ay) @) £(R))

but zx(qi)ai =0 for o #1l so this is e(q){g,£(L)) where
¢ 1s the augmentation. But this is by definition the action of
ol on Z/2.

We now define a map

(5.17) ks Homd (M®1L,z/2) —Hom ,(M,Hom

JZ/2
o (L,2/2))

z/2
by the rule
(kr) (m) , &) = (r,m@R).

We verify that k is indeed an f -map

([k(r) e+ ok(r) ] (m) , L) =

(£, (am ® L) +{xr, (m® (x(NAL))) =

(,om®L+m@®X(a)R)
and in general
a(m)@ L+m® X(a)k

is decomposable over uz = ker(e) [5]. Hence since r(8(x)) =

€(8)r(x) = 0 for Q¢ it follows that k(r)a+ ok(r) 30 all



r so k is indeed an  -map.
The proof of (5.16) is now completed by (routinely) veri-
fying that h.k = 1 restricted to D(M)®1L and checking that

kTh = 1 on embedding
M <:HomZ/2(HomZ/2 (M,2/2) ,2/2)

The proof of (5.15) is now completed on noting that given

an f-map f :L—L' there is the natural map

(5.18) Hom.i-(L' M) e, HOmd(L,M)

and the diagram

D( f)

—» Hom (L ,M)
ol

h = . \'h

D(1Q® £)

Hom‘i(D(M) ®L',z/2 Homd(D(M)® L,%2/2)

commutes. On applying this to the‘chain complex defining

Exta‘(L,M) we see at once that it is isomorphic to the chain

complex defining Extd(D(M)®L,Z/2) and the result follows.
The results on Ext (H*(bo) ,H*(bo)) obtained above

d(2)
(5.9-5.14) give in particular

* %
5 20. Ext ¥ =0 if t-s = -1, and for t-s = O, Ext®

' S

is a free module over P(h.) having generators €€y iCyreen

(0]
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where the s-degree of e, is di-g(i).

We now complete the proof of Theorem B. It has already
been observed that the spikes are infinite cycles. Now, the ®,

are all linearly independent (since Pix = O in dimensions less

than 4i but not in 4i). ¢, ~has s-degree 3 .and

1
¢2 = a-+b¢l-FT where by (5.20) T must have s-degree > 7.
Checking on homotopy in dimension zero, T,(I) +al =0. But

f*(I) must be divisible by 27, hence a = 27a'. Again in

dimension 4
. 7_, -
0 =2 a -+8b-+1*(q).

Here since q has filtration 3, 7 (q) = 24b'(q) and we see
that b 1is divisible by 24. Hence °, actu;lly has filtra-
tion 7 and we may repeat the argument with ¢3,betc. This
shows the ®; lift to the correct Adams filtrations. We must
still show their Postnikov filtrations are correct.

For example, we check on ®y - 'Note that Qe can choose

e _.,¢e

,-<. S0 that e, =p(f,) for i>1 .in Ext. Now multi-—
o 1 ! i i - :

plication by p correspondsbto composition with the periodicity

e are repre-

map in homotopy. Hence, having seen that eqr €

sented by 1, ® we note that 7t in the argument above can be
chosen so r = p(f). With this modification r,(I)'=r (q) =0

so a and b in the argument above also =0 and 0, = p(£f).

Next we show ?3 represented by this composite
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- and the remaining generators e 1€g0en- can be assumed to lie

in the image of pz, etc.

Theorem B follows.
STANFORD UNIVERSITY
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1
ON NOVIKOV'S EXT MODULO AN INVARIANT PRIME IDEAL

*
Haynes R. Miller and W. Stephen Wilson( )

This note is a statement of some results on

’

Ext
BP_BP

(BP*,BP*/In) which we talked about informally at the
summer 1974 homotopy-theory conference at Northwestern University.
Proofs will appear elsewhere. For details on the Brown-Peterson

. spectrum BP and on BP*BP and BP _BP, we refer the reader to

[2, 11, 1].

We shall use the generators v, of Hazewinkel [3], so that
~2Z ' foee
BP, ~ (p)[vl v2 ]
. n =% .
with Ian = 2p -2, and BP,~BP . The ideals

) O<n<ow

I = (p,vl,...,vn_1 <n<

n

are the prime ideals of BP, invariant under the coaction of
*
BP,BP (or the action of BP BP); see (5, 9, 4]. We point out

that

* % * * * %
Ext (BP ,BP /IJ ~Ext

* BP_BP

(BP,,BP, /T ),
BP BP

*
) Both authors were partially supported by the NSF at the time

of this research.
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-and henceforth denote this algebra by

*k
Ext (BP*,BP*/In) .

Multiplication by v, on BP*/In is a BP,BP-comodule map.

In fact, we have

Theorem (Landweber [14]; see also Johnson-Wilson [4]). For

O<n<eo,

o,* '
Ext (BP*,BP*/In) :]Fp[vn] .

’

*
Thus Ext (BP,,BP_/I ) splits up as an I _[v ]-module
* * n P n
into a direct sum of vn—torsion and vn—torsion—free submodules.
For p odd, we describe the vn—torsion summand completely, and
exhibit all but one generator for the vn-torsion—free summand,

The short exact sequence of comodules (where vO = p)

v

0—=BP,/I —»Bp /I —=BP./I .—+0
L o L o *" Tn4l

gives rise to the "Bockstein" exact couple

v
* % n * %k
Ext (BP,,BP, /I ) —=Ext (BP,,BP,/I )

N/

* %
: ,BP_ /T
Ext (BP,.,BP, rH_l)
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in which 6n has bidegree (l,2-2pn).
Henceforth let p be an odd prime. Recall [1] that
n .
BP*BszBP*[tl,tz,...], Itnl = 2p -2. In the cobar constrgctlon
i
for BP,BP ([7]) with coefficients in BP*/In, n>o, [ti ] is

cycle representing a nonzero class
1 piq
’ .
hi'eExt (BP*,BP*/In),

g = 2p-2. Clearly hi is taken to hi by the reduction P,

Note that

*k * %
ExXt (BP*,BP*/Im):ExtP*(Fp,Ep)

where P, is the Hopf algebra of Steenrod reduced powers. Thus:
*

Ext1, (BP*’BP*/Im) is additively generated by {hi: ig;o} {e].

(At the other extreme recall that Novikov [10] has computed

1,*
Ext”' (BP,,BP,/I.).) J

Theorem A. Let p be odd and O<n<w». All relations in
1,% .
the Eb[vn]—submodule of EXxt (BP*,BP*/In) generated by

{hi: iz})} are consequences of

corollary A'. The hi for O<i<n generate distinct

free E@[vn]-module summands.

The next theorem describes the vn—toréion submodule of

1

* . '
Ext™’ (BP,,BP,/I ), O<n<e., For r>0, write r = ap*s

with
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(a,p) =1, and if s#0 write s =kn+i+1l with O<i<n.
Let
p° if a =1
a(r) = qn(r) = . k-1 nei _
p +(P"l)Zp if a #1
=0

In particular, for n =1 with s>1 and a # 1, q(aps) =

s s-1

+Pp 1.

Theorem B. Let p be odd and O<n<e. The vn—torsion

*
submodule of Extl' (BP*,BP*/In) is a sum of cyclic Eb[v 1-
n

modules on generators

1,2r(p™ 1) ~2q(x) (p7-1)

cnhﬂ € Ext (BP*,BP*/I&

satisfying, for a such that (a,p) =1 and a # 1:

(1) Vz(r)cn(r) =0
a(r)-1 _ r
Vn cn(r) - én(vn+l) # 0
s S 1
(1) hy = e () +vh Uy s»0

(iii) p (e (7)) =h_

Va-l
n+l n

p (e (ap%)) = a
1

S_.S~—
2a‘v:p p hO if n =1 and s>1.

s
p (e (@p%)) .
avap L h

, otherwise.
n+1l i
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Most of our understanding of the vn-torsion—free part of

*
Extl’ (BP*,BP*/In) derives from the following theorem of Morava.

Theorem (Morava [8]). Let p be odd. The rank of
*
Extl' (P, ,BP, /I ) over T [v] is 1 for n=1, and n+l
n p n

for l<n<«w.

corollary A' gives us all but one generator of
1,* \ .
Ext ' (BP*,BP*/In) mod vn—tor51on if n>1l. For the last

generator we can only offer:

Cconjecture. For p odd and l<n<wo, there is an element
x
v%leExtl, (BP, ,BP,/I ) generating a free Eb[Vn]'mOdU1e
summand and reducing to

n-2
l+p+...4p

pn(wn) = n+l n-1

Our principal evidence for this conjecture is its truth for
n =2 and 3.

These results have applications in stable homotopy. It is
. . t . 2,%
immediate from Theorem B that aoél(vz);éo in Ext (BP*,BP*)
for t> 0. This implies the theorem of L. Smith [12] that

2 . S

'Bt O 1in L or t>0.

Recall [10] that the image of
1,% 1,* .
po : Ext™' (BP,,BP ) —Ext (BP,,BP,/(P))

*
is generated by {vtho :kE:O}. Since EXt2' (BP*,BP*) is
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p-torsion, the exact sequence

5
1 Po 1% 0 .2,% 2%
Ext™ (BB, BB,) —=Ext ' (B} mp,/(p) —=Ext""" (8P, ,BP,) —EExt> (R e, )

allows us to compute the kernel of multiplication by p in

2,

*
Ext (BP,,BP,). This gives a complete list of cyclic Z

(p)
module summands, but no information on their orders. Using this

. cL . , . 3,%
list it is easy to see that 606162(v3) # 0 in Ext (BP*,BP*L

This implies the result of E. Thomas and R.S. Zahler [13] that
71 # 0 in nf.

In a following note with D.C. Johnson and R.S. Zahler we
describe this technique in more detail and use it to show the

nontriviality of a sporadic but infinite collection of yt's.

S

‘ a
Acknowledgement. Raph Zahler first noticed that él(vzp )

s—
is divisible by VE l. This result helped stimulate our

interest in Extl and we would like to thank Raph for bringing

it to our attention.
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AN ALGEBRAIC VERSION OF THE INCOMPRESSABILITY
THEOREM OF S. WEINGRAM

John C. Moore

In his paper "On the incompressability of maps" ([14]),
Weingram defined a map f : X—=Y to be incompressible if it is
impossible to factor £ up to homotopy through a finite complex.
He then proved that if X is Q(Szn+l), n>0, Y is K(m.2n)
where g is a cyclic group, and f is essential, then £ is
incompressible. An easy application of this result obtained for
him the theorem of W. Browder to the effect that if G 1is an
H-space whose singular homology thinks it is a finite complex,

then the Hurewicz morphism (g)—=H_, (G) 1is zero for n>O0.

"on 2n

The object of this paper is to show how to prove similar results

with appropriate coalgebras replacing spaces.

1. Notation and Conventions

Throughout this paper the ground ring R will be Z%p)'
the integers localized at the prime p. Module will mean
R-module, coalgebra will mean supplemented differential graded

algebra over R.

If C is a coalgebra, Q(C) will denote its loop algebra,
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i.e. the algebra obtained by applying the "cobar" construction
to €. If A is an algebra, then B(A) will denote the classi
fying coalgebra of A, i.e. the "bar" construction applied to A.
The notation is in accord with usual notation, e.g. [1], [2].

For n>0, let s% denote the exterior algebra with primi-
tive elements having l-free generator by in dimension n.

1 . \
Observe that Q(Sn+ ) is-a tensor algebra with l-generator

. . s 1
in degree n, taking this to be primitive, Q(Sn+ ) becomes a

Hopf algebra and there is natural imbedding of coalgebras

j_ s® —a(s™ly.

2. Construction of an incompressible morphi.sm

Our next objective is to construct an algebraic substitute

for K(m,2n) where g is cycliec. To this end suppose that

2n- . . . . . v s
n>0. 1 Now 8§ n-1 admits a unique multiplication making it into

g2n-1 2n-1

a Hopf algebra. Since is an algebra B(S ) is

defined, and it is the tensor coalgebra with primitive elements

having l-free generator ¢({ ) the suspension of

2n-1 Lop-1"

" 2n-1 ) - )
Since S o 1s a commutative algebra B(S2n l) 1s Hopf algehlra,
As an algebra it is the algebra with divided powers generated by

oL ).

2n~-1
For meZ, m>O0, there is a unique morphism of Hopf alge-

.S2n—l SZn-l m

bras fm : such that fm(LZn—l) =p LG_l. The

next step is to make £, into the inclusion morphism of a
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o . ‘
fibration. Hence let W(S o ) . be the bundle space of the uni-

2n-1 2n-1 :
versal bundle with fibre S and base B(S ). Thus
2n-1 . : - 2n-1
W(s o ) is a twisted tensor product, Sz.n 1®TB(S n ) , where

the twisting morphism 7 is characterized by T(U(LZn_l)) =

bon-1" Now indeed W(Szn_l)- is a Hopf algebra having commuta-

tive multiplication and commutative comultiplication. Notice

that there is a canonical imbedding of Hopf algebras

g 20wy rer B0 - 2" leuw(s®™ ), and let
?m : S0l e the composite morphism
SZQ 1 A SZn 1®_Szn 1 m 2n-1 SZn ]_.®w(82n l) - §2n l.

There is a commutative diagram of Hopf algebras

a2n-1
¥
m
S2 n-1 h
K
m ) .
SZp-l

o . , . . -1 .
where h 1is projection on the first factor. Now ,§2n consid

ered as an SZn-l module {Jia'?m is free. Let A(2n-l1,m) be

the cokernel of 'fm “in the category of abelian groups over the

category of commutative coalgebras.  Thus A(2n-1,m) =

~2n"l .
R® 2r1_]_S is bicommutative or abelian Hopf algebra. The

S
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algebraicsubstitute for K(R/me,2n) is B(A(2n-1,m)).
An algebraic substitute for the fibration sequence
m

K(R,2n) L-K(R,zn)—-K(R/me,zn)

is also needed. This is essentially‘the sequence

B(T)
B(Szn-l) m_ B(gzn“l)——og(A(Zn-l.m))-

of abelian Hopf algebras,

(*) In order to avoid technical difficulties it will be
assumed that in the rest of this paper all algebras and coalge~-
bras have underlying R—modules_which are flat and that they are
chain equivalent over =R to coproducts of elementary comple—

xes. (*)

2.1 Definition. The morphisms of coalgebras fo,fl : C'—C"

are homotopic if there exists a coalgebra D and morphisms of

coalgebras Lot :C'—»D, 7 : D—»C', and F : D—+BQC" such

1
that
1) 7 is a chain equivalence,
2) Ty = 1o, = mL,. and
3) Bl(c )fo = FLO and B(c )fl = FLl, where
B(cm) : C'—=BO(C") is the canonical chain équivalence.

The morphism £ ;C'—wc"  ig incompressible if £ cannot
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be factored up to homotopy through a coalgebra C such that for

some integer N, Hg(C) =0 for g>N.

2.2 Theorem. If n, mE %, n>0, m>O0, then any morphism of

algebras g :Q(Szn+l)——»B(A(2n—l,m)) is a morphism of Hopf alge

bras, and if such a morphism has the property that H2n(g);£0

it is incompressible as a morphism of coalgebras.

1

§2n—l) considered as a B(Szn-u)

Proof. Observe that B(
module via B(?m) is free. Thus if C is the cokernel of
B(?m) as morphism of abelian Hopf algebras, the sequence

2— ~, -
B(S n l) B(S2n 1

y—=C has a Serre spectral sequence such that

one can repeat the calculation of Weingram ([4]) for the fibra-
. m .

tion K(Z,2n) —K{(Z,2n)—=K(Z/p Z,2n) The morphism

c—B(A(2n-1,m)) is a homotopy equivalence of coalgebras and is

, . . 2n+l , .
surjective. Further since Q(S ) is a tensor algebra with
one primitive generator, one vérifies reédily that any morphism

g as above lifts to a morphism g :Q(Sszr]‘)——>B('§2n_l

) of
abelian Hopf algebras. The proof of the theorem is now easily
completed exactly by Weingram's method.

It remains to discuss applications of this result. No

proofs will be given during this process.

3. Discussion of factoring the incompressible morphism

A homotopy commuted coalgebra C 1is a coalgebra C to-
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gether with a morphism of algebras Q(C)—=Q(C)® Q(c) which
gives Q(cC) the structure of a Hopf algebra. Morphisms of homo
topy .commuted coalgebras are defined in the expected manner.

It will be shown elsewhere that.if A is a connected Hopf
algebra, then B(A) is in a natural way a simply connected homo
topy commuted coalgebra. This results‘in an adjoint relation-
ship between the category of simply connected homotopy commuted
coalgebras and the category of connected Hopf algebras given by
the functors Q( ) and B{ ). The techniques used are exten-
sions of those used earlier ([1]).

If X 1is a differential graded R-module, with XO = 0, and
X free, let T'(X) denote the connected Hopf algebra whose
underlying coalgebra is the tensor coalgebra of X, and whose
multiplication is the shuffle multiplication. If A 1is a con-
nected Hopf algebra there is a natural bijection between the
morphisms of differential modules Q(A)—sX and the morphisms
of Hopf algebras A-—T'(X). Thus for C a homotopy commuted
coalgebra there is a natural bijection between the morphisms of
differential ﬁodules of degree -1, ¢—+X and the morphisms of
homotopy ;ommuted coalgebras C BT'(X) .

Let S'(X) denote the standard commutative subcoalgebra of
X for X as in the preceding paragraph. Now S'(X) has a
Hopf algebra structure such that it is a sub Hopf algebra of
T'(X). 1Indeed as an algebra S'(X) is just the algebra with

divided powers generated by X. If A is a connected Hopf alge
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bra with commutative diagonal, then any morphism A-—T'(X)
factors uniquely through §'(X). Thus if C is a homotopy com-
muted coalgebra such that q(C) has a commutative diagonal,’
there is a natural bijection between the morphisms of differen-
tial modules of degree -1, C—=X and the morphisms of homotopy
commuted coalgebras C—=BS'(X). Any commutative coalgebra C
has a natural homotopy commuted coalgebra structure. Using this
structure (C) 1is primitively generated. Notice that

2n+l .
(8 o+ ) has a commutative coalgebra structure and thus there

is a bijection between the morphism Q(Szn+l)——»x of degree -1,
and the morphisms of homotopy commuted coalgebras

2n+1 . .
f y—=BS'(X). Now if C is a homotopy commuted coalgebra,

let aA(C) denote the Hopf algebra obtained from ((C) dividing
by the commutator ideal. Now any morphism of Hopf algebras
(C)y—=T' (X) factors through QA(C). Notice that Qn(c) =
QMA(C) = s—l(J(C)) where J(C) 1is the augmentation coideal of
¢, and s_l(X) is the desuspension of X for any differential
module X. If X is such that Xq =0 for qgq>2n-1,
g = -1 mod 2n, then any morphism of homotopy commuted coalgebras
;82n+l-—~BS'(S) is a morphism of Hopf algebras.

Suppose now that G 1is a simply connected Hopf algebra
whose coalgebra is homotopy commuted. One verifies easily that
if G—»X 1is a morphism of degree -1, which annililates the

square of the augmentation ideal, then G—BT'(X) is morphism

of Hopf algebras. Further in this case if QB(G) 1is the Hopf
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algebra obtained from G as indicated earlier, £hen QB(G) has
a homotopy commuted diagonal. It then follows that any differepn
tial morphism of degree -2 B(G)—>X induces a morphism of
Hopf algebras with homotopy commuted diagonal QB(G)—=BT'(X).
Suppose that X is such that Xg =0 for g # 2n-1, 2n,

is free with basis x, X is free with basis y and

X2n—1 2n

dy = pmx. Now S'(X) 1is the Hopf algebra A(2n-1,m) of the
preceding paragraph and the morphism of Hopf aigebras
S'(X)—=T'(X) has a canonical retraction of abelian Hopf alge-
bras BT'(X)—+=BS'(X) of the natural morphism BS'(X)—=BT'(X).
However for m> 0O this retraction is not a morphism of coalge-
bras which are homotopy commuted.

Suppose now that G is a Hopf algebra with homotopy com-
muted diagonal and that G is simply connected. Suppose further
that Hg(G) =0 for g>N for some integer N. The preceding
considerations combine to imply that if QSzn+l—f—G is either
a morphism of homotopy commuted coalgebras or a morphism of alge
bras and Hg(G) = 0 for O<g‘5n then H2n(f) = 0. Thus if
N, is the first strictly positive integer such that HNO(G) #0,
then NO is odd and Hg(G) =0 for g even and q<2NO.

PRINCETON UNIVERSITY
October 1974
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DIEUDONNE MODULES FOR ABELIAN HOPF ALGEBRAS
Preliminary Report in Honor of

SAMUEL E ILENBERG

(*)

Douglas C. Ravenel

By Abelian Hopf algebra we mean graded connected biassocia-.
tive strictly bi-commutative Hopf algebra of finite type over a
perfect field k of characteristic p. Let A denote the cate
gory of sucﬁ objects. A is known to be abelian ([12]) and our
purpose here is to show that it is isomorphic to a certain cate-
gory of modules. An analogous theorem for the nongraded case
was proved long ago by Dieudonné&, and the modules that he used
have been studigd extensively (see [{1], Chapter v, and [4]). VI
am grateful to Bill Singer for first bringing this work to my
attention and suggesting the problem of carrying it over to the
graded case.

The ring D 1in questioﬁ is a noncommutative power series
over W(k) (the Witt ring of k) in two variables F and V

subject to the relations

FV

1
<
]

I

T

Fw

"
£
=
g

i
£
b}

*
( )Research partially supported by N.S.F.
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for we¢W(k), where w® denotes the action of the Frobenius
automorphism of k 1lifted to W(kj.

In our case we will obtain modules over a commutative graded
ring E = W(k)[[{F,v]}/(FV-p) where dim F =1, dimV = -1. F
will be seen to correspond to the Frobenius endomorphism of a
Hopf algebra A which sends x¢€A to XP, while V corresponds
to the dual of F, commonly known as the Verschiebung.

The relation between abelian Hopf algebras and E-modules

will be described in Theorem 3" below, which is our main result.

Our first result is a decomposition theorem.

Definition. Let n be an integer prime to p. An Abelian
Hopf algebra is of type n if each of its primitives and gener-
. . i .
ators has dimension np for some i. Let TnAc:A denote the

full subcategory of type n Abelian Hopf algebras.

Theorem 1. There is a canonical categorical splitting

e

TnA, i.e.
(nlp) =l—

a) Every Abelian Hopf algebra is canonically a‘direct‘
product of type n Abelian Hopf algebras.

b) There are no nontrivial maps between a type n Hopf
algebra and a type m Hopf algebra for m # n;

¢) Moreover, TlA = TnA V n

Such a decomposition is well-known for the Hopf algebra

H, (BU;k) (see [3] for example) The general decomposition is
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established by showing that the endomorphism ring of H_(BU;k)
acts canonically on any abelian Hopf algebra. Part (b) follows
from the fact that a Hopf algebra map sends primitives to primi-
tives. Part (c¢) is trivial.

We now construct a set of projéctive generators for TlA'

Let Bn<5§_ be k[bl’bZ""’bn] with dim bi = 1 and coproduct
¢bi = S+§;ibs®1%: where bO = 1. Let Wn be the type 1 factor

of B n” It is a polynomial algebra k[wo,w
P

l,...,wn] with

dim W, = pl. The coproduct is obtained lifting to W(k) and

m m-1i
defining the Witt polynomials fm(w) = Zplwi , O<m<n, to
)

be primitive.

Theorem 2. 'Wn is a projective object in A, and its dual

* .
Wn is therefore injective.

Proof. Let Sr be the simple object k[xr]/xg, dim X =r.
Any Abelian Hopf algebra can be built up out of these simple
objects by multiple extensions, so it suffices to show
ExtA(Wn,Sr) =0 r, which is a simple calculation.

Now let W c:TlA denote the full subcategory whose objects
are the Wn' Let FW denote the category of contravariant
functors from W to the category of finite W(k) modules.

This category is abelian. We define a functor

D:T,A—FW
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by

Q(A)(Wn) = HomA(Wn,A).

Now we can state our main result:

Theorem 3. The functor D defined above is an equivalence

of abelian categories.

The proof is analogous to that of Theorem Vv, §1,4.3 of [1].
Theorem 3 can be described in a more useful way by analyzing

the structure of W. Let V :Wn_l(—>Wn be the inclusion and

n
let F :W —W be defined by F (w,) = wP . Note that
n n+l n n' i i-1
= = " h
VnFn—l ann+l P Then we have

Lemma 4. The endomorphism ring of Wn is W(k)/pn+l and
these endomorphisms along with the Fn and Vn generate all of

the morphisms of W.
Hence Theorem 3 can be paraphrased as

Theorem 3'. A type 1 Abelian Hopf algebra is characterized
by a sequence of W(k) modules Wn(A) = Hom(Wn,A) and- maps

F :W (A)—W () and V_ :W (A)—W (A) where V F . =
n n n+ n n n . n n

1 -1 -1

ann+l = b

If we identify fe;Wn(A) with the element f(wn) €A, we

. = p i
have (an)(wn+ ) f(wn) €A, i.e. Fn corresponds to the

1

Frobenius endomorphism of A, while Vn corresponds similarly
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to the dual endomorphism, i.e. the Verschiebung.

To make this more concise let Eg denote the where AO is

projective and A is polynomial. (If A 1is not finitely gen~-

1

erated, one can still construct and Ao and Al but they need
not be of finite type).

This is a consequence of

Theorem 6. Exti(B,A) =0 for all A iff B 1is polyno-

mial.

We will conclude by identifying some well-known Hopf alge-
bra functors with standard functors from homological algebra.
+

It is convenient at this point to embed E, in E, the full

category of graded E-modules and maps of all degrees. Hence for
M, N¢EE, HomE(M,N) is also an E-module. Moreover, if N is
nonnegative and M does not have any generators in positive
dimensions then HomE(M,N) will also be nonnegatively graded.

befine modules P = E/VE, R = E/FE.

Theorem 7. Let Ae;TlA. Then HomE(P,C(A)) is isomorphic
to the abelian restricted Lie algebra of primitives of A (where
F corresponds to the restriction), and Exté(T,C(A)) is isomor

phic to the abelian restrict Lie coalgebra (with V correspond-

ing to the corestriction) of decomposable elements of A,

The functors Exté(P,C(A)) and HomE(R,C(A)) are the

functors B and § respectively defined in [6] and also in [5]
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§3. Hence an extension in TlA induces six term exact

sequences relating these functors as-was.shown in [6]. (Note
that Ext;(P,—) = Ext;(R,—) = 0). It is evident that the con-
necting homomorphisms of these sequences must be E-module maps,
i.e. they must preserve the restriction and corestriction res-
pectively. Hence the argument of 4.10 of [6] (which leads to

contradictions of Theorems 2 and 4) is incorrect.
COLUMBIA UNIVERSITY
N.B. These results were also obtained by C. Schoeller, "Etude
de la Categorie des Algebres de Hopf Commutatives Connexes sur
un Corps", Manuscripta Math. 1(1970),-133—155.
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THE ¢ SEQUENCES IN THE STABLE HOMOTOPY OF SPHERES

Larry Smith

Recollections

Let p Dbe an odd prime and V(0) = Soupel the stable

Moore space for p. There is a fundamental map

o :.5°P 2y (0)—>v(0)

introduced by Adams [1], Toda [8], and Yamammoto [9] which was

used by Toda and Adams to define non-zero elements of order p

]

o €l (po1)-1
by the composition
2t(p-1) t
5“5 Py (0) —2—v(0)
include bottom cell ' collapse onto p cell
S2t(p-—l) Sl
%

If we let V(1) = V(O)lJacSZP—ZV(O) be the mapping cone of ¢,

then for p>3 there is a basic map [41]
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2

g : s°P "Zy(1)—ev(1)

and for p>3 the elements

g, em
€ 2e(p®-1)-2p

defined by the composition (N.B. the cell structure of V(1) is

(0] 1 2p-1 2p
S e e e
Up Ud Up )

2 t
SER -y B vy

have been shown to be non-zero and of order p for all t>0
[41].

The spaces V(0), V(1l), etc., and the maps «, g etc.,
have a natural origin in complex cobordism theory. Specifically,
recall that QE(X) is the bordism module {6] of singular weakly
almost complex manifoldé on X. The coefficient ring QS of
bordism classes of closed weakly almost complex manifolds was

determined by Milnor and Novikov who showed

U
Q, =% [x,,x pee]r|x = 2k.

4 2k'

For each prime p there are polynomial generators
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2 i-2 U
X = [V P Jen i=1,... called Milnor manifolds

2pt-2 2p -2

!

that play a very special role throughout the theory. (N.B.
Milnor manifolds are not unique, but are sufficiently character-

ized by the characteristic number conditions

i
cE[V2p -2] = Omod p all E
i
c gy [V2p _2] = +p mod p
A
p-1

. In addition to the examples of such manifolds in [6] we note

that the hypersurfaces

2,(p) = {tz1eep(nin) |20+ ... 422 =0}

are Milnor manifolds whenever n = pl-l.)
The spaces V(0) ,V(l),... arise naturally when one con-

siders the question:

(*) What cyclic QE modules can be realized as ﬁU(X) for

some finite - cw spectrum X?

1

To make a long story short the cyclic modules

. n
v(n) = al/(p, (VPP L vPP Py

are fundamental in this connection. Clearly



188
V(o) =W (v(0)

and one way to characterize o f[4] is

2p-2 2p-2

a, (T

*

1) = [v ]

so that -
T (v(1) ~v(1).

Let me quickly sketch the proof of [41] that o # 0¢ H2t(p 1) -

Introduce the diagram

2t(p l) g2tp-1) g, o

Assuming o = O implies the existence of the dotted map £.

Applying QE( ) to the diagram and chasing around leads to the

conclusion
2p-2 s U
o # [v?P2 b ¢ Im{n*——n*}.

This however is impossible as ] is a finite group and

2t(p-2)
QE is torsion free. Thus oy # 0.

Likewise the map

2
2P =24 (1) —ev(1)

p : S
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may be characterized.by

2 2
2p -2 2p -2 ~U
8,=°F ™1 = (v°P TT1el, (v .
The proof that Bt # O¢€ ns 9 depends on a knowledge of
2t(p -1)-2p

the Hurecwicz map

12 (v (%) —=ay (VC8)

2p-i and proceeds as for the proof of

o . 1
where V(¥%) =S U e U e
P o
the non triviality of o, -
Notice that in this context the maps

t,
d(t) =52t(p—l)__g_1‘_v(o)

2 t,
ﬁ(t) L2t -l _B 3, Gy

are fundamental; they are characterized by

s2t(p—l) (t) 2p-2

C re ] = [V ]te?z‘ff(V(O_))

2
-2
V2P

r

. 2
2t(p -1 t
2EETD g0

t _~U
1 eq, (v(1))
in.the usual notations for singular bordism.

In many ways the element ﬁp is anamolous. Namely, if one

consults Toda's tables one finds an element cp L+ and
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ﬁp = gp 1 at least up to a non-zero multiple because the p
component of ns 5 is cyclic of order p. 1If one is a
2p(p ~1)-2p

homotopy theorist this instantly raises the question of what
role is played by the other ¢'s, namely el,...,ep_2 (For

]

future reference note ¢, €[] s 1 =1,...,p-1.)

2(p-1) (p>+1) -2

The answer lies in examining

m{nf (v (1) —a ' (1))}

where
vi® (1) = conefs® :sz$(P'l)v(0)———v(o)}

The study of

s)

mfr v ) —w v )}

is a natural outgrowth of the iceberg of results about V(0),
V(1l), etc., I have left hidden. As a first approximation it is
clear from the Ballantine lemma [II; Lemma 3.1] that for s <p+l

2
the classeés [V2p -2 (s)

t
1Peal v (1)), t =1,... are the only

ones that stand a chance of being spherical. Moreover when

s = 1, these classes are spherical and are used to define the

elements 0 # B, en®

2(p-1) [ tp?+(t-1) prp-1]-2



191

Statement of Results

Theorem 1. For p>3 there is for each r = 1,...,p~1
map

2
5, ;SZP(P “1) (P=r) (1) oy (P7F) (1

such that the diagram

2 A
SZP(p —1)V(p—r)(l) r V(p-r)(l)_

2 ¢
S2p(p -1) r S2(p-r)(p-l)+2

is commutative and

2

2
2 - . - ~ -
(2PPT1 Ly 5y = (v?P ey edl v P ()

-r-1
p )c:QE. (Note that the complex

wheré [M] e ([€P(p-1)]
‘ e25(p—1)+l

U

V(s)(l) has a cell decomposition VSOL&)ellJ s p

o

eZS(p-l)+2_)

Theorem 2. For p>3 there is no map

2
NORIET 0
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2p(p>-1) (0) 2p%-2

such that [S Tas )= [V 1+[D] in 5E(V(p)(l))

for any decomposable [D].

Proceeding as with the ¢'s and g's we introduce for

each p>3 elements

r=1,...,p-1

s .
e.(t) el 5 :
2(p=1)[tp +(t~1)p+r]-2 >0
by the commutative diagram
t
2tp(p2-l) (p-r) by (p-r)
S \ (1) ———v (L
3 c

S2tp(p2—l) g2 (p-r) (p-1)+2
e]‘_,(t)

Theorem 3. Let p>3 be a prime. Then the elements

r=1,...,p-1

S
er(-t) €N

2(p-1)[tp2+(t—1)p+r] £> 0

are non-zero of order p. Moreover

er(l)

]
®

'ap-l(t) - ﬁtp
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Qutline of Proofs

We do the proofs in reverse order.

The Proof of (3). Fix r, t, p and let

and introduce the diagram where the column is cofibration

g7
T,
2
S2tp(p -1) £ V(p—r) (1)

er(t)
s2(p-r) (p-1)42

Supposing ar(t) = 0 gives a lifting g as indicated by the

U (PT) ()

dashed arrow. Letting € QO(V be a generator we see

2 2
g [2EE (BTN g (2202

Let

2
x = vPE) (1 Uy 2t (P) (p7-1)+1

U

and let the image of y in Q*(X) be {¢. -Then we see by fid-

dling with exact sequences
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2p2+2

Ann(¢) I p.[CP(p-1)], ([V Pempt

and so (3]
girth Ann(g) > 3

and hence [3; 5] hom diﬂli,ﬂf(x)2.3-
Q
*

On the other hand as an outgrowth of our study initiaged in
[3] of homological properties of complex bordism modulés, P.E.
Conner and I undertook a detailed study of homological proper-
ties of QS(Y) where Y was a cell complex sith only a few

cells [4]. Now

2
X = SOupeIUSZ(p—r)(p-l)+er2tp(p ~1)+1

is just such a complex and we found for such a complex X that

hom dim UQS(X‘) = 0,1,2 contrary to the conclusion reached above,
: Qg . . :

Therefore the assumption er(t) = 0 must be false. ]
The Proof of (2) Supposing such a map exists one concludes

as in (1) that the composite

2 (0) . .
e . g2P(p -1) A 73 V(p)(l) c , g2P(p-1)+2
représents a non-zero element of ns But Toda has

2
2(p-L)[p]1-2-
shown [7] this group has trivial p component. N
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The Proof of (1l). I do not really have a good proof of
(1), so I will skip the details referring them to [5]

One begins by proving:

Theorem A. There is a map e such that

2
2plp -1) e _ ,(p-1) (1)

commutes.

This is proved by obstruction theory using Toda's tables
and drudgery; and to quote Liulevicius, "It turns out there is
no obstruction to drﬁdgery"

Next we observe that there is a diagram

.
s?5(P~Dy (g 2 v(o)—sv'® (1)
o q
2 (s-1) (p-1) s-1 1
3 s P o (s- )(l)

V(0) — et V(Q) ===V

so we get a map

a, : VP () —v (P ()

and we next prove:



196

Theorem B.  The diagram

2
S2p(p ~-1) € V(p—l)(l)

1 e.'l:‘ lqr
g2 (p-r) (p-1)+2 _ ¢ V(p-r)(l)

commutes.

This is proved by first showing cqre #0 by manipulations
with Toda brackets and then consultation of Toda's tables.

Notice that when r = p-1
2p2—2 p_.U
q el = [V 17 €q,(v(l))

because ep = ﬁp. Using induction we get

2
Theorem C. [SZp(p -1

2
apel = v Py i %@y,

Finally by obstruction theory it is shown that q extends

r€
to vP T (1), m

INDIANA UNIVERSITY
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THE GEOMETRIC DIMENSION OF COMPLEX VECTOR BUNDLES

V.P. Snaith

1. Introduction

In this paper we obtain necessary conditions for the exist-
ence of an n-dimensional trivial real vector sub-bundle of a com

plex vector bundle g :E—>X in terms of some K-theory classes,

*®

Z
2

N n .
[2]. We will use ncE to signify that R x X 1is a vector

e(E). We will work with Real, equivariant K-theory, KR_ (X)
sub-bundle of E. The method and its motivation are described
below.

In [10] necessary conditions for ncE, when E is Spin(k)
bundle, are obtained by studying the homomorphism
KO(BSpin(k))-—-KO(BSpin(k~m)) to obtain necessary conditions in
terms of K~theory tor the lifting of the clas;ifyingvmap
E : X—BSpin(k). In these calculations it is the behaviour of
the exotic Spin representations which is responsible for the
success of the methodf This suggests that there should exist a
constructionrusing Clifford algebras and Clifford bundles.- If.
ncE then C(E), the Clifford bundle of E, has a patural_

Cn = C(IRn), structure. However, if P : V—=X is a Cn vector

bundle and H is the real one dimensional non-trivial represen-
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tation of 2 Clifford multiplication gives an isomorphism

2
V—V®H of 22 vector bundles over the complement of X in

X x nH, so that [V](l-H) ¢ im{xz (X x nH) — K,

(X) = RIXX®R(Z,)}.
; ; 2}

Applying this line of motivation to C(E) we construct a class
¥ o~ % . . _ .

e(E) eK; (E) = KZ (X) which is simple to compute and enjoys the
2 2

* *
property that e(E) ¢ im{KRZ (B an)—'KZ (E)} if ncE, where
2 2

E 1is given the Real involution which sends VEEX to (-v) GEX.
ok *
The image of K, (E x nH) — KZ (E) is well known and this gives
2 2

immediate restrictions on n. Also in the case when X 1is tor-
sion free there exists a straightforward method for determining

* *
im{KRz (E x nH)—»KZ (E xnh)}. Let H be the Hopf bundle over

2 2
k )
FP (F = R,C or M) . We apply this method to the bundles

k

k k .
mHk——CP and mHk——]HP . For the most important case,
k , . ,
E = mHk——IRP , the class e(E) 1s zero. Nevertheless it is
possible to outline a programme for obtaining restrictions on

nc (mH —lePk) . Finally it should be pointed out that the

k
method is stable in the sense that it obtains restrictions on n
such that n+8tt.:E®]R8t and hence restrictions on the geometric
dimension of E [9].

It has been pointed out to me that the method employed here
has been used, in a more sophisticated manner, in {5] to study

tangent k-planes with finite singularities. The accuracy of

§83.13 and 3.15 owes much to the efforts of Don Davis.
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2. The classes e(E)

Let 7 :E—X be a complex vector bundle. The spaces E

and X will be considered as Z_-spaces with trivial action and

2
as Real spaces with an involution which is trivial on X and is
multiplic.ation by minus one on the fibres of E. Suppose that
tﬁe complex dimension of E is 2m. From the real Clifford
bundle, C(E), [1] with respect'to some real metric on E and
let vow denote the Clifford product of v,weC(Ex) , where

E =7 (x) and x¢X. The Clifford bundle C.E) is the quo-

tient of the tensor algebra bundle T(E) = @EQk by the ideal
k>0

generated by (v@v+{v,v)l). Denote by Cev(E) and CO(E) the

-
quotients of @ E® and @ E®k respectively. Now con-
' k even k odd

sider the real exterior algebra bundle A(E) = @)\IlR(E) and
i>0

let vAwWE )\l+J(E') denote the exterior product of v¢ )\l(E)

and w¢g )\J(E) . For v eEx we may form the exterior product map
. *

dV = (va-) ®1C : A(E) ®]RC — A(E) ®]RC and DV = (dv—dv) where

d:: is the adjoint of dv with respect to the natural complex

inner product on A(E) ®]RC. Since D‘zl = -1 the map

D: v—End(A(E) ®IRC) extends to D :C(E) ®]R¢——End(/\(E) ®IRC)

and it is well known [6] that the map B :C(E) ®LC—ME) ® ¢

defined by D(z) = D(z) (L) is an isomorphism of vector bundles

which takes left Clifford multiplication by VEE, to D and

v

satisfies Ti(ce(E) ®1Rc) = Ae(E) ®IRa:, 'B(CO(E) @Rc) =-«A°(E)®Rc_
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Also the complex vector bundle, E, has a natural orientation and
hence a non-zero section f : X—-CO(E) QJRC and for

XeXE(x)of(x) = 1 since, in local coordinates, f£(x) 1is the
Clifford product of the 4m distinct basis elements of Ex'
Deﬁote by C+ and C_ the eigenspaces of the involution on

C(E) ®]RC given by Clifford multiplication on the left by ¢£.

e _ e (o} = (o] e _ e a
Put cS = (C(B) @ €) nC_, c =cnc,c =cnc_ én
C? = Conc_. Let veEx and define
o e 0
: . 8, :C (B )—=C_(E)
by
5,(2@\) = (voz) ®ir(z€C(E); i,Aee and i° =:1).

The same formula defines a Zz—equivariant map 6v :CS ®CH-—Ce®CH
where H is the one dimensional involution representation and
z, acts trivially on C(E). If C(E) ®]Rc and C(E) ®IRH are

given the Real involution which is complex conjugation, (), in

each fibre then

8 (_y) (ZO®N) = (-vez) ® i)

(voz) ® (1)

l

so that § gives homomorphisms of Real vector bundles
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* e * O
6:" C+—"1T C_I

* O * e
4 c+®H——n c_®H

(=]
o

if E is given the Real involution v = -v, (v eEx) . Suppose
now that sl""'sn : X—=E are linearly independent sections of
E. Let (v,yl,...,yn) be a point in the Z2 space Exx nH

with trivial action on the first factor. Define homomorphisms

e
c ——CO®H
+ .+

vy
and
€ :Co——Ce®H .
(V:Y) - -
,by
n,
€ (v,y) 2OV = <Z°[i§lyisi"‘)]>m'
Since . .
e(v,—y)(z®)‘) =€ ’y)(z®)\)
and
e(_vly)(z®>\) = e(v,y)(z®>‘)

¢ gives homomorphisms of Z2-equivariant, Real vector bundles

over E x nH,
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* e * 0 * 0 * e
e C+—.1r C+®H and e:m C_—ey C_®H.

The § and ¢ homomorphisms commute, being left and right mul-
tiplication in a bundle of algebras and we may combine them into

the following complex of Real Zz—vector bundles over E x nH,

(2.1) o——cfr c?scS®H—-cf®H —0.

(616) -e
(6)
The complex (2.1) is exact whenever either one of § or ¢

is, which happens when (v,yl,...,yn) # 0.

The complex (2.l) represents an element in KRZ (E x nH) .
2

Definition 2.2.
(i) Let E Dbe a complex vector bundle of complex dimen-

sion 2m. Define e(E) ¢ K. (E) to be the element

%

represented by the éomplex (2.1) with n = O.
(ii) Let E' Dbe a complex vector bundle of dimension

(2m+1) and put E =E'®(XxC). Define

~

(E®2H) = KZ (E') to be the element repre
2 2

e(E') EKZ

sented by the complex (2.1) with n = 2 and s s

1 72
given by the canonical sections of Xx€. From the

preceeding discussion we have

Proposition 2.2.

(i) If ncE and dim E = 2m then . .
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e(E) € im KRZ (E x nH)——KZ (E) .

2 2
(ii) If ncE' and dimCE‘ = 2m+1l then
e(E") ¢ imfkr, (B' x€x (n42)H) —K, (E' x€ x28)}.
Z 2,
2 : 2
We now proceed to the determination of e(E) and e(E')
in the following manner. Firstly we observe that the complex
(2.1) may be defined for any complex vector bundle E using
2
¢ = 0 and using eigenspaces obtained from (i)t f:X—-CO(E) ®IRC,

(t = dim E). This complex represents an element e(E) GKZ (E)
2

which will not in general belong to im{kRZ (E)——oKZ (E)}. Also
2 2

this characteristic class e(E) 1is easily seen to satisfy
e(E1}9E2) = e(El)-e(Ez). Since the orientation of complex vec-
tor bundles is préserved under maps of complex vector bundles
e{(E) is a natural exponential characteristic class on complex
vector bundles and can be evaluated for a line bundle over CPt

and. then calculated. by means of the splitting principle.

Proposition 2.3. 1In

n

2[H, ]
K(ee®) ®r(z,) = t— o ZgHJ
2 (Ht—l) (H"=-1)

_ -1
e(H,) = 1@H-H_ ®1.
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proof. Since Ht = (82t+2 xc)/; , Wwhere (z,v)~(zX,Xv)

2

()¢ Sl;vec;z € 82t+ ), it suffices to consider the exterior com-~

plex of the real vector space Ig = Cl

, . cos sin 2
on which Sl acts via matrices ( . 0 6 on .C and
. . ~sin 8§ cos 8 :

trivially on the other vector spaces. Left Clifford multiplica-
. e o . . * . ,
tion, A —A , is given by a+4f . At the point v = X +ix, =
2 ' .
(xl,xz) €R, @« and B are given by

X .
1 : .

a(1) =<X> and  Bly,.¥,) = X¥,=%Y,
"2

from which left multiplication by v is seen to be

X X
1 2 e 0
: A —=A .
¥ 0™
Let e, = (1,0) and e, - (0,1) then we must find the eigen=-

spaces of 7t = i(eloezo—) :Ae-—.Ae. It is easily verified that

- 1) e - (1) e -
e1 = (i € A+ and e2 = \-i € A_ are the basis elements from

*
which it follows that the homomorphism o+ :Ae——.Ao of Sl

vector spaces splits as the sum of

. (ve)
(2.3.1) (A —12% = 0—¢ ——=¢c—o0
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and

(v. )
(2.3.2) (Af——AS) 2 0—e@ ———= C —0

where ) € Sl acts as X on the right hand term of (2.3.1) and

as )\ on the right hand term of (2.3.2). Upon quotienting out

-1

-1
o AHED),

the Sl action (2.3.1) becomes the Thom class of H

which is (-H;l)A(Ht)egK(Ht) and. (2.3.2) becomes A(Ht), the

Thom .class of Ht' The result now follows from the fact that

the complex (2.l) represents the element
0 e 0
(A5 —=AD) @ 1+(A° —1) @1

Corollary 2.4. If E “is a complex vector bundle (dimCE=@

then e(®) = (-1 (L(E) (A% () ® 1-A%(8) ® K] in
Kzz(E) = K(X) ®R(Z,) , vhere Ae(Eni:xziE and £O(E) = >i:xii+1E-
Proof. Thom classes and the classes e(E) are both expo-
nential. Thus the result follows for E = § L;,, a sum of lines,
1

from the expansion

e(E)

I

I 1®H¥L;l® 1)

1

I

(rILi )H(Li® H-1®1)

1]

(-1) *(rg(8) 0% (2) ® 1-0%(m) ® H].
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The general result now follows from the splitting principle.

Lemma 2.5. The element obtained by putting E' = 0 in
Definition 2.2 (ii) is (up to sign) the Thom class in

K, (Xx€x2H) = K(X) ®R(2Z,) .
Z, 2

Proof. The element e(0Q) is represented by a complex of

Zz—vector bundles over € x2H of the form

(2.5.1) o—¢ﬁeAf—JL*A?@@—*o

where, over (u ,u2) €C x 2H,

1

(—oul) i(uzo—)
(iu,°0-) (a,0-)
Hence ¢(u1,u2)*w(ul,u2) = “ulu2”2 and the complex (2.5.1) is,

up to sign, that obtained from the action of ¢

e
4 ©On AC(C ).

which is the construction of the Thom class [e].
Combining the results of §§2.2-2.5 we obtain:

Theorem 2.6. Let E be a complex vector bundle over X

with dimCE = t. Let A(E) ¢ K(E) be the Thom class.

Suppose that ncE then

(i) if t 1is even
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05 Em) T ) @ 1-1°(8) @ HAR)
is in
im{KRZ (E x nH) —K,_ (E)}
2 2
and
(ii) if t is odd
() 710 (8) @ 1-1°(2) @ HIA(E) - A(€) - A(H @, €)

is in

im{KR (ExC x (n42)H)—sK_ (E xC x2H)}.
22 22

(In (i) and (ii) the spaces E and E x€ have the Real involu-

tion which is multiplication by minus one in each fibre.)

3. The torsion free case

In this section we consider the image of the complexifica-

* * *
tion, c :KRZ -——KZ , in the case when KZ is a torsion free
2 2 2

group and we apply this to‘determine the image groups in Theorem

2.6 for bundles mHt——CPt and mHt—-]HPfT.

Throughout this section liberal use is made of the Thom

isomorphisms for KR, -theory for which the reader is referred
2

to [3 and 4].°
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* *
It is convenient to consider KRZ and KZ as being
2 2

*
Recall KR (pt) = Z[‘nl,‘ﬂ4]/I where deg 1,

]
1
[N

graded by Zg -

. . , 3 2

and I is the ideal generated by 20y My T]l’q4 and ’q4—4.
*

Also K (pt) = z[uz]/(g,;—l) where deg p, = -2 and c(f,) =

rP4

= Zg,;. Put = R? @ BP, considered as a Real space with

Z

* *
involution r(vl®v2) = .vle (—v2) . L:et r: KZZ(X)——KR 2(X)

denote Realification. Let X be a Real space with involution,

T.

* ) .
Definition 3.1. Let KZ (X) Dbe a torsion free group. A
-2

* . - *
(M+€BM_®T®T ) ®K (pt) will be called

i

*
decomposition KZ (X)
2

a *-decomposition if * acts like (+4+1) on M+, (-1) on M

' * * *
and interchanges T and T . Here X denotes ¢ (x).

Proposition 3.2 [11].

* *
(1) Let K, (X) = (M _6M_8T®T)@K (pt) be a *~decom-
2

*
position. Assume given elements hl' e 'hn ¢ KRZ (X)
2

such that c(hl) ye e ,c(hn) is a basis for the
* * *
K (pt) -module, K (pt) ® (M+®M_) . Then, as a KR (pt-

* *
module, KRZ (X) = FGBr(KZ (pt)® T), where F 1is the
2 2

*
free KR (pt)-module on -hl""’hn'

(ii) 1f, in part (i), K;l(x) = 0, then there exists homo-

even

Z

geneous elements h.,... ,1'1rl € KR
2

1 (X) as in the

assumption of part (i).
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Remark 3.3. In ¢ :E—X is a complex vector bundle and
* * *
K (X) 4is torsion free then KZ (E x nH) and KZ (E x € x {n+2)H)
2 2

are both free of torsion. Hence the images of

c .
KRZ2(E X nH) ——KZ2(E X nH) ——KZ2(E)

and

KR, (EXx ®r>"© x (n+2)H) —-i—KZ (E xC x (n+2)H) —K_ (E X € x 2H)
2 , 2 2
can be calculated, using Proposition 3.2. In order to épply Pro
:position 3.2 it is necessary to know which elements are in the
image of'the complexification homomorphism, <. For example, in
Proposition 3.2 (ii), if x¢ Kor]M+' we need to know which one
of x and x-ui is in im(c).
_The remainder of this section will deal with the applica-
t

tion of the method to mHt———CPt and mHt-—vlu’.

Lemma 3.4. Let ¢ :L—X be a complex Zz—line bundle.
Suppose the space L has Real involution which is either trivial

or multiplication by minus one on fibres, then

* -1
An) = (-L )A(L) €K, (L) .
2

Proof. The Thom class is‘represented by the complex

O—sp* (X xC) —4. p*(L)—0
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where d, over v'eLx, is multiplication by v. Hence the

*-operation gives the Thom complex of [ = L-1 and L-A(i) =

= (-A(L)) .
Corollary 3.5. For g :E = mHt——-CPt the *-operation is

described as follows:

(1) x; (E x 2rH)
2

]
@]

n

KZ (E x 2rH) Z[Ht]/(Ht-l) t+l®Z[H]/(H2—l) , and

2

-j-m
mr =]

r
¢ OSuH.

(mew " = (-1
(ii) Ké (E x (2r+1)H) = 0,
2

o} (o}
KZ (E x(2r+l)H)——<--KZ (E x2rH) 1is a monomorphism
2 2

which commutes with * and has image

k2 (E y 2rH) - (H-1) .
Z2

Also

(0]
Ky {E x (2r+2)H) —-K(ZD (E x (2r+1) H)
2 2

is onto.

Proof. The statements about the gfoups and homomorphisms
are to be found in [2, pp. 105 and pp. 102]. The calculation of

* follows from the facts:
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0, t . R |
(a) HteK (cPp) satisfies Ht = Ht .

(b) the Thom class of E x (rH ®]Ra:) is
m r
A(Ht) A(H®]RC) .
(e) Hi@w corresponds to (Hi@w) *A(E x (rH ®IRC))

and  * is a ring homomorphism.

Corollary 3.6. For g :E = mHt——]HPt the *-operation is

described as follows:

(i) K. (B x2rH) = o0,
%2

e

Kg (E x 2rH) Z[Ht]/(Ht-—Z)t+l®Z[H]/(H2—l) and

2

(x® w) ¥ (—l)rx®er.

(ii) K; (E x (2r+1)H) = O,
2

(6]
kO (E x (2r+1)H) —K° (E x 2rH)
Z, 2,

is a monomorphism which commutes with the *-opera-

tion and has image KCZ) (E x 2rH) » (H—I) . Also
2

KCZ> (E x (2r+2)H) —K° (E x (2r+1)H)
2 ZZ

is onto.
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Proof. The Real maps

m( ) —= mH

Her1™ e

l |

2t+l t
CcpP +

~———1RP

t

induce monomorphisms.

From Corollary 3.5, we obtain the *-decompositions of

Kg (mHt x nH) which are set out in the table below for
2

.t . R
mHt €P . Firstly we need some notation. Put

T, (a,b) = {Hg_uQWIWGZ[H]/(Hz-—l), asjgb},
T,(a,b) = {Htj:—u® 1; a-sj_<_b} and
T(a,p) = {£7@(1-m; acj<h}.

In the following table the *-decomposition of KZ (mHt x (2g+1) H)
2
is described in terms of its image in K (mH,t X 2gH) .

%
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TABLE 3.7
o] t
*-DECOMPOSITION OF K, (mH, x nH) FOR mH —-CP
2
m t n M, M_ T
2u 2s 80,840+4 H;u®w ) T, (1,8)
2u 2s 84+2,82+46 0 0 T2(—s,s)
- 2s+1
2u 2s+1 | 84,84+4 Hy ®w (l—Ht) ®w Tl'(lIS)
2u 2s+l | 84+2,84+6 0 o} T2(—s,s+l)
2usl | 25 | 84,8044 0 (1-Ht)25®w T, (0, 5-1)
2u+l | 2s 8442 ,84+6 0 0 T2(—s,s)
2u+l | 2s+1 81,8X+4: 0 [¢] Tl(o,s)
2utl | 2541 | 84+2,8446 0 0 T, (-$-1;3)
2u | 2s odd B, ® (1-H) o T,(1,89)
-u 2s+1
2u 2s+1 odd H, ® (1-H) (l-Ht) ® (1-H) T3(1,S)
2utl | 25  odd 0 (1-Ht)23®(1—n) T,(0,8-1)
2u+l| 2s+l odd 0 0 T3(O,S)
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The following table gives generators for the *-decomposi -

t
tion of Kg (mHt x nH) for mHE——~IH>. We use the same conven-
2 .

tion as in Table 3.7 about the repreéentation of elements when

n 1is odd.

TABLE 3.8
o t
*~DECOMPOSITION OF KZ (mHt X nH) FOR mHt-—blHP
2
n M+ M_ T
8442 ,88+6 0 o [H®l(0<igt)
82,84+4 BHl@wo<ji<t) | o o
odd Hg@(l—ﬂ)(os i<ty | o 0

We now determine in which dimensions (modulo eight) the
elements of M+ and M_ of Table 3.7, 3.8 are real (that is,

in the image of the complexification homomorphism) .

Lemma 3.9. The following elements are real,.

t
(a) »¢ :mHt—-CP :

(1) ug(l-Ht) t@ le K?g(mHt X nH)

2
if n =4 (mod 8) and g+m = t+2 (mod 4)
or n = 0 (mod 8) and Bg+m = t (mod 4).
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(i) wBi-n) @ (1-m) e k2B (mu,_ x nm)
2 t 22 t
if n = 3,5 (mod 8) and gB+m = t+2 (mod 4)
or n=1,7 (mod 8) and g+m = t (mod 4) .
t
(P) :mH HP :
. 2B, .yt - 4B
(1) W, (2 Ht) ®l€KZ2(mHtan)
if n =4 (mod 8) and g+m = t4l (mod 2)
or n =0 (mod 8) and B+4m s t {(mod 2).

' 4
(i) w2P2-m)t@(1-m) e KB imu x on)
2 t 22
if n = 3,5 (mod 8) and g+m = t+l (mod 2)
or n=1,7 (mod 8) and B+m = t (mod 2).

- 2m,
proof. As a Real spaces (mHtI(EPt)-(mHt \CPt Ly - g?™2t
and
-1 4m,4t
(mHt]]HPt)-(mHtIHPt ) = R
and
a,b, ~ a-b
KR{R ) = KR (pt)——K(lRa+b\)
/
is an isomorphism if and only if a-b = O (mod 8). Now the 72, -

2
representations 8H and ]R4®4H have Spin (8)-structures [3]

and hence a Thom isomorphism for KRZ . Hence the results (a) (i)
’ 2
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and (b) (i) follow from the fact that the images of

k2B (m%™ 2ty ) —-K;B( (mHtlcpt) X nH)

Z2 2
and
KB (RM™ AT nh) 3B ((mu_ | RP) x nm)
Z2 Z2 t

are generated, in the dimensions cited, by the elements in the

statement of the theorem. The results for n =3 or 7 (mod 8)
follow by restriction from the cases n =4 or 8 (mod 8). The
results for n =1 or 5 (mod 8) follows by lifting the clas-

ses generators in KR; ((8£+4))H) and KRg (84H) to
2 . 2

KR‘Z1 ((84+5)H) and KR;) ((82+41)H). That this lifting can be
2 2

*
achieved is easily seen by considering the KOZ exact sequernces
2

for the pairs given by unit disc and sphere in the Zz—represen-
tation nH(n =4,5,8 and 9) {2, pp. 106] and using the well-

4
known facts [8] that KO4(1RP ) = Z&azz, (generated by n4 and

. 0 8 ]
T]4(1—H4)) and K(]RP)—Z@Z]_6 (generated by 1 and (l-H8)).

Lemma 3.10. For g : 2th—cI:Pt the following elements are

Real.

(1) H'®1le¢ K‘éu”(zunt x4H) if A= 0 (mod 4).
2
(i) H—u® (1-H) ¢ K;u+x+l

& (2thx1H) if L= 3,7 (mod 8).
2
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I

(1i1) BV@(1-m) e XM 2un xam)  if R
t Z2 t

1,5 (mod 8).

proof. Part (ii) follows from (i) by restricting the Real
elements and Part (iii) follows from (i)- by lifting the Real ele

ments, as in the proof of 3.9. Also the Thom isomorphisms for

the Z2—representations 8H and 1R4®4H imply we need only

prove (i) when £ = O. Let E, = th ®IRC with Real involution
given by complex conjugation. Let E2 = 2th with trivial invo
lution and let E3 = 2th with the antipodal involution in each

fibre. There is a commutative diagram

' o)
KR (E,) ———=K (E,)
1 1
= 21|
o c 0
KR (ElGBEl)—-——K (ElGBEl)
0
KR (E2 $E3)
= 2| %
4u c 4
KR (E3) —— K (E3)
in which the vertical maps are Thom isomorphisms [3]. However

: 2u_-u
@) Ppreserves Thom classes, oe2(|.1,2 H A(EB)) = A(ZE]_) and A(El)

is Real in the top line.

Lemma 3.1l1. For g :mH t——]I—IPt the following elements are
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Real.
2 ' 4m+2n .
(1) T£ n=0(2), po I @1 ¢ k™2  (mu x 20m) (0<2i<t)
2 t z,, t
and
2m+-n+4 23 _23+1 4n+44+2n
Mo (2Ht H ,)®1eKZZ (nH_ x 2nH) .
(i1) If n = 0(2) and ¢ = 41,
27 4me2
W22 o (1-m) € k™20 . x (204e) H)
2 t Z, t
and
2 : 23 23 Am+4
p2m+n+4(2HtJ-—HtJ+l) ® (1-1) ¢ K" 2P (mit, x (2nte) ) .

2

Proof. As usual (ii) follows from (i) by restriction,

lifting of the Real elements. Since Ht is a symplectic bundle,

HiJ is the complexification of a real bundle. The Thom classes
2 4m4-2 )
represented by u2m+nu_®1J EKZm+ n(mHtXZnH), are Real because
2

of the Real equivariant Thom isomorphism theorem for Spin (8k) -
representations [3]. In fact, since it is only necessary to

determine where each Thom class is Real in Kg or in K; , the
2 2

question of determining which of the two possible dimensions

. . \ t+l t
occurs can be resolve by restricting via CPZ + ~— TP and

using Lemma 3.10. Finally the Thom class, which is Real, in

4 .
K (Ht) restricts to pg(z-Ht) eK%(]HPt). Forming products of
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the Real elements described above yields all the Real elements

in the statement of (i).

‘We now compute the elements in Theorem 2.6 for sums of the

canonical bundles over CPt and ZHPt.

Lemma 3.12.

t .
(a) For E =mHt—>:IHP with m> t,

02"e) Tt () @ 1-1%@ H) =
LI 3.2 (m=3) -1
= j;o (J) (1 -2) 72 ® (1-H) .

t
(b) For E = mHt———CP with m> t,

() A% (8) @ 1-0% () @ 1) =

t - . .
- 2 (5 tm " e .
j=o0 :

Proof.

(a) 'This follows from the equations,
(0]
A (B) -A°(E) = (A% (H,) —AO(Ht))'m = (2—Ht)m=oeK°(JHPt)
and

1S (E) +0% (k) = (2+Ht)m.
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(b) Is equally simple.

From 2.6, 3.2, and 3.7-3.12 it is routine to obtain the
following results, for which we will only work through one case.

We use the notation of [7] and [10].

Theorem 3.13 (Davis-Mahowald [7]). Let E = ka—-]HPk.

If, for some s3>0 and O0<e<3,

. k 8
8s+4 (p-m) ~¢ cka ®(HP x R S)

2(k~-m)

modulo 2 if  (k-m) is even

(;{’) = 0 { modulo 22“"“‘)*2"6, if ¢ #0 and (k-m) is odd

modulo 22(k_m)+l, if e = 0, (k-m) odd.

t .
Example 3.14. PFor E = 4kHt——CP + Suppose B8fcE. Notice

that, in any *-decomposition in Table 3.7, elements in M can

P . . 6
only signify the existence of Real elements in KR% or KRZ
' 2 2

and these can give rise ‘to two-torsion in KR(Z) . Hence M can

be ignored when calculating ‘the image of

(0]
¢ : KR, (E x 82H) —kC (£ y 82H) .
Z ' Z
2 2
By Lemma 3.10, M+ is Real in Kg (E x84H) 1in this case and
2

. ~2k *
(im c)c{Ht ®woxax |weRr(z) ,xek) JoxO (5 yotm).
2 z,J S ¥z,
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Also

0 0 ~ O t
KZ2(E X 82H) —szz(E) = K (CP )®R(Z2)

has image

(1-H)4’Kg ® = 2" ert) @ (1-m) .

2

From $§2.6 and 3.12, if 8f2cE then each coefficient of

t . :
> (4.k) 247371y _1)3 ¢ O(ep®)
j=0 ™ ¢

is congruent to zero modulo 242—1. For example,

(ﬁ?) 80 (mod 2t_4(k_1)).

The computation of §3.14 is typical of those required to

prove the following theorem.
t
Theorem 3.15. Let E = pHE——~CP .

If, for some s>0 and ¢ =0

or 1,

' 8
8s+2 (p-m) -¢ cth® (a:Pt x IR S)

then

(ﬁ) = O modulo 2t-m.
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4. Non-immersion results for real projective spaces

In this section I will outline briefly a programme for

obtaining restrictions on the geometric dimension of mHt-—»]RPt.

This programme is speculative in that, although the strategy is
ciear the technical details are not yet optimal. However, there
is reason to believe that the following programme will yield
very efficient non-immersion results. I will describe the

, . t
method associated with ]HPt, although ¢€P could also be used.

]RP4t+3

Let ElEth——]HPt and let E =4pH£—v . Let

2

f:ZRP4t+3——»:HPt be the canonical fibring. Consider the fol-

lowing diagram.

) 1 22 1
*
(4.1) f
0 0
KR, (E, X (n+r)H) ———=KR_ (E_ x nH) .
22 2 o 22 2

Let s.;...,s be sections of E and let s ,...,5‘
1 n 1 1 n+r

be sections of E,. where no relation between the s, and the

si is assumed. The complex (2.1) defines an element, S, of

O -
KRZ (El x hH) and an element, S, of KRg (E
2 2

5 x (n+r)H) . The ele-
ment ¢ (for example, restrictions on the k-divisibility of

k , . . .
Y ¥) may be obtained. The equation g(S) = e(El) and restric-
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tions on y lead to bounds for (n+r) whose efficiency depends

on the efficiency of the estimates of 3, which seems to be very

good (c.f. [7]).

The programme sketched above will be developed elsewhere

[12].

EMMANUEL COLLEGE
CAMBRIDGE
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SOME HOMOTOPY GROUPS MOD 3

Martin Tangora

Introduction

This is a preliminary report of some calculations of the 3-
primary component of the stable homotopy groups of spheres. Oka
has published these groups as far as the 76-stem, and I.extend
the range to 103.

The prime 3 has soﬁe special interest because many of the
powerful new methods do not apply: see the talks by Smith, Toda
and Zahler.

One reason for stopping at 103 is that several difficult
questions arise in the 104-stem: is ﬁ; = 0? 1is BiﬁS = 07?
Another reason is that that range happens to he self-contained
by my methods, which is rather unusual: one so often needs in-
formation from higher stems to settle questions in lower ones.

In the 106-stem another interesting question arises, which
might be thought of as the mod 3 analogue of the ej questiqn
mod 2, namely, is (h2,h2,h2) a permanent cycle in the Adams
spectral sequence? I hope this will be tractable but I do not
have any information yef.

During and after the meeting I had communications from Toda,



228

Oka, and Osamu Nakamura reporting that Nakamura has also calcu-
lated these hométopy groupé, stopping at the same dimension. I
am pleésed to report that our proofs are sometimes different but
our results are always the same.

My original motivation for this work was an endeavor to
prove Toda's "important relation" alpi = 0 by an Adams spectral
sequence argument. I have not had any success, and a helpful
conversation with J. Frank Adams has made me wonder whether it
was a realistic program.

This research was done at Oxford's Mathematical Institute.
I am deeply indebted to the Science Research Council, to the
University.of Oxford, and to Professor Ioan James for their sup-

port and hospitality.
Methods

The results are obtained by means of the classical Adams
spectral sequénce, i.e., for ordinary (co-)homology.

J. Peter May, in his 1964 Princeton thesis, showed how to
calculate the additive structure of the Ez' term, the cohomo-
logy of the mod 3 Steenrod algebra, and he gave the calculation
through the 88-stem. fhose results contain contradictions to
Toda's important relation, but May corrected them and greatly

extended them around 1966, I am greatly indebted to May for

mailing me an extra copy of his unpublished revision, which pre-
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sents the initial tefm of the May spectral sequence mod 3 as far
as the 177-stem. This was the basis for my calculations of the
additive structure of E2.

‘Not having ‘access to May's revision, Nakamura went over
most of the same ground independently, aﬁd obtained the additive
structure of E2 (mod 3) through the 158-stem. I have not
found any discrepancies.

For the muitiplicative structure of E2, including Massey
products (and matrix Massey, or messy, products), I have been
using the mod 3 lambda algebra, as revised and improved by
Bousfield and Kan ([2], especially pp. 101-102). (The original
version [3j had a mistake in sign, and was not well arranged for
calculation.) The usual computational tricks for the mod 2
lambda algebra [l1] carry over to odd primes, mutatis mutandis.
The resulting algebra is too big to use for the additive struc-
ture of E2 but I have found it invaluable in retrieving pro-
ducts.

After the meeting Sholom Rosen wrote me about a new approach
which may be even better for this than the lambda algebra, but
i have not yet put it tb work.

The differentials which are implied by the solution of the
Hopf Invariant One Problem, by Adams' calculations of the image
of J, and by Toda's relation will be taken for granted, and

then all other differentials are obtained independently. This

‘means in particular that I have reproduced all of Oka's calcula-
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tions for stems through 76, and verified his results by arguments
which are in a profound sense essentially the same as his, but
are quite different formally.

Whenever possible I prefer to prove differentials by the

most elementary means: simple manipulation 6f the multiplicative
structure of E2. This requires extensivevknoﬁledge of that
structure. I often resort to Moss's theorems but rarely if ever
to Steenrod operations in Ext. The philosophy is that the

fewer fancy tools you need in your argument, the more confidence

you have in your result.

Generators for homotopy groups

Here is a list of the 3-primary stable stems from 77 to 103.
I write Hn for the 3-component of the stable n-stem. The sign

will be used to denote equality up to sign, in order that

mod 2 specialists will not be put off by the presence of non-
zero scalar coefficients.

Notation is the ancient curse,of the subject; what seems
like a sensible notation at one stage of development becomes
unreasonable at apother stage. I have followed the notation of
Toda and Oka for homotopy elements as far as possible, and for
E2 my notation is essentially that of May's unpublished revi-

sion.

The following stems contain nothing of order 3:



231

77, 80, 88, 89, 96, 97, 98.

The following contain only elements in the image of J:

79, 83, 87, 103.

Other stems:

82

L 3. .
z generated by 32 = plx L

3

Z +Z3.' One survivor in filtration s = 3, from

f =‘ h (where bi = (hi,hi,hi)),

giving a generater which I call y;'the other in

by (weak)

s = 4, (al,al,p5), which I call ",

analogy with Oka's y = (al,al,x).

%Z.. -The survivor is ag(hl,h»,hz) and it seems

3 , 2

hard to write as a Toda bracket. Let me call it

v (for "new").

Z3+Z3 with generators oY and e, =—ﬁlﬁ5.
Z3+Z3. One generator in filtration 6, which can

be represented by (ﬁl,BL,ﬁS) and possibly (I

doubt it) by o call it eé because of its

1V
resemblance to ¢' = (B,+31L/B,). The other gene-

rator is ﬁlp.
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- analogue of ¢ in

4 =2 generated by 1

86 3 €121

” (mod 3) and corresponding to the element dis-

38

cussed by Zahler in his talk (for primes >5). It

can be expressed as (al,3L,v).

"90 = Z3 generated by ;221 (following Zahler's nota-
tion), alias 36’ alias <al'3t'6121>'

Ty = z3+z3+z3 with generators ﬁly, 31“2' and d23.

Tgy = Z3+Z3. One generator in filtration s = 4, inde-

composable, probably (31,3L,y). The other in
s = 7, identified with (ﬁl,aé,35>. But I haven't

proved yet that = 0, which leaves these

B1Tg,

Toda brackets in limbo.

Ty3 = Zg. This is only the third element of order 9 in

Coker J; the others were Toda's © in 7 45 and

Oka's ' in g,_.. Call the generator @, it

75
lies in (al,a Y and in (al,az,v). More-—

3¢2 = dlB6 = a26121 = azv. The analogy with

1 %121

over

¢ 1is striking.

Tgqa = Z3+%5. One generator is @By = By = (¢,al,w)
(I must warn you about these relations: see the

proof below that Bg = 0). The other is

3i55 = SLILPE
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= A ] v,
Tos Z3+ 9 generated by Blez and by %y
ﬂ99.= Z3+Z3. One survivor in. s = 5 appears to contain
(Bl,qzly); the other is a,-
= d .
"100 Z3 generated by 3255

2
= a . d
Tio1 Z3+Z3 generated by pzu and 31M2 With the

right choice of y you have piy = ﬁzu.

T = 2 42 isomorphic with 7 under multiplication

102 3°°3
by ﬁl; the element at s = 6 is also divisible

92

by dl.

Two key relations

Some important relations are implicit in the preceding
table.

For one, the assertion = 0 implies the relation

777
dlﬁ5 = 0, which was Oka's stopping place. This is equivalent to
the Adams differential d3(q) = ho(Ac), where (Ac) 1is the sur-
vivor in s =5, t-s = 74 corresponding to BS’ and
= [ Ao, [ ’ = i ’ { = i .

a (ao ho 1 h2 ¢y, ¢ (ho hl hl) ( c} 32 in "26) (The
long Massey product given for g is an example of a fruit of
the lambda algebra.) I found this differential the most elusive

in the entire range (not counting those which were taken for

granted, as explained above under Methods).
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An outline of proof is as follows:

B85 = {hobo(Ac)} "’_{C(Mho)} v

where all you need to know about (Mho) is that d6(Mh0) = bg;

. . 3 .3 , : .
hence we can show that alﬁlﬁs = <Bl’ﬁl'ﬁz>' Multiplying once

more by ﬁl we get

oL a3 . 3 '
alﬁlﬁs = (ﬁllﬁllﬁz> = €I<dlrﬁllﬁz> € Glﬂ6o = Q

But in the spectral sequence the vanishing of alﬁips is

clearly equivalent to that of alﬁsy in other words, d3(bgq) # 0

~if and only if d3(q) # O.
T .remark that Nakamura's .proof of this relation is different
in detail, but similar in spirit: he also proves first that
2 .
alﬁlﬁS =0 but‘by means of a different Toda bracket for alﬁlﬁs,
namely '(¢,a4,ﬁl).
One can also show that (ﬁi,ﬁi,ﬁz) = 0 by means of Toda's
. 3.
relation g, = (&;,31.8,)-
The assertion 7 = 0 contains the relation Blﬁg = 0,

88

which is equivalent to’ d4(hlq) = c3bo. One deduces d4(hfﬂ #0

from d4(g2q) # 0 in a straightforward way (here gz==(ho,oJﬁ».
The latter differential is obtained by showing that ﬁiu =0 in
Tos by means of some Toda bracket manipulations, as follows.

First,

<ﬁll€1lﬁ2> = [ mod 3“
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since
3<Bl:€1152> = 3l<elrﬁ2:3L> = el<3213blﬁl) = GlGI = 3“ # 0.

Then

2
By

ﬁi(ﬁl,el,32> (mod 0)

(Bi'el'ﬁz)

(<3213L1dl) Iellﬁ2>

I

<32’€2'Bz> + <3213L IO) = 0 mod O.

This shows that the d4 in question is non-zero.

on the height of BZ

’

Recall that Toda showed ﬁ§+l =0 for all i>2 and for

all primés p>5 ([l0], Theorem 5.8). For p = 3 he did not
. get a sharp result by those methods. We .can easily see that for

, ’ _ . . . . 3, . e s
p.= 3, 32 = 0, since it is clear in "78 that ﬁ2 is divisible

~ 2
P = 0.
by oy and o
" We can sharpen this to. Bg = 0 - as follows. We don't know

much about (where 32 oécurs), but we can show that in

T30
"167 the only element which is not in the kernel of
2 . : , . .
dlBl 2107130 is 3292. (I ask the reader's faith for this,

as I do not wish to over-expose my partial results beyond 103.)
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Note that 327 is only defined modulo ﬁ2“2' since y has

only been defined modulo oy Thus for a certain choice Yo of

y we will have (3270)(alﬁi) =0 in T130°

The main idea now is to factor ﬁg into the above expres-

sion. Write

. 3 2
By = ByBy = (ayrei0)8) = “1<91’¢'ﬁ2>52'

32 = ﬁl<p<dl'(p'32> = ﬁl<(P:Olll(p>ﬁ2.

Now (w,al,¢), which is in Toa (mod 0), can be shown to be an
element of {cbz} = {h b £ } which also contains ¢ 8 (for
1 o o0 2J) 1717

all choices of y) and so
¢ )y = mod g2
Prog @) = %y, B18s

and so finally

5 . 3
By = BylayByvy)B, (mod g 8,85 = 0)

= 0.

There still remains the question whether ﬁg = 0 in ﬁo4'

This seems difficult and I remain neutral. Even the corre-—

sponding question in E2, whether c4 = 0, is slippery, but

4
Nakamura has proved that ¢ # O.
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A conjecture

Recall that Smith's proof that Bi is essential for all i
([8], §5) holds only for primes p>5. This leaves open the
question of the ﬁi for p = 3.

Oka observed that "58 = 0 and thus 34 = 0, but he found

35 in # and Nakamura and I have found 56 in g. . What

74’ 90

about the rest?
In the May spectral sequénce it leaps to the eye that for

i=2,3,4, arises from Bi through multiplication by an

pi+3

element which May calls a2 (and I call A), which is not an
element of E2 but which may be regarded as an operator there.
From the point of view of the Adams spectral sequence, 34

fails to be essential because the candidate for By namely
a2e = az(h h.,h_ 3}, is not a cycle: d (a2e ) ; h b2b Now the
0°1 T %ot yere: 93%%%1 001

‘candidate- for 37 in the 106-stem bears a close resemblance to

o

should be non-zero, hitting A(hobgbl).

A(aée and it appears plausible that d3 of this element

This leads me to conjecture that 57 = 0. In the absence

of any evidence to the contrary, I will go ahead and conjecture

that for p = 3 we have B3i+1 =0 for all i # 0.

Reading E_ horizontally

Instead of inspecting the E°° term of the Adams spectral
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sequence stem by stem, we can inspect it row by row. Joel Cohen
has ventured to conjecture that only a finite number of elements
will survive in any given row, i.e., for any given Adams filtra-
tion.

The most interesting question seems to be that mentioned in
the introduction, whether bi = (hi,hi,hi) (analogue of ej?)
is a surviving cycle. I don't know yet about b2 in the 106-
stem; recall that the differential on bl in the 34-stem was
the old problem finally resolved by Toda in 1967 [9]. If b2
survives, so.also will hoh3 in the l10-stem (just as, for
p =2, Oj gives rise to nj) . |

On the next page we give a table of those elements of E°°
which correspona to indecomposable homotopy elements, through
Ti03" The asterisks stand for homotopy elements as yet unnamed.
The well-known g family are omitted from this table.

Note the gap from 45 to 68. Remember it whenever you are

about to make an optimistic conjecture.

€5 €221 ©s
Bs u €121

¢’ €& P
BB g

t-s= 10 26 37 38 42 45 68 74 75 81 82 85 86 90 92 93 99

TABLE OF HOMOTOPY-INDECOMPOSABLE ELEMENTS OF
E“, EXCLUDING Im J; t-s <103
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Spectral sedquence tables

By popular demand, we append tables of the Adams spectral
sequence for p = 3 1in the range 76 < t-s <103, As usual,
these are essentially tables of E2 with all the differentials
drawn in as arrows. Vertical lines connect elements of E2
which are related by multiplication by ag- If a differential
goes off the edge, its degree is given by the number of dots at
the end of the arrow.

Only low filtration degrees are shown, to save space. Above
these degrees, the behavior of E2 in this range of t-s 1is
regular and predictable. Moreover, nothing survives to EOo in
filtration s>9 (t-s<103) except ﬁi in Teo and the ¢«
families in Im J. |

A glossary is also included to help in interpreting the
names of the elements. The algebraic structure of E2 still
seems very messy. In the tables I have left some elements un-
named, both to reduce crowding and to evade the troublesome buéi

ness of choosing and explaining a notation. Unnamed elements

are represented by asterisks.
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Glossary

This is a brief guide to the elements in the E2 tables.
The arrangement is alphabetical rather than logical. Each inde-
composable of E2 (except the fundamental elements hi) has
been given as a Massey product. Entries in parentheses are oper

ators in E not elements thereof; the Massey product forms

21

given for some of them are not necessarily always valid, but are

correct for the cases occurring in the tables.

The sign "=" should always be read "=", i.e., equal up
to sign.
aO arises from T, and corresponds to multiplication by 3

s 3
arising from r

(a) is May's a 1

1 (with much abuse of lan-

guage)

(A) is May's a2, arising from T; (ditto)

a_,a_: In general ai for 1i>3 corresponds to oy in ¢

4'"5 4i-1

b =by: b, = (h,,h;,h)
c = (ho,hl,hl)
e =e = (hl,hl,hz): e, = (hl,hz,h2>

h. b h. b
1
f=f1=<hl l>’f2=<h2 ll>
-h, b -h, b

gl = <aolhorho>7 92 = (holholhl)
i

hi arises from the Steenrod reduced power p3

i = (ho,ho,ez)
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(m) = ( laobllh2>

2
M) =« ,ao,aof>

(Ml) = multiplication by (A)b in the May spectral sequence
(M2) = multiplication by (a)(B) in the May spectral sequence,
where (B) 1is May's 'bg and may be thought of as

(8 8y 8y)
Mé = (b,aobl,aobl) (and aOMé = (M2)92ho)
(n) =< ,aj.,ashe)
q = <a0'h0'hl'h2'c>

u = (aolholhllgl>

2
1307300

S
]

(ao,hzb

UNIVERSITY OF OXFORD and

UNIVERSITY OF ILLINOIS at Chicago Circle
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CONSTRUCTING SOME SPECTRA

Hirosi Toda

We start from the following

problem 1. Given integers n, a>0, does there exist spec-
trum E = Ep for each prime p and a constant c ({independent
of p) satisfying the followings?.
# of generators of Z ﬂ*(E)® Z <cC
*<apn P
and

# of generators of Zn H*(E)® Z <cC.
*<ap p

As is easily seen the spectra E = SO, Hp = K(Zp), BP do

not give any answer of the above problem. However, for the case
n = 1, an easy answer is given by taking E = Vv(l) or the fol-

lowing Hp(l). We define

H (1) = fibre of P.:H —ezlH = RO-H
p p p 1 7p
and
, q 0
BP(l) = fibre of r1 : BP—»¥L BP = Rl'BP,

where gq = 2(p-1), Ri is a symbol having bidegree

j, i
(41,2pj(p -1)), r is the Landweber-Novikov operation and P

A
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is a cohomology operation dual to that of Milnor's (having a
similar action to homology to rA) . Then ﬂ*(Hp(l)) has only

two generators 1 and h = {Rg} of degree O and g-1, and

~

]

P 0
H*(BP(l);Zp) zp[gl,g2,§3,..-]®/\(¢l),

~

]

H, (1, (1) 52)) % B, (BR()Z)@N(rg. 11,7y, )

where H*(Hp;Zp) zp[gl,gz, e ] ® /\(-ro,‘rl, ...) by Milnor,

(o]
Ty S TiTTokir ¥

0, ,p-1 _ . _
[Rl &1 ] of degree pg-1 and H*(BP’ZP)
Zp[gl,gz,...] for the mod p reduction 51 of m, €H, (BP) =

i i
Z(py[Mymyreee]s deg g, = degmy = 2(p'~1), deg r, = 2p -1. The

element zb(f is detected by the secondary operation \y(]? asso~

ciated with the relation Pp_lPl = 0. 'Taking p sufficiently
large (pg-2> ap) we see that Hp(l) gives an answer to the
problem for n = 1. Also we may regard that the spectrum V(1)
is the (pg-~2)skeleton of Hp(l) for p> 3.

Now our problem is to construct spectra of such a sort

Hp(n), BP(n) for n =2,3,... . We consider

Problem 2. Given positive integer n, can we construct a
chain complex C(n) satisfying the following conditions? For

X =H or BP
P

ctm) = Arliticm@ X (%),

for monomials x, y in A(R;.') . 3 (x®1) = gy@fx y
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( ] 3 3k
-1 . if x-—zRi and y sz 1ok
= j j NG DR B S 3
fx,y = { Pi or ri if y XRi’ Pi P, e for A=p Ai’
0 otherwise
\

modulo p and higher terms in the subalgebra generated by ri'&

The chain complex is represented by a sequence

where Xr is the product (wedge)‘of- x.X for monomials x in
A(Ri) of the length r.

We denote by Hp(n) resp. BP(n) a fibre (tower, relaiza-
tion or desuspension of iterated cpnes) of the above sequence

C(n) . if it exists.

Lemma.
(i) Assume the existence of ¢C(n). Then there exists

BP(n) for p?_:ll-(n2+n+2) and Hp(n) for
1, 2 . i .
p?_z(n +3n+4) or p =3, n = 2. They are unique

if the inequalities hold.
(ii) Assume the existence of BP(n). Then there exists

a spectral sequence:

E, = H,(C(n) Y, (BP))=>Y (BP(n)),
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which collapses if p:>%%n2+n+2) and if Y = S, H,
Hp, V(m) or = BP. Similar spectral sedquence

exists for Hp(n).

. . Lo L k-2 _
In general, a fibre of C(n) exists if [Z Xr’Xr+kJ =0

’ *
for k>3. Then the lemma is proved by the fact BP (BP) =0
for * # 0 (hod g) and also counting the number of Bocksteins
in the monomials of ’Hp(Hp) = H*(Hé7zp) of appropriate degrees.

Corollary. ﬂ*(Hp(n)) = H*(C(n);Zp), so the number of the

nt+1l
generators of n*(Hp(n)) is not greater than 2( 27)

In H*(BP;ZP) ri acts same as Pi. Consider the subalge-
* * A
bra P of the mod p Steenrod algebra Hp(Hp) spanned by P ,

*
then the associated graded algebra EO(P ) is the envelopping

algebra over a Lie algebra mod p spanned by Pz with the rela-
tion [Pi,Piit] = Pi. So, modulo p and higher terms, C(n)

changes to May's resolution of (non-restricted) Lie algebra
{Pi}, and we have
Lemma., There exists spectral sequences:

P P 3 '
'E, = ZP[/;l ookl iEl 10010 A(z,bi71+jsn)=’H*(C(n)7H*(BP72p))
and

n = ! ' ' ... ) =D . H

E E2® A(-ro,rl,'rz, ) H, (C(n) ,H*(Hp zp)),

2

where deg ¢1 = 2pj+1(pi-1)—l.
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corollary. If C{(n) exists then Problem 1 is affirmative

Hp(ﬂ)-

Note 1. C(n) may be regarded as a sort of (unusual) reso-

lution of Hp(n) or BP(n).

Note 2. Let p be sufficiently large w. r. t. n. If
H (n) exists and the above associated spectral sequences col-
p
n
lapse, then we define a spectrum VB(n) as the (p g-2)-skeleton

of Hp(n):

~ 1 ' ' j'- .
H*(VB(n),Zp) = A(TO,Tl,Tz,...,rn)® A(wi,1+j< n) .

Similarly, for the (p q-2)-skeleton B((;)) of BP(n),

~

H, (B((;)):2) = APl it <)

Note 3. If V(n) and B((;)) exist then V(n)A B((;))

may be regarded as VB(n).
Now we can prove the following

Theorem. For pp>3, BP(2), VvB(2) and B(3) exist. For

p>5, BP(3), Hp(3) and VB(3) exist.

The main part of the proof is the construction of C(2)

and C(3). If C(n) is constructed for X = BP, it is also

constructed for X = Hp' just by changing ri by Pi. So we

construct C(2) and C(3) for X = BP only.
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. 0 1
First consider the case n = 2. Since r, =r., ¥ =r
1 1 p 1
and rO,l = rg enjoy the relations

[rl,rp] = o1 and [rl'ro,l] = [rp'ro,l] = 0,

C(2) is defined by the formulas in Problem 2 without taking
modulué, that is, it is represented by the following diagram

(replacing x-BP by Xx):

-r
o} 0,1 0O O
—_—
R R2 1

. TN A :

1 //// P
r \\\\ -r
o,1 o,1 1. 0.0
_—
1 \ / RlRZRl
p //// \\\\ ///////
R “—R
ol]-
Note 4. BP(1) is mod p equivalent to
Py, ePTLy Py lPtDa 2pa-l
8, *
(6] 1
where Pp(S ) = eP? ang P (epq) = e(p+l)q in mod p cohomology.

BP(2) is mod p equivalent to

-2 2 2
pq (p +p)g-2 (p +p)q—lU

0
S U, e U e U_ e Ue Ue
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where

2 o 2
PP (s) = P a

Note 5. There exists a chain map g :C(2)——'zpqc(2) of

degree 1 such as

(o] o] 1
L
Ry

R2
M rp-\vl l )
1
1

Moreover dg = 0. This induces maps g :BP(2)——*qu— BP(2)

pa-

1 0
and 9=Hp(2)—»L Hp(2) such that g, (p;) = 1.

Note 6. By considering a fibre of the sequence

g pa-

Hp(2)—>2 22(pq-l)

1 )
H (2)—2- H (2)—»...,

P P
we can obtain V(2) for p>3, since g kills ¢?. But this

breaks for p =3 and we obtain V(lu%) only.

. . o
Note 7. By a chain equivalence Rg and R Rl are cancel-

1
1
led, and we obtain an equivalent chain complex
-r -r.r
h 0,1 1 p .y
r r'r r
c(2)y': 1 hk.
r\\\ ///f:;I \\\\\\‘
k
r -r r

N

P
h1

0,1 "p1
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Moreover, combining with the reduced form of g, as in Note
6, we obtain a BP-resolution of SO up to degree p2q—2 which
is essentially same as "BP-relation" of Thomas-Zahler used in
proving the non-triviality of some 7"

Finally we consider the case n = 3. The operations

{rg;i+j53} are no more closed under [ , J:

’ = ’ I = f [ r = t
[ryer pd=x 5 Tg g0 Irger gl = xg v, g0 Lrg ox 51 =g oy
p =P P p
’ = ’ ’ = ol

(r1:%0,0 = %0,0,17 LFprTo,pl p-150,0,1° 0,10, p)
- - J -
[rpz,rolpj--(rpz—l ro,p—l)r0,0,l and [ri'r0,0,l] 0 for

i+ 3<3,

where f 1is uniquely détermined by the second equality (expli-

. (=i
ly: = - . ).
citly: £ r + z; ) p_l__lr 2 roll)
P p -pi-p
However we can construct C(3) by taking fx y = -1 or

ri for the first two cases in Problem 2 and modigying fx v

for the third case as follows. If grz is a term of above
J LR

[ri,rk] then

= - = 2%, v = zrfrd (&I, R4, R"
fx,y g for x ZR . Yy = ZR Ry (Ri'Rk’Rméz).°

In order to complete the definition of 3 in C(3), we must

add two more extra cases:
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0_0O 210 1
-r for x = zR3R2, y = ZRlRZRl (x = l,Rl)
p -pl
f =
X,y
0_0O 211 O
-f! = = ~ =
£ for x zR3R2, vy ZRlRZRl (x l'Rl)'
where f' is determined by
f'r = [r r ]-[r_.r ]-
0,1 ~1 2 2
P P Popia
To check the condition 32 = 0, we need various relations in
0.0 ' 110:
[ . ). For example, between R,R, and RiRleRl there are 10

monomials connected by non-trivial maps. They are cancelled by

[1,f] = [l,r 2 ] 0 and [f',rl] = [rp_l,r 5 J+{x_,r 2 1.

p -1 p -pP P opfop-1
Consequently we can construct C(3), and then Hp(3) and
BP(3) for p>3 by applying the first lemma. For p = 3 and

X = BP, C(3) is realized except the last term, then B(3) 1is

obtained as a skeleton.

Note 8. ©Let B(2) be the ((p2+p)q—2)—skeleton of B(3)

then there are cofiberings

0

§7 ————B(l) — Spq_l

2
Pa-lpyy,

B(l) —B(2) —
2
(P +p)a-1

B(2) ——= B(3) — 3% - TB(2)

and
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2 2
- -1
e(p +p)g-2 e(p +p) g

A1

2
oP -1 Usee s

U V)

1}

4]
c
(0]
c

B p-1
1 dlﬁl
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ON STABLE HOMOTOPY GROUPS OF SPHERES AND SPECTRA

Hirosi Toda

We shall use the terminologies of the previous note "Con-
structing some spectra" and discuss stable homotopy groups of
sphere spectrum S and spectra B(n), BP(n), V(n) up to degree
near p3q, p>3. In particular, the 8-cell complex B(3) exists.
Applications of the spectrum B(3) will be considered in the
following three cases:

(1) detect "good" elements
v xew, (8), i.e., 3,(X) £ 0 (e.g., ¥ = ai,ﬁi,yi,ei),
(1I1) detect "bad" elements

xem, (8), i.e., 3,(x) =0 (e.g., x = B:.8,8) ¢ BY) ¢

(III) compute #,(B(n)) for n = 3,2,1 and then

n = O(B(O) = S),

where j : S—=B(3) is the inclusion to the bottom sphere.
3
P Up to degree p d-2, we can identify B(3) with BP(3) .

consider the spectral sequence:

H, (C(3)O 1, (VM)A BP) )==>1, (V(m)A BP(3)) = V(m) , (BP(3))
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which-collapses for p»>3. The chain complex C(3) has 64
bases. It is convenient to use a reduced chain complex C'(3)
of 24 bases:

{1 ngnyn, s gk gy ks ok A 8, 4 bk 45 b

o 00 4

171’

By &y omy B Ry ohy £y hmy g4y kL, hoko’q'4}'

where

o

. . ,
deg h, = p'q-1, deg g; = P’ (p+2)a-2, deg k, = p (2p+l)-2,

1]

2 2 2
deg Il {(p"+2p+3) -3, deg 12 = (p +3p+l)g-3, deg I3==(2p~uH2)q—3,

2 2
(3p +2p+1)g-3, deg m, = (2p +4p+2)q-4.

deg R, 1

Since 7, (V(m)A BP) = Zp[vl,vz,...]/(vl',...,vm) =

i

¢«++], we have easily

Zp Vil Vma2

~

TVINBR(G)) T e (3@,  for *<(p+pi+p+lla

and

ne

T (V2)ABR(3) T (@7 [vy] for *< (p+p ptl)a-l,

For m =1, 1r*(V(l)/\BP(3)) = H(C'(3)®Zp[v2,v3,...]) and

the boundary homomorphism 3 is given by

( ry :x—hx for x=1,h2,ko,ﬁ4,_ml,k0£4:
- rr) ry—z for (y.z) =(h;.9,) (k. 2,), (’2'?‘1’1? ‘
(h, £,.9,4,)
Fyr T, ru—ew for (u,v) = (gl,kl),(hlkl,hzll),
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. . . — _yP - '
where rl is derivative and rl(v3) = v2,r1(v2) 0. Thus for

3 2
the above elements {x,y,z,u,w} we have (* < (p +p +p)q)

2
7, (V(1) A BB(3)) {x,y,yv3,u,uv3,uv3}ozp[v2] ®

@ ({hox}ozp[vzj/(vg] ®{z}ozp[v2]/(v§p) ®

®

3
{v}oz tv,17(v;"n 07 (v,

To compute 11*(V(O)/\BP(3)) , we use the following exact

i
sequence induced by the cofibering z:qV(O) o vV (0) 1 V(1)
T 1
) — s (o)
L3
(aAl),
e BP(3) ;2 }) —» BP(3) ;2
| Ty (BR(3)52) 7, (BR(3) 12 )
(1,A1), (m AL,
— e n,(V(1)BR(3)) ———... .

This sequence coincides with the homology exact sequence of
C'(3) induced by the short exact sequence of g, of the above
cofibering:

v, =y, s

*
reee] -——Zp[vlvz,...]—bzp[vz,v3

0—-Zp[v1,v2 ,ie.]—0.
N “Then 11*(BP(3)) is computed from ﬂ*(BP(3)7Zp) =

ﬂ*(V(O)/\ BP(3)) by the universal coefficient thegrem. The fol-

lowing table shows the generators of n-rq_e(BP(3)) in which
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Remark that ﬁ?g'(n) = 0 since {3§'“1'ﬁ§}'= 0. Then similar

to the above one we have

. -1
Theorem 4. e'(n)p? #0 for O<n<p-2 and

e (n)pp 2 %0 for n=p-1 and n = p-1.

By an argument of extended power construction we can prove

2—2 +1 2_ +1
Theorem 5. ale'(p—2) = ﬁ? b thus ﬁ? P = 0.
Note that Bl =0 for p = 3.
Finally we consider applications of‘typé (II) . The theocrems
3,4 are also examples of type (II) if we use B(3). We shall

show another example.

Theorem 6. For 1<s<p-2, there exist non-zero elements

(s).

k., in the p-component of T (s+p+l) (p+1) q=5

2
This is proved as follows. TLet f :S(p +p)q—2____B(2) be

2
the attaching map of the cell e(lo +p)a-1 of B(3),

: B(l)— B(2) inclusion ahd let g :B(l)-———-qu_l be the

I 1

natural map. From the non-triviality of ¥y we have, up to

non-zero coefficient,

{“151 By P Bs+1} = Pprs®

Thus we have

Lemma. There exists £ enm,(B(1)), 1<s<p-2, such that
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f*(ﬁs+l) - jl*(gs) and ﬂl*(gs) B ﬁP+sdl'

Next we check that "(s+p+I)(p+l)q—4(B(3)) = 0. It follows

then f*(ﬁs+lal) = jl*(gsal) # 0 in 7, (B(2)). Since
Bp+sdld1 = 0, gsdl is the image of an element L which is the
required element. Of course Ks vanishes in B(3).

The elements {Kspi} are the next family after Oka's com-

putation.
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