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CHAPTER 1

CONVEX_ANALYSIS

1.1 ngxgx Sets

Let E denote a real topological vector space. Given a set ACE ,

int A and ¢l A stand for the interior and the closure of A in E .

Definition 1.1,
A set AS E s said to be convex if for any two points Xy v Xp € A,
the Jine segment joining them [x].xz] ={xck:x= ty + (1-t)x2. 0<t<)

belongs to A,

Examglg_1.2.

1) Denote E' the topological dual space of E, f.e. E' is the spa-
ce of continuous linear functionals on E . Let £Eekt'. Then the follow-

ing sets are convex:

H={x ¢ E: £(x) = t},
Hy ={x ¢ Ez g(x) > t},
H; ={x e E: £(x) > t},



where t is a fixed number. H 1{s called a hyperplane generated by ¢ ,

while H, and H, are called the closed and open half spaces generated by

€.

2) If E 1is a normed space, for a number t >0 and a point a6 E,

the set.
B(ast) ={ x e E: ||x-a} <t}
is convex, It is called a ball with a center at a amd radius t .

Proposition 1,3,

We have the following:
i) The intersection of an arbitrary collection of convex sets
is convex; '
ii) The Cartesian product of convex sets is convex;

i1i) The image and inverse image of a convex set under a linear maps
are convex, In particular, for any two convex two convex sets
A\BST E and a number t, the sets tA, A+ B are convex.

Proof. This is immediate from definition.

Proposition 1.4.

Given a convex set AC E . Then

i) int A and ¢l A are convex;

ii) for each y e A, x & int A, the set [x,y) = {tx + (1-t)y:
0<t« 1} belongs to int A;



iii) If int A s empty,
cl A = cl(int A),
int (¢l A)= int A,

Proof. i) and iii) follow from ii). To see ii) let Yy be a neighborhood of
Xxin A,
Then tU + (1-t)y € A and it is a neighborhood of tx + (1-t)y
whenever 0<t <1, Hence the conclusion.m |

Cefinition 1.5,
—_— n

G1v%n n points Xpoenes X € E. The point x=£§%tixi with

—

t. 20,

; ; ti =1 1is called a convex combination of x].....x..
n

4]
—

The convex hull (resp. convex closure) of A 1is the intersection of
all convex (resp., convex closed) sets containing A. These sets are denoted

by conv. A and el conv A respectively,

Proposition 1.6
The following assertions are true:
i) the convex hull of a set A coincides with the set of all
convex combinations of points of A 3
ii) the closure of the convex hull of a set A coincides with its
convex closure, ‘
Proof, For the first assertion, denote by B the set of all convex combina-
tions of points from A . Then B is convex and it contains A . Hence
conv A S B . Moreover, if C is a convex set with ACC , then C con-
tains every convex combination from A . This implies that BEC. Thus,

B =conv A,

For the second assertion, observe that by the first part, any closed

convex set which contains A contains also conv A, hence c1(conv A) .



On the other hand, in view of Proposition 1.4, ¢1(conv A) s a closed convex

set which contains A . Therefore, ¢1 conv A = ¢i(conv A) .»

Definition 1,7

A subset K of E s said to be a cone if tx ¢ K, for any x ¢ K
and t > 0. A cone is called pointed if it contains no nontrivial linear

subspace.

Example 1,8

1) Llet E = R" (the n dimensional Euclidean space). The non-
negative orthant R: = {x = (x1.....xn) e R": X' >0} s
a2 convex pointed cone,

2) let Q be the space of sequences {xn] such that X, = 0
for all but a finite number of choices for n. A norm in
Q can be given by

”{xnlll = max{xn: Nne 1,200, ? .
The set Q+ cons%sting of zero and sequences whose last nonzero term

is positive, is a convex pointed cone. This cone has the property that its

interior is empty but 1lin Q+ =0 . It is called a ubiquitous cone.

Given a set A CE . The cone generated by A is

cone A ={ta:t aeA, t>0).



Proposition 1.9

A subset K SE is a convex cone if and only if

K+ KCK
tk €K, for 211 t >0,

Proof, The proof is straightforward.s

1,2 Separation of Convex Sets

Let ‘us recall the Hahn-Banach theorem from Functional Analysis: if A
is an open convex set and L s a linear subspace in E (a topological
vector space) with the property that AN L = ¢ , then there exists a conti-

nuous linear functional £ e E' such that
E(x) > e(y) =0, forall xeA, yel.

Definition 2.1

We say that a Yinear functional E & E' separates (resp., strongly

separates) two sets A and B in E if
£(x) <E&(y) s forall xe A, yeB

(respes E(x) < E(y) - €, foralt xe A, ye B, some €>0).

The following result is a geometric version of the Hahn-Banach theo-

rem.



Theorem 2.2

let A and B be disjoint convex sets in E, If int A or int B
is nonempty, then there exists a nonzero functional £ ¢ E' which separates

A and B.

Proof. Consider the set C=A - B, In view of Proposition 1.3, this set
is convex. Moreover it has a nonempty interior which is also convex by Pro-
position 1.4, It is clear that 0 ¢ int C . Apply the Hahn-Banach theorem

to obtain a nonzero functional £ e E' such that

g(x) > £(0) =0, for 211 z e int C .
Since £ s continuous and C = A - B, one has

E(x) > E(y) , for all xeA, yeB . u

Theorem 2.3

Let A be a closed convex set, B a compact convex set in E , where
E is assumed to be a separated locally convex space. If A and B are,
disjoint, then there exists a functional £ e E' which strongly separates

A and B,

Proof. Since -E\A is open and contains B and since B is compact, there
exists a neighborhood U of zero in E which may be considered to be convex
such that B + UC E\A . Two convex sets B+ U and A are disjoint and

int(B + U) # 6 . By Theorem 2.2, there is £ e E' , £ £ 0 such that



E(x) < E(y+u) , for a1l x e A, yeB,ucl.

Taking € = - inf{£(u) ¢ v 6 U} which is positive, we see that

E(x) £&(y) -e, forall xeA,yeB.m

Corollary 2.4

In a separated locally convex space a closed convex set is the inter-
section of all half spaces containing it. Consequently, a convex set is clo-

sed if and only if it is closed in the weak topology.
Proof, The first part is immediate from Theorem 2.3. The second part follow:
from the first part and from the fact that every closed half space is weak-

ly closed. m

1.3 Convex Functions

Let f be a function from E to the extended real line R = RU{*«},

The effective domain of f s
dom f = {x 6 E: f(x) < += 1},
and the epigraph of f is

Cepi f={(xqt) e E xRt t>Ff(x)} .



Definition 3.1

A function f 1is said to be convex if epi f is a convex set in the
product space E x R . It is called proper if dom f # ¢ and f(x) > -«

everywhere.

Obviously, if f is proper, then it is convex if and only if

f(tx + (1-t)y) < tf(x) + (1-t)f(y), for all x,yeE, t e (0,1] .

Example 3,2

A1l the functions given below are convex,
1) Affine function: f(x) =E(x) +t , some E£EeE', teR.

2) The indicator function of a convex set ACSE :

0 , if xeA
8(x|A) =
+ else,

3) The support function of a set ASE':

s(x]a) = sup{E(x): £ e A}.

4) The distance function of a nonempty convex set A in a normed

space:

d(x]A) = inf{ ||x-a]l : aeA}. -



5) The gauge (or Minkowski) function of a set ASE :
p(x|A) = inf{ £t >0 : x 6 tA}.

We turn now to the operations with convex functions.

Proposition 3.3

Let f1.....f be proper convex functions. Then the following func-

tions are convex:

m
i) the sum: (f1 +oaee +FXX)= T F.(x)%
m ey
ii) the infimal convolution:
m m
(f1D eee D fm)(x) = inf { 151 fi(xi) : i§1 X, =X } .

Proof. This is straightforward from the definition.m

Proposition 3.4

Let {fu : ael}l be acollection of convex functions, Then the
following functions are convex:
i) the pointwise supremum: f(x) = sup{fa(x) rae I}

ii) the convex hull:

conv f M(x) = inf{ T ¢t f (x )t > =
(usl"() ael““") @20+t =1

and I tyXq = X + where only finite number of t, are

nonzero} .
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Proof, This is straightforward from the definition.m

Proposition 3,5

Let L be a linear map from a topological vector space E1 to ano-
ther topological vector space E2 . Let g be a convex function on E1
and h a convex function on EZ . Then the following functions are con-

vex:

i) the image of g wunder L :
(Lo)(y) = inf {g(x) : x ¢ Ey » L(x) =y} ;
ii) the inverse image of h under L :
(hL)(x) = h(Lx) .
Proof. The proof is straightforward.m

Given a function f on E ., The closure of f 1is the function c1f

whose epigraph is the closure of the epigraph of f , i.e.
epi(cl f) = c¢l(epi f) .
The convex closure of f s the function ¢l conv f with

epi(cl conv f) = ¢l conv(epi f) .
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We recall that f is lower semicontinuous (resp., upper semiconti-

nuous) at x e £ if

f(x) = Vim inf f(y)
¥

(resp. f(x) = lim sup f(y)) .
¥y

A convex function f is said to be closed if ¢l f=f . It is
clear that a proper convex function is closed if and only if it is lower

semicontinuous. Next, we study continuity properties of convex functions.

Theoren 3.6

Llet f be a proper convex function on E . The following statements

are equivalent
i) f 1is bounded above on a neighborhood of some point x4 i
ii) f 1is continuous at some point xg i
i11) int (epi f) # &

iv) int (dom f) # & and f is continuous on int(dom f) .
Proof. The schema of the proof is:
§) e=> ii) <= iv) &= iii) <= 1).

The implication 1) <= 1i) is obvious. For {) == ii) let f(x) <c <=
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for x ¢ U, a neighborhood of xg where ¢ is a positive fixed number,
Without loss of generality we may assume that Xg = 0 and f(xo) =0,

Choose a positive € with € < c and set

=& -k
Vo=gun ( .

Then Ve is a neighborhood of zero. We wish to prove that
[f(x)| <e , for all x e Ve o (3.1)

which shows 1ii)., For this purpose, let x e VE . Then E x € U and by

convexity of f one has
f(x) < £ f( f x) + (1- £)f(0) < e . (3.2)
On the other hand, - % x € U . Hence using the expression

0= LI e/c -<£x),

1+e/c 1+e/c

One has

0= £(0) s —— f(x) + £ #(- £ ),

1+e/c 1+e/c

which -implies -¢€ < f(x) . This and (3.2) prove (3.1).

N
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The implication iv) e=> di) dis trivial,

For the implication 1) ==> 1iii) note that if c > f(x) for all

x e U, then
{(xya) e ExR:xelU, a>c) Cepif.

The set in the right hand side is open, hence int(epi f) # ¢ . The
last task is to show iii) ==> iv) . Let (x,a) & int(epi f) . Then F is
bounded above on a neighborhood of x . By the equivalence between i) and
ii) we conclude that f s continuous at this point. Moreover, obséerve

that
int(dom f) = {x ¢ E ¢ there is o 6 R with (x,a) e int(epi f)} .

Hence iv) follows., s

Assume that E %s a normed space. We say that f satisfies a Lip-

schitz condition on XS E if there is a nonnegative number £ such that

[$(x) = F(x")} £ & lx=x"|| + for a1l x, x' ¢ X .
\

We say that f 14s Lipschitz near x ¢ £ if for some € > 0, it satisfies

a Lipschitz condition on the ball B(x:e) »
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Trivially, if f 1is Lipschitz near x ; then it is .continuous on a

small neighborhood of x . The converse is of course not true,

Proposition 3.8

Let f be a convex function which is bounded above'on a neighborhood

of a point x ., Then f s Lipschitz near x .

Proof. 1In view of Theorem 3.6, f is continuous in a neighborhood U of '

X+, Hence for a small positive € , there is a constant 20 " such that

[f(x)] € &, for all x e B(x,2¢) .

0 i ]
For every y.y' e B(x,e) with y # y' , we set

€

z=y+ (y-y") ,
ly- y'll

Then

€

y=ty' + (1-t)z , with t = —&—n,
fly-y'll+e

Since f 1is convex, one gets

fly) <t f(y") +(1-t)f(2)
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which implies

2

' 2
fly) - f(y') < (-1)(f(z) - f(y")) < Nﬂx:y;llﬁ(z) - fy")] < O fly=y' Il .
€

€

Interchange the roles of y and y' to complete the proof. @

1.4 Conjugate Functions

Definition 4.1

Let f be a function on E . The conjugate function of f {s the

function on E£' which is defined by the rule:

f*(g) = sup {E(x) - f(x)} ,» EeE',
xef

Example 4,2

1) Let f be an affine function, i.e.
f(x) ='£0(X) *t, some g, E' ., teR.

Then

-t ., if £= 50
ey =1
» , otherwise. .
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2) For the.indicator function of the set A,
f(x) = 8(x|A) ,
one has

f*(£) = s(gln) ,

which is the support function of the set A .
3) For the gauge function

f(x) = p(x|A) ,

the conjugate function is

f*(g) = §(g|A°) ,

where A° = {£ e E' : 4(¢|A) <1} , the polar of A .

Proposition 4.3

For a given function f , one has
i) f > fex
ii) f* s convex and weak¥*-closed

1i1) f* 4s proper if f s proper closed convex.
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Proof, For the first assertion, by definition one has

f*(g) > &£(x) - f(x) .

Hence F(x) > sup {E(x) - f¥(£))} = f¥¥(x) .
Eef’

As to the second assertion, for every fixed x e E , the function
E(x) - f(x) 1is affine on E' , which is continuous in the weak*-topology
(i.e, the topology on E' 1in which for every fixed x e E , the map
E + E(x) 1s continuous), The epigraph of f¥* is then the intersection of

a family of convex weak*-closed sets. Hence f* is convex weak*-closed.

For the last assertion, observe first that if X © dom f , then
t*(€) > £(xq) - f(xg) > -= . Tt remains to show that dom f* # ¢ . It is
clear that (x0 ' f(xo) - 1) # epi f . By the separation theorem there

exists a pair (£,8) ¢ E' x R such that

&(xy) + B(f(xy) -1) > sup {g(x) + Bal.
_ (x,a)eepi f

Obviously, B # 0 . On the other hand, B cannot be positive because a can

take its value as large as we want, Hence

£(xo)/8 + f(xg) = 1 <sup {e(x)/8 + a},
(x,a)eepi f



18

or equivalently

®> ] - f(xo) - E(xo)/B > su% . {-£(x)/B- f(x)} .
X&dom

In particular, £/B e dom f* , m

Theorem 4.4 (Fenchel-Moreau)

Suppose that f(x) > ~ for every x . Then f = f** if and only

if f 1is convex and closed.

Proof, If f = f** , then in view of Proposition 4.3, f 9s convex closed.
Furthermore, if f = += , then f = f¥* , In this way by Proposition 4.3,
to complete the proof it suffices to show that f < f¥* for f being pro-

per closed convex,

Suppose to the contrary that there exists a point Xq © dom f¥*¥

such that

f**(xo) < f(xo) .

Then we may strictly separate the point (xO. f**(xo)) and epi f . There

is a pair (£,8) e E' x R with

£(xy) + Bf¥*(xy) > sup {e(x) + 8 al. (4.1)
(x,a)eepi f
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We wish to show B <0 . It is evident that B<0. If B=0,

(4.1) implies

5(x0) > sup g(x) . (4.2)
xedom f

We know from Proposition 4.3 that dom ¥ £ ¢ .

Pick any point &g from - dom f¥ . Then for every> teR,

Pr(gg + t6) = sup  ((gg + 1E)(x) = F(x))

xedom f

IA

f*(ﬁo) + t sup E(x) .
x¢ dom f

This and (4.2) show that
P (x0) > 6y + tE)(xg) = FH(gq + t) 2

> €5(xg) = FH(Eg) + tlE(xg) - swp (]

which must be += because t can run to « . This contradicts the fact
that x, ¢ dom £%% and indeed B < 0 . . Dividing (4.1) by |8} and setting

Ey = E/lBI one has

Ex(xg) - (x,) > sup {£4(x) —a} = F¥*(&,) ,
(xya)e epi f

which contradicts the inequality obtained from the definition of f** . @
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« f, be two functions on E ., Then
1* "2

* o *
1) (f1o fz) f1 + f2
i3 * * *
i) (f1 + f2) < f1 ) f2 '
the equality occurs if 1’.l and f2 are proper convex and if
there is at least a point where one of them is continuous and

the other is finite;
iii) (convﬁf1.f2))* = sup(f?.f%)
. * *
iv) (sup(fl.fz)) < conv(f?.fz) '

the equality occurs if f] and f? are convex finite on E
and if at least one of them is continuous,

Proof. We prove the first two assertions. Other parts can be done in a si-

milar way.

The fist formula is calculated directly by definition:

(f, o fz)*(E) = sup{E(x) - inf(f,(x-z) + f,(2))}
X 2

= sup(g(y) - fi(y) + &(2) - f,(2)}
Zy Y
= (&) + £5(¢) .

For 1ii) , by definition one has

£1(Ey) + F3(6,) > (&) + £,)(x) = £,(x) = £,(x)
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for a1l &y + &, ¢ ', x ¢ E, Therefore,

In particular when 51 + 52 = £ , one has

052 (F + f)* .

This implies also that in the case dom(f1 + fz)* = ¢ , equality holds

trivially. So we may proceed to the nontrivial case: there is £ @ £

with

<o

(F, + £,)%E) = q

and assume that f1 is continuous at a point of dom f2 « Then
> ==, in particular o > -,

*
dom(f, + f,) # 6. Hence (f, +f,)
Let us consider -the set

A=((x,a) e £ xR: a<E(x)- fz(x) - a }..

1t is clear that A 1is convex and

A Nint(epi f1) =¢.

In fact, if the intersection is nonempty, say it contains.a point (x,a) ,
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then
fi(x) < a2 ex) - f,(x) - ap
and we arrive at the contradiction:
a < E(x) - Fi(x) - £ (x) < (f + £,0%(E) = o5 .

bply theorem 2.2, to separate A and epi 1’1 « There is a pair

(Eonﬁ) 6 E' x R such that

sup {gy(x) + Ba) < inf

{£5(x) + Ba) . (4.3)
(x,a) e epi f.' (xya)e A

It is evident that B < 0-. Actually B < 0 because if B=0, (4.3)
shows that dom f.l and dom f2 are separated, and f.' cannot be continuous
at a point of dom f, . Dividing (4.3) by 8] and set £1 = £ /18], we ob-
tain .
FHE) = suplg,(x) = £,00) =sup  (6,(x) - a)
xeE (x,a) e epi f1

< inf {g,(x) = a} =inf  {(g,-E)(x) + f,(x)} +q
(x,a) e A x edom f2

=-f§(€-€])+ 0.0 .

The equality then follows. @
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Theorem 4,6

Let L be a continuous linear map from E1 to E2 v let g and f

be functions on E1 and EZ respectively. Then

1) (Lg)* = g* L*
%
i1) (FLY* < L* %,

the equality occurs if f is convex, continuous at a point of the

image of L .

Proof.

For 1) , using the definition one has

(La)*(g) = sup{g(y) - inf  g(x)}
y xiL(x)=y

= sup {&(y) - ga(x)}
xsL{x)=y

= sup{L*(£)(x) - g(x)}
X

= g* L*(g) .
Similarly for ii):
L* f*(g) = inf f*(n)

n:L¥*(n)=¢

= inf sup{n(y) - f(y))
n:l¥(n)=¢ vy

> inf sup{n(Lx) - f(Lx)}
n:l¥*(n)=¢ «x

= sup{&(x) - (fL)(x)}
X

(fLY*(&) .
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It remains to prove the inequality

(L¥f*)(€) < (fL)*(E)

under the assumptions that f ds convex continuous at a point of the image

of L and that £ e dom(fL)* ,

For this purpose, set
oy = (FLI*(g) .

Since dom fMN Jm L # ¢ 4 the function fL has finite values. In particu-

lar a is a finite number, Consider the set

M= {(y.0)e E,x Rz there is xef, with y=Lx

and a aa(x)-ao}.

It is a convex set which does not meet int epi f.

In fact if it intersects int epi f at a point x, then
f(lx) < &(x) - ag e
which gives a contradiction:

ap < &(x) = f(Lx) < (FL)*(&) = ap «
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One can separate M and epi f by a nonzero vector (n.8) e E5 xR :

sup {n(y) + Ba} < inf {n(y) + a) . (4.4)
(ysa)e epi f (y.a)e M

It is obvious that 8 <0 . If B=0, then n#0 and it separates
dom f and Im L . This is impossible. Thus, B < 0, Dividing (4.4) by

[8] and setting Ng=1" /18] we obtain

*(ng) < z‘;fu)efdno(y) - a}

inf {n (Lx) = £(x) + a7 }
er.l 0 ’ 0

This implies that & = L*(no) and one has

LEFH(E) < X(ng) € ag = (FLI(E)

The proof is complete. »

1.5 Subdifferentials

Let f be a convex function on E . We recall that directional de-
rivative of f in direction v 6 E at x e £ s the following limit if

such exists

f'(x3v) = lim f X+tvt - f(x .
t+40
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Proposition 5,1

Let f be a proper convex function on £ ., Then § has a direc-

tional derivative at any point of dom f and

f'(x;v) = inf fﬁlil!%_:_iiil ,

>0
Moreover, f'(xjv) is convex homogeneous in v .
Proof, For every fixed x ¢ dom f , v ¢ E we consider the function
P(t) = f(x + tv) .

It is a proper convex function on R with 0 ¢ dom ¢ . For every three

numbers t1 < t2 < t3 one has

t, -t t, - t
o(ty) < 222 1
t

¢(t2) '
374 t3- 4

which implies

(tz) -¢(t.|) ) ¢(t3) - w(t1) ) ¢(t3) -¢(;2)

-4y oYy oY

P(t+d) - o(t
A

In other words, does not increase as A decreases towards

0 . Therefore



Pl(t) = o' (t:1) = 14m SR =e(t)
A0 A

exists for any t e dom ¢ .. In particular, ¢;ﬁ0) = f'(x;v) exists and

equals inf flxtav) = f(x)
x>0 A

The second part of the proposition is straighforward. s

Proposition 5.2
Llet f be a proper convex function on E which is continuous at
every point of a set UGS E, If for some v eE with x+vel the

derivative f'(x;v) 1is finite, then f'(x;s) is continuous on U - x .
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Moreover, if f 1ds continuous at x , then f'(x;*) is finite, continuous

on E ...

Proof. We show that f'(x;*) is a proper function, Observe first that

|f'(x;v)| <=, hence x e dom f . By Proposition 5.1 ,
f'(xsu) < f(x+u) - f(x) , for a1l vuek,

If for some Uy v f'(x;u1) = -» , then since x + v & int dom f , for ¢

small enough one has
x4+ (v + s(v-u1)) e dom f ,

Denote v, = v + e(v-u1) . By the convexity of f , for every XA >0,
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Fxthv) € == F(x#hvy) + 5= F(xihuy) .
1 1
1+¢ 1+¢

We arrive at the following contradiction:

£ (xiv) < - Filxivq) + —= ' (xiuy) = - =,
1+¢ T+e ‘ '

Now, let ueU-x ., Then f is bounded by a constant ¢ .on a small

neighborhood V of x + u . Hence for every y e V-x , one has

f'(x;y)vf fxty) - f(x) <c - f(x) .

Thus, f'(x;s) is finite and bounded on V-x, which implies its continuity
at u.

The second part of the proposition is obvious. ®

Definition 5.3.

The subdifferential of f at x is the set
‘ af(x) = {ge E' : f(y) - f(x) > &(y-x), for a11 ye E}.

If 3f(x) # & ., we say that f 4s subdifferentiable at x .
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Example 5.4
1) Let f be the norm function: f(x) = |{x]| . Then
{geE's |lell <1}, if x=0

(e e lell

A

f(x) =

1, E(x) = [Ix]| )« otherwise .

2) Let f be the indicator function of a set A: f(x) = 8(x|8).
Then

35(x|A) = {g ¢ E': £(z-x) <0, for a1 2z e A},

It is a cone called the normal cone to A at x and is denoted by N(x|A).
1
In particular, if A =L is a subspace, then for each x & L , N(x|L) = L.

1f A dis a cone, N(O|A) = A° - the polar cone.

Proposition 5.5
For a convex function f , the following conditions are equivalent:
i) £ eaf(x)
1) f(x) + f¥(g) = £(x)
iii) f°(x;v) > £(v) 4, for all ve E .

Proof. For the implication i) ==> ii), let & & 3f(x) .
Then E(x) - f(x) > &(y) - f(y) , forall yet.
Hence &(x) - f(x) = sup{&(y) - f(y)} = f*(£).

y
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For the implication i) ==>iii) observe that

fx+dv) > g(x+av) - f%(£),

which mplies

flxtdv) = £00) , W) _ pyy , for a1l A > 0.
A T

Hence f'(x;v) > g(v) , for all veE,

As to the last implication 1ii) ==> i) using Proposition 5.1 , one
has .

Flxt (y=x)) = £(x) > £ (xiy-x)
This and iii) show that
f{y).- f(x) > g(y-x) for‘a11 yskE ;
Hence £ e 3f(x) . »

Corollary 5.6.

If f 1is convex, then 3f(x) = dom[f'(x;¢)]* .
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Proof. let & e 3f(x) . B3y Preposition 5.5,

f'{xiv) > £(v) , for each vekE.

Hence [f'(x;+)]* (£) <0, and g ¢ dom [f'(xi*)]¥* .

Conversely, let & & dom [f'(x;¢)]* . By definition,

[f'(xs*)]*(E) = sup {e(v) - f'(xiv)} <=,

Since f'(x;v) 1is positively homogeneous, the above inequality is possible

only in the case

E(v) - f'(x;v) <0, for every vekE.

In view of Proposition 5.5, £ & 3f(x) . =

Proposition 5.7
Let f be a proper convex function, Then
i) f is subdifferentiable at x e dom f if and onlu if its direc-
ticnal derivative at this point is lower semicontinuous at O;
i) if f s continuous at x, . then af(xo) is a nonempty weak¥-

bounded set.



32

Proof, For the first assertion suppose that f is subdifferentiable at

x ¢ dom f , By Proposition 5.5 ,
f'(xiv) > £(v) + for a]l_ vec k.
This implies

lim inf f'(x;v) =0,
v+0

and f'(x:*) 1is lower semicontinuous at 0.
Conversely, if f'(xi*) 1is lower semicontinuous at 0 , then

ct f'(x;0) =0 . But f'(x;*) is homogeneous, one has
f'(x;v) >-o , for all ve€E .

In view of Proposition 4.3, [f'(x;*)]* is a proper function. Consequently,

by Corollary 5.6 , 3f(x) # ¢ .

Finally, if f 'is continuous at Xg in virtue of Proposition 5,2,
f‘(x0:~) is continuous on E . Hence, by the first part, Bf(xo) #o.

Moreover, for every v e E .

sup £(v) = fi(xgiv) < =,
Ee Bf(xo)

which means that af(xo) is bounded in the weak® topology of the space E' ,
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tet f, , f, be proper coenvex functions on £ . Then
Bf](x) + afz(x) C a(f1+f2)(x),

for every x ¢ E, If at a point Xge domfq M dom f2 one of these func-

tions is continuous, then equality occurs at any point x e E

continuous at x, € domf2 . If 8(f1+f2)(x) = ¢ , equality holds trivially,
We consider the case a(f]+f2)(x) # ¢ . Let £ be an element of this set,
Then

x € dom (f1+f2) = dom f.I N dom f2'

In view of Proposition 5.2 , fi (x;¢) is continuous at Xg = X On the

other hand

fé(x:xo—x) < fZ(XO) - fz(x) < @,

which implies xj - x 6 dom fé(x;°).

If fé(x:f) is a proper function, then by Theorem 4.5 and corolla-

ry 5.6.
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af1(x) + sz(x) dom[f{(x;-)]* + dom[fé(x;')]*

L

dom[ f14£,)" (xi+)]¥

]

3(f1+f2)(x).

which completes the proof. In this way our final debt is to show that

fé(x:-) is proper., Suppose to the contrary that there is z ¢ £ with
fé(x;z—x) =-®

Then for small A >0, y = x + A(z-x) e dom f2 and

fé(x; y-x) = - , Set
x(a) = axq + (1-a)y , for a e [0,1] .

Then x(a) e dom f2 . We also have x(a) ¢ dom fl whenever a is
sufficiently close to 1 because Xg € int dom f1 . Hence

Q

co < E(x(a) - x)
< (f]+f2)'(x:x(u) - x)
= f;(x;x(a)'- x) + fé(x;x(u) - x)

< f{(x;x(a) - x) + afé(x;xo-x) + (1-u)fé(x;y-x)
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This contradiction shows that f3(xj*) 1is proper and the theorem is pro-

ven. &

Theorem 5.9

let L be a continuous linear operator from E1 to E2 . If f

is a convex function on E2 , then
L¥3f(Lx) € 3(fL)(x) ,

for every x ¢ E . If in addition f is continuous at a point of the set

Im L (the image of L), then equality holds for all x ¢ E1.

Proof. The inclusion of the theorem is immediate from the definition,
Therefore equality holds trivially if B3(fL)(x) is empty. Now, assume that

f is continuous at on and 3(fLY(x) # ¢ .

It is obvious that
(fL)"(x:v) = f'(Lxilv) .

In view of Proposition 5.2, f'(Lxi*) is continuous at L(xo-x) e Im L.

Using Theorem 4,6 and Corollary 5.6, one has

a(fLY(x)

dom[ (fL)}'(x;¢)]¥
dom L¥[f'(Lx;*)]*

L¥3f(Lx) .



36
which completes the proof. m

Theorem 5.10
Let T be a nonempty parameter set and

f(x) = max ft(x) '
teT

T(x) ={teT: f(x) = ft(x)] '

and let P(x) denote the collection of probability Radon measures u with

support in T(x) for which

/‘ f udt) > -=, x e M.,
T

Assume that the following conditions hold:
i) T is a compact space

ii) ft(') is finite convex on a set M CE with int M# ¢ for
each fixed t e T, and the function t =+ ft(x) is upper semi-

continuous on T for every fixed x e M,

Then for every Xg © M one has

af(xo) = U {9 fft(°)u(dt)](x0)1 .
, ueP(xo) T



Proof. Denote the set in the right hand side by A . We show first that

A S Bf(xo).

In fact, let £ 6 A, i.e. there is ue P(xg) with

£ ool | f(hu(at))ixy) -
T

By definition,

fft(x)u(dt) - [ft(XO)U(dt) > E_,(X-—XO) o for a1l x e E .
T T
But f(x) > ft(x) for a1l teT and f(xo) = ft(xo) for all

te T(xo) , the above inequality becomes

f(x) - f(xg) 2 fft(X)u(dt) - fft(xo)u(dt) > E(x-xq)
T T

which shows that & e af(xo) .

It follows that equality holds trivially if Bf(xo) =¢ . Now, let

£ e 3f(x We want to show first that

o)
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£ ¢ af°(x0) ' (5.1)

where f°(x) = max ft(x) .
teT(xo)
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For this purpose, for every fixed positive €, put

TE ={teT: ft(xo) > f(xo) -e} .

Condition 1ii) implies that the above set is closed, Set

£€(x) = max ft(x) .
teTe

We want to establish the relation

£ e afe(xo) v for every e > 0.

To do this, for a fixed x € M, choose 50 >0 so that

[F((1=8)xq + 8x) = f(xg)| <€ €/3, for & 0<& <5,

and set

8 8
= (1 - 9 ) Xg * 2,
2 2

x
—
1

X * 1 - 60)xo + Gox) .

1
2

N =

(5.2)

(5.3)



Then for t ¢ Te one has

fe(xy

)

A
N =

1
ft(xo) + ; ft((1—60)x0 + éox)

J—

[F(xg) - €] _+§ F((1-8g)xy + 650)

~n

1 1 1
<= [fxq) - + = [f(xq) + = €]
) [ Xq e] ) Xy 3 e'

]

1
~—
™

< f(x]) + ( 1.1
3 6 2

= f(x]) .
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Hence fc(x1) = f(x1) . Furthermore, since fE(xo) = f(xo) and

£ e 3f(x0) + one has

f(xg) - Elxg) < F5(x) - E(x)

(5.4)

From (5.3) and {5.4) and from the convexity of €, one has

This proves (5.2).
first that by defini

£0xg) - B(xg) € F0x) - £(x)

With this we are going to establish (5.1).

(5.5)

Observe

tion, f%(x) 1is nondecreasing in € > 0, and

fc(x) > f°(x) 4 for all x e M,
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Hence the following limit exists and

Tim f5(x) > £°(x) , x e M, (5.6)
et0

We fix an x ¢ M, and for each € > 0 , choose te € Tc such that

f(x) = £, (x) .
€
Consider the sequence (tE } when €, tends monotonically to zero.
n .
Without loss of generality it can be assumed that 1im te = t0 eT . It
n
is obvious that

T(xo) =N T

.
e ©

Hence to ] T(xo) . By the upper semicontinuity assumption,

Yim fE(x) = lim £, (x) = Tlim £, (x)

e+0 . e¥0 e n €n

< ft (x) < f°(x) .
=% S
This and (5.6) imply

1im fe(x) = f°(x) , for all xe M.
ev0
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The latter equality and (5.5) give us the relation
f2(xy) - &(xg) < f(x) -~ E(x) + x e M,

which establishes (5.1).

Now in the space of continuous functions on T(xo) ' C(T(xo)) s con-

sider the set

N={e¢: there is x e M with ¢ (t) > ft(x) - ft(XO) - E(X—xo)
for all t e T(xo) ).

It is clear that N 1is a convex set. Moreover it does not meet the nega-

tive cone ‘
C(T(xo))_ =. {v: Ww(t) <0, for all te T(xo)} .
We separate them by a continuous linear functional v on C(T(xo)):
v(¥) <0 <v(e), forall ve C(T(xo))_ . P e.N . (5.7)

In particular v is nonnegative and nonzero, Hence it is defined by a po-

sitive Radon measure on T(xo) . Put

w= v/v [T(xg)] .
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let x ¢ M. The function ¢° from T(xo) to R defined by the

rule
¥°(t) = ft(X) - ft(xo) - E(x—xo) '

is upper semicontinuous. Then it can be expressed as the lower enveloping

function of the set
N(e®) = (o6 CT(xg)] + ¢ (£) > #°(t) + t e Ty ).
One has then

e°(t)u(dt) = inf , f«p(t)u(dt) .
f T(xg) oM 165

Since N(¢°)C N, (5.7) implies

/ ¢ (thu(dt) > 0 .
T(xo)

This means that

./r (ft(x) - ft(xo) - £(x-x0))u(dt) >0.
T(xo)



Since this is true for all x e M, one conclujes that U € P(Xo)

and

£ e 9f ,/ft u(dt)](xo) .
T

The theorem is proven.

1.6 Problems

1.

Let L be a continuous linear map from a topological vector
space Ei to another topological vector space E2 v and let

A be a set in E Is it true that

1 .
i) L(conv A) = conv(LA)

i1) L{c) conv A) = ¢1 conv(LA) .

For a set A SE, Find conditions under which

¢1(cone A) = cone(cl A),

Suppose that A & R" s a convex set . The relative interior
ri A of A is the set consisting of points a e A such

that there is a positive € with

B(a,e) N (aff A) CA .,

Prove that a eri A if and only if for each x 6 A there

exists t > 1 such that

(1-t)x + tae A,

43
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m

4, Let L be a linear transformation from R" to R and

. n . m
A a convex set in R , B a convex set in R . Prove

i) ri(LA)Y = L(ri A)
c1(LA) 2 L(c1 A)

i1) if L'1(ri B) # ¢4 , then
ri(L7"8) = LV (ri B)
cl(t718y = 1™ (e1 8) .

5. Let E be a Banach space, Prove that for every point x of
the weak closure of a set A SX , there exists a sequence of
convex combinations of elements of A which converges to «x

in the norm:

6. Let f(x) = [|x]| and g(x) = & (x|C) , where C is a convex
set. Prove that
(fo 9)x) = d(x|C) ,

where d(x|C) is the distance from x to C .

7. Let fi(x) = 6(x|ai) +a, 0 i =1.0m where a; are

fixed points in E and u; are fixed numbers. Prove that

f(x) = conv{fl(x).....fm(x)} = inf{ L Aoy 2L Aiai =x1.



It is the greatest corvex function satisfying
f(a}) f ai . i= 1,..,."'! .

8. Prove that

(f]o fz)(x) = influ: (x,u) ¢ (epi1 + epi fz)}

convlfyuenaef ) = infl A f0 v 0A X 20, IX =1} .

1

9. In Propositions 3.3, 3.4, 3.5 the operations do not preserve

the properness of functions, Give examples to show this,

10. Let K]""'Km be nonempty convex cones in R" . Prove that

. o _ peo ° ,
1) (Kpbowa#k ) = KIOLLLNKS 5

L. o _ ° o
ii) (e K1F\...ch1 Km) = c](K]+...+Km)

where K° denotes the polar cone of K.

11. Suppose that E = R" and x + ft(x) is convex continuous for
every fixed t ¢ T, where T is a compact space, while
t -+ ft(x) is upper semicontinuous on T for every fixed

x e R", Let f(x) = max ft(x) .
tel
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Prove that every £ ¢ af(xo) can be represented in the form

r
where r<n+1, I a,=1, a, >0 and

Ei 3 3fti(x0) + some ti e T(xo) e 1= Theueyr

where T(xo) ={teT: f(xo) = ft(xo)} .

12. lLet AO' A1""'An be convex sets in E with

A.M int A

0 10...ﬂintAn#¢.

let A=A m...ﬁAn « Prove that

0
N(x/A) = N(x/Ao) +toees + N(x/An) .

for every x e A, where N(x/A) is the normal cone to

A at x.,

13. Given a proper convex function f which is continuous at

Xy € E . Assume that there is Xq € E with

f(x1) < f(xo) =ay



Prove that N(xglleve(wy)) = cone(3f(xy)) where
1evf(uo) = {x: f(x) < a, } .

14, Prove that in Proposition 5.7, the set af(xo) is weak™-compact,

47



CHAPTER 2
NONSMOOTH ANALYSIS

2.1 Classical Derivatives

Llet X and Y be Banach spaces and f a map from X to Y.
The directional derivative of f at x ¢ X in the direction

v 6 X is defined by

f'xiv) = Yim f(x+tv)-f(x)
: t

tvo

if the limit exists.
The function f is said to be Gateaux differentiable at x ¢ X if

there is a continuous linear map Df(x) from X to Y such that
Df(x) (v) = f'(x;v) , for all v e X,
The map Df(x) is called the Gateaux derivative of f at x .
If  (f(x+tv) - f(x))/t converges to Df(x)(v) uniformly with

respect to v in compact sets (respectively, in bounded sets) we obtain

the Hadamard derivative (resp., the Frechet derivative).

48
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Now assume that f is Frechet differentiable on a neighborhood of a
point x . Then x + DBf(x) is a map from this neighborhood to L(X,Y)
(the space of continuous liner maps X to Y ). If this map is Frechet
differentiable at x , then its derivative sz(x) is called the second deri
vative of f at «x.

An important property of a function f whose second derivative is
uniformly continuous on a neighborhood of a point x , is that
f(x+v) = f(x) + Df(x) v + 1 sz(x)(v.v) + r(v),
2

where ||r(v)||/llvll tends to 0 as |[[v|] tends to 0.

Definition 1.1

f 4is said to admit a strict derivative at x if there is a conti-

nuous linear map Dsf(x) from X to Y such that

D f(x)(v) = Tim _f(x'+tv)-(f(x') ,
s FRESY t
t Yo

and the convergence is uniform for v 1in compact sets.

Proposition 1.2

let f map a neighborhood of x to Y, and L e L(X,Y).
The following are equivalent

i) f is strictly differentiable at x and Dsf(x)=L:



ii) f is Lipschitz near x and for each v & X

1 []
Yim f(x'+tv) - f(x') = L(v) .
x'+x t
t40

Proof, Assume i) . The equality in ii) holds by assumption, so to prove
ii) we need only show that f s Lipschitz near x . If that is not the
case, there are {xn} and {x;} converging to x such that

x,+ x'ex+1B0:1) and

n
n

||f(x;) - f(xn)||> n Hx; - xn||.

Let us define tn >0 and Vo via

1
=x +tv
*n n ¥ taVn

]Ivn|| =1//n

Then t tends to 0., Let V consist of {vn} and zero. Then
V is compact, so that by definition of Dsf(x) o for any € > 0 there

exists ne such that for n > ne and for v e V one has

' f(x +t v) = f(x,) _D (X)) <€ .

t
n

But this is impossible, since for v = Vo

I f(xn +t v) - f(xn) | >vn .

tn



51

Conversely, posit ii). Let V be any compact subsét of X and
€ any positive, In view of ii) there exists for each v e V a number

6(v) > 0 such that

| Hat) Z FO) () <e s

for all x' e x + 6B(0,1) , te (0,6).
Since the function is Lipschitz, it follows from the above inequality that

for a suitable redefinition of &(v) one has

| f(x'+tv'i - f(x') _ Lv'y | <2¢ ,

for a1l x'e x + &B(0:1) , v' e v + 6B(0,1), t & (0,6) .
A finite number of open sets { v + 8(v)B(031) : ve V) will cover V ,
say those that correspond to Vyresos Vo Set 60 = min é(vi) . The above

inequality shows that L 1is the strici derivative of f at x . m

2.2 Generalized Directional Derivative

Assume that f : E =+ R, where E is a Banach space, Definition 2.1
Let f be Lipschitz near x . The generalized (Clarke) directional

derivative of f at x in direction v denoted fo(x;v) is

fo(x;v) = 1im sup fly+tv)-f(y) .

y X t
t+0
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Proposition 2,2

If f is Lipschitz of rank % near x , then

i) f°(x;*) is a finite positively homogeneous subadditive

function on E with [fo(xiv)| <2 ]lv]l .

ii) f°(x;v) is upper semicontinuous in (x,v) and Lipschitz

of rank 2 in the variable v on E .

i11) fo(xi=v) = (-f)°{xiv) .
Proof. For the first statement, by definition one has

[f(xiv)]| < 1im sup |
y+Xx
t+0

ﬂ.yiv_L:_im, < vl .
t

The positive homogeneity property is obvious, We turn now to the

subadditivity

FO(x;v+w)= 1im sup f(y+tv+t¥) = fly)

flyttvitw) = fly+tw) + lim sup Fly+tw) - f
t t

A

1im sup

foxiv) + f°(x3w) .

A

For i), let {xn}. {vn} be arbitrary sequences converging to x
and v respectively. For each n , by definition of upper limit, there

exists Yy © E, tn > 0 such that



1
Ily, -x fit <o

fly +t v ) - f(y )
fo(xn;vn) 2 n_nn n

n tn

A

f(yn+th) - f(yn)

f(yn+tnvn) - f(yn+tnv)

= +

t
n

Since

f(yn+tnvn) - f(yn+tnv)

t
n

one deduces from the relation above that

t
n

| <2 flvvll

: o . \ of_ .,
1im sup f (xn.vn) < f2(xiv)

n

which shows that f°(x;v) is upper semicontinuous,
Lipschitz, let v , we E . Then for y near X

has

To prove that it is

and t near 0, one

fly+tv) - f(y) < f(y+tw) = f(y) + &t |fv-w] .

Dividing by t we obtain

fo(xiv) < fo>xiw) + L |[v-wl|

53
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Since this also holds with v and w switschec, ii) follows.

For iii) we calculate f°(x;-v) wusing the change u = x' - tv :

1 "
Fo(xs-v) = Tim sup X =tv) = f(xT)
x'+ x t
t+ 0

Vim sup SZF)utty) = (-E)(u)

u+x t
t+0

(=f)°(xsv)

The proposition is proven, m

2.3 Generalized Gradient

Definition 3.1

The generalized gradient of f at x , denoted 3f(x) , is the set

af(x) = {g e E' ¢ f°(xiv) > £(v) , for all ve€E}.

Proposition 3.2
Let f be Lipschitz of rank £ near x . Then

i) 3f(x) is nonempty, convex, wedk*—compact in E' and

le] <& for all & ¢ 3f(x) .



ii) For every v e E , one has

fo(x;v) = max £(v) .
£¢3f(x)

Proof. For i) observe that if f s Lipschitz near x , then by Proposi-
tion 2.2 and the Hahn—Banac‘h theorem, there is £ ¢ E' which is majorized

by the finite positively homogeneous subadditive function f°(x;e) :

fo(xiv) > e(v) , for a1l vetk,

which implies that 3f(x) # ¢ . The convexity of this set follows from
the subadditivity of f°(xij*) . The weak¥*-compactness is derived from
AYaoglu's theorem which says that the polar of every neighborhood of zero

is weak¥*-compact,

For ii), by definition one has

f2(xiv) > max £(v),

£ eof(x)
If there is some Yo with
fo(xjvpy) > max E(vy) o
0 £eof(x) 0

then by a separation theorem, one can find 50 € E' such that

f°(x;vo) = Eo(vo) and
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fo(xiv) > Co(v) , forall vetE,

Hence EO € 9f(x) =and we arrive at a contradiction

E(vy) > £.(v.) = f°(xiv,) > £(v,)
Z"Zxaf(x) Y0’ = ~0™0 T T ety O "

For further investigations of generalized gradient we need some defini-

tions concerning set-valued maps.

Definition 3.3

A multifunction (or set-valued map) F from X to Y 1is a map

from X to the subsets of Y .

F s said to be closed at x if any sequence {(xn.yn)) with
Y, © F(xn) converges to some (x,y) , one has y e F(x) . F is said to
be closed if it is closed at every point x & X , or equivalently, if its
graph gr F = {(x,y) e X x Y: y e F(x) , x e X} is a closed set in the

product space X x Y ,

f is said to be upper continuous at x if for every e > 0, there

is 6 > 0 such that
F(x') < F(x) + ¢ By(0:1) » for a1l x' e x + éBx(0:1) .

F 45 said to be lower continuous at x if for every € > 0,

y ¢ F(x) , there exists & > 0 such that
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F(x")Y N (y+ EBy(0:1)) # 6. for all x' e x + 68 (0;1) .

Propositign 3,4
Suppose that f s Lipschitz near x , Then
i) of dis weak¥-closed at x .

ii) af(x) = M U af(x') .
80 x'ex+6B

iii) 1f E s finite dimensional, then 3f is upper continuous

at x .

Proof. For i), let {xn} be a sequence in E converging to x , {&n} a
sequence in E' weakly* converging to £ and £, ¢ af(xn) . He prove

£ 6 3f(x) . Since for every fixed ve E, limg (v) = £(v) . But
fo(xiv) > £ (v) 4 hence in view of Proposition 2.2, f°(x;jv) > &(v) , which

shows £ ¢ 3f(x) .
The second statement is immediate from the first one.

We turn to iii)., If 8f 1is not upper continuous at x , then there
1 : . - .
are x_ 6 E, £, € E' with £, € Bf(xn) . lim X, = X and a neighborhood
V of 23f(x) such that En ¢V, Since E is finite dimensional, one may
assume that {gn} converges to some £ 6 E' .- It is obvious that

g # 9f(x) . This contradicts i). m
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If f is Lipschitz near x and admits a Gateaux derivative Df(x) .

Then Df(x) & 3f(x) .

Moreover, if f is strictly differentiable at x , then f is
Lipschitz near x and 3f(x) = {Dsf(x)) . Conversely, if f s Lipéchitz near
x and 3f(x) reduces to a singleton & , then f is strictly differen-

tiable at x with Dsf(x) = £,

Proof, By definition ,

fr'{xiv) = DF(x) (v) , veFE.

It is clear that f' < f° from the definition of the latter, so one

has

fo(xiv) > DF(xX{v) , v ¢ E,

which implies Df(x) e 3f(x).

For the second part , suppose first that Dsf(x) exists , so that f
is Lipschitz near x by Proposition 1.2 . Then by definition of f° ,
one has

fo(xsv) = Dsf(x)(v) v vetE.

Hence 3f(x) = {Dsf(x)} .



Conversely, in view of Proposition 1.2, it suffices to show that

lim f(x'+tv) ~ f(x')
x'+x t
t 0 )

= £(v) .

We begin by showing that f°(xiv) = £(v) , for every v . It is

know from Proposition 3.2 that
fo(xiv) > &(v) .

Using a separation theorem one can find £' ¢ E' for a fixed
Vo © E such that
[T _
f (x.vo) =g'(vy) .

f;(x;v) >ef(v) ,vet.

If f°(x;v) > £(v) , then &' and £ would be distinct elements
of 8f(x) , contrary to the hypothesis. Thus f°(x;v0) = g(vo) + where

v is an arbitrary vector of E . Using this fact we calculate the limit:

0

lim inf

fﬁx'ﬁz)-f(x') = lim sup Fx1) —tf(x'+tﬁ

f(x"+tv-tv) - f(x'+tv)
t

= =1im sup

= - f°(x;-v)

= g(v)
= f°(x;v)

fx'+tv) - f(x')
t L]

= 1im sup
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which completes the proof. g

Corollary 3.6

If f s Lipschitz near x and E 1is finite dimensional, then
3f(x') reduces to a singleton for every x' e x + €B if and only if f

is continuously differentiable on x + €B .

Proof. Note that a point-valued map is continuous if and only if it is up-
per continuous in the sense of set-valued maps, This and Propositions 1.2,

3.4 prove the result. g

Proposition 3.7

When f 1is convex on U and Lipschitz near x , then af(x) coin~
cides with the subdifferential at x 1in the sense of convex analysis and
f°(x;v) coincides with the directional derivative f'(x;v) 4 for al

vetb.

Proof. It is known from the previous chapter that f'(x:v) exists for
every v e E and that f'(x;¢) is the support function of the subdif-
ferential at x . It suffices therefore to show that

fo(xsv) = f'(xiv) , for all ve€E .

By definition of f° , one can express it as



fo(x3v) = lim su

fx'+tv) - f(x") ,

p sup
e¥0 |k—x"]|<es O<t<g t

where & is any fixed positive number.

is nondecreasing as t increasés, whence

f

We know that ((fx'+tv) - f(x"))/t

(x'+ev) - f(x*) .

fo(xiv) = 1im sup
e+0 kx| <es,

Now by the Lipschitz condition, fo

t

r every x' e x + £6B one has

| flren) = f(x1) | flxten) - £0x) | ¢ g,

€

so that

fo(x;v)

IA

e+0 €

Since & 1ds arbitrary, we deduce

€

rTim Hxtev) = £0x) | oe

Fr(xiv) + 282

felxiv) < fl(xiv) o

The converse inequality is trivial. =
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2.4 Calculus Rules

Throughout this section all functions are presumed to be Lipschitz

near the point of %" interest in the space E .

Definition 4.1
f 4s said to be regular at x if the usual directional derivative

f'(x3v) exists and

f'(x;v) = f°(x3v) , for all veE .

Proposition 4.2
We have the following
i) 3(tf)(x) = taf(x) , for every t e R .

i) 3(f1+...+fn)(x) - 3f1(x)+...+3fn(x) and equality holds if
all but at most one of these functions fi are strictly

differentiable at x , or all of them are regular at x .

Proof, For i) note that tf is also Lipschitz near x ., When t >0,

(tf)° = tf° , Hence
3(tf)(x) = t 3f(x) .

For t==-1, £ e 3(~f)(x) if.and only if (-f)°(x;v) > &(v) for all

veE . Inview of Proposition 2.2, f°(x;~v) > £(v) , which implies



63

£6dT(x) . Thus  £ed(~F)(x) 4f ard only if &€ = df(x) .

To prove 1ii) it suffices to take the case where n=2. Note first

that for every v e E

) . ° . ° N
f1(x,v) + fz(x.v) > (f1+f2) (xiv)
Hence in view of proposition 3,2, one has

max E(v) > max £(v) . (4.1)
geaf1(x)+3f2(x) Eea(f]+f2)(x)

Since the gradients are convex weak¥®-compact (Proposition 3.2), the

above inequality implies
3(f1+f2)(x) g;af](x) + sz(x) . (4.2)

Now, assume that f s strictly differentiable, then
' 1

(f1+f2)°(x;v) fi(x:v) + f;(x;v)

£20xiv) + 'fg(x:v). (4.3)

Hence in (4.1) equality holds which implies equality in (4.2). 1In the
case both of these functions are regular, (4.3) is true and again equality

holds in (4.2).
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Note that if f s Lipschitz near x and convex, then it is
regular, Hence equality in Proposition 4.2 also holds if f"_i are convex

Lipschitz,

Theorem 4,3  (Mean-value theorem of Lebourg)

Let {x,y) be an interval in an open set where f is Lipschitz.

Then there exists y e (x,y) such that
f(y) - f(x) e (&(y-x): Eedf(u)} .

Proof. Observe first that if a Lipschitz function ¢ (t) attains a local ex-

tremum at t  then #°(t;v) > 0 for all v . Consequently, 0 ¢ 3(t). Now,

let us consider the function

g(t) = f(x + tl{y-x)).

We calculate the gradient of g via directional derivative :

g{t'+ av) - g(t')
X

g°(t;v) = 1im sup
tlat
A Yo

flx+ (t"+2v)(y-x)) = f(x+t'(y-x))

1im sup
: A

A

lim sup fFx" + av(y-x)) - f(x")

x'+x+t(y-x) )y
Ato

= fo(x+t(y-x)i v(y-x)).
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This implies 3q(t) € af(x+t(y-x)) (y-x). (4.4)

Consider another function:
e (t) = f(x+t(y-x)) + t(f(x) - f(y)).

Since ¢(0) = (1) = f(x), there is a point t e (0,1) at which
¢ attains a local extremum, By the observation at the beginning of the -

proof and the formula (4.4) one has
0 e 3e(t) = f(x) - f(y) + Flx+t(y-x)) (y-x),

Which implies the desired result.m

Theorem 4.4 (Chain Rules)

let h: £~ R" , Q3 R" > R be Lipschitz functions,

Then
3(g.h)(x) € wi»e1 conv {Zuigi P e 8h1(x), ae 3g(h(x))}

and equality holds in the following cases

i) hi are regular at x, g is regular at h(x) and every element
@ ¢ 9g(h(x)) has nonnegative components

ii) g 4s strictly differentiable at h(x) and n=1;

ii1) g s regular at h(x) and h is strictly differentiable at x,
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Proof. As before B stands for the unit ball with the center at 0 in the
spaces of our consideration,

Denote

qe(v) = max{Zaigi(v): £ieahi(xi) + aedglu) ,

xiex+cB P uehi{x) + e B,

We wish to show that for each € >0,

a.(v) 2 (goh)°(xiv) -e. (4.5)

If this is true and if

QE decreases to q, as edecreases to 0, (4.6)

then

i)(v)z (goh)°(x;v) , for all v .

The latter inequality and the fact that the support function of the
set on the right hand side in the theorem is given by 9p, together with

Proposition 3.2 imply the set inclusion of the theorem.

Therefore our aim at this moment is to stablish (4.5) and (4.6). For

(4.5), set f = goh. By definition of generalized directional derivative,



there exists x' e x + €B and t near to 0 such that

fo(X;V) < ﬂx'+tv) - f(X') +E .
B t

We may choose x' and t such that

x' + tve x+eB,

h{(x') & h(x) + B ,

h(x'+tv) e h(x) + ¢B .
By Theorem 4,3, one has

f(x'+tv) - f(x")

g(h(x'+tv)) - g(h(x'))

) ui[hi(x'+tv) - hi(x')] '

where a € 3g(u) , u e [h{x"+tv) , h(x"')] .

Again, using Theorem 4,3 for hi one has
hi(x'+tv) - hi(x') = Ei(tv) .

where £, e ahi(xi) v X € [x'+tvyx']

Hence,

f(x'+tv) - f(x') = La, g_i(tv) .

(4.7)
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which combines with (4,7) to give (4.5):
f°(x;v) < I aigi(v) +€< qE(v) + e,

For (4.6), observe that since qE(v) >0, it suffices to show that for

every & > 0, one has

Q. (v) < qp(v) + ﬁ5(1+1|\'|) ,

where £ is a lLipschitz constant, for € small enough. In view of Pro-
position 2.2, one can choose € small so that h_i is Lipschitz of rank

£ on x4 eB, and so that for all i, all X; € x + eB

h?(xi;iv) < h:(x;iv) + 6/% .

Since for each £, € 3h(x.) ”Ei” < & (Proposition 3.2), we

obtain
h:(xi;Eiv) < h:(X;EiV) + 6.

Also by Proposition 3.4, 3g 1is upper continuous, which means that

when € s small enough, one has the inclusion:

9g(h(x) + eB) € ag(h(x)) + 6B .



Now we are able to estimate qE(V)t

qe(v) < max{ E max[uigi(v): £y € ahi(xi) R €B):

a e 3g(x) + 68 )

< max{ I (h:(x:uiv) + 8): a 6 9g(x) + 6B )
i
< max{ I max[uigi(v): gi & ahi(x)]: a € 3g(x) + 6B )
]
+ nd
< qo(e) +n8 & |vl + 06,

This shows (4.6) (actually we have proven that qo(v) > lim qe(v)) . and
e+l
the inclusion of the theorem is established.

Now suppose additionally that i) is satisfied. Since a2 0 we can
calculate qo(v) as follows
qo(v) = max{ I a; max[Ei(v): £, € ahi(x)]: a ¢ 9g(h{x))}
= max{ Z aih;(x;v): a e 3g(h(x))}

= g'(h{x) : h'(x;v))

g(h{x) + th'(xsv)) = g(h(x))

= lim
40 t

- pim { S0Cxtt)) - alh(x)) g(h(x) + th'(x;v)) = g(h(x+tv))
t40 t o t

- yim Ah(xttv)) - g(h(x))
t40 t

= f'(xiv) . (4.8)
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In the above calculation we have used the fact that g s Lipschitz

near h(x) , hence the amount

h'(xsv) - h(x+tv) = h(x) | 0
t

as t tends to zero. Moreover, by (4.5) and (4.6) one has on one hand
fo(xiv) < qo(v) .
On the other hand it follows from the definition,
fl{xsv) < f°(xiv)
These inequalities and (4.8) yield
qp(0) = f'(xiv) = f°(xiv) .

In particular, f 1is regular, and by the property of support func-

tions, equality in the theorem holds.

Further, suppose that i) is satisfied. Then Dsg(h(x)) =qa is a

scalar. We may assume a > 0 and qo(v) can be calculated as follows
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go(¥) = ah®(xiv)

alh(x'+tv) ~ h(x")]

= lim sup
x'+x t
t ¥0
Vi s 9(HE0) = alh(x'))
t
= f°(x;v) o

We have exploited the fact that g is strictly differentiable at

h(x) . Again using property of support functions one obtains the desired

equality.

The case iii) is proven by a way similar to that of i). g

let T, f(x), T(x), P(x) be as in Theorem 5,10 (Chapter 1)},

Assume that
i) T 1is a sequentially compact space;

ii) For every fixed y of a neighborhood U of x,

t > ft(y) is upper semicontinuous on T ;

iii) For every fixed te T, ft(°) js Lipschitz of rank £
on U, and {ft(x): t e T} s bounded.

jv) E is separable, or T is metrizable.
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Then

If(x)C U af (u(dt)
ueP(c) T

where

5ft(x) = w¥-c1 conv {£ e E': there exist Ei € aft (xi) with
i

wi

X+ x ti +t, Ei + £} .

Moreover, if 5ft(x) = Bft(x) and ft is regular at x for every

t ¢ T(x) , then f is regular at x and equality holds.
Proof. Let us consider the function g on U x E defined by the formula:
g(x;v) = max{&(v): £ ¢ 5ft(x) vt e T(X) .

This function is well-defined because by the Lipschitz condition, the set

§ft(x) is weak¥-compact and T(x) is closed, hence compact by 1).

We wish establish the relation

fo(xiv) <glxiv) , for all vekE. (4.9)

By definition of generalized directional derivative, there are

Yy * X Ai ¥+ 0 such that



Foxiv) = Tim (ag= T P AV - Fly)

M

Pick any t, ¢ T(y1 + Aiv) to have

fti(yi+kiv) - fti(yi)
A N —<. = 6

1 A
1

By the mean-value theorem one can find £, e»Bft (y?) with
i
i - .
vie [yi.yi+xiv] such that 61 Ei(v) .

Without loss of generality it can be assmd that tyrteT,
Ci ¥ £ . It is obvious that y? + x , hence g e—§ft(x). Consequently,
Gi + E(v) and (4.9) follows if we can show that t e T(x).

This can be seen by noticing that

fti(yi + Xi v) > fT(yi +X1v) , forteT,
which together with 1i) , iii) implies

ft(c) > ft(x) , for all1e T .

Now , to prove the inclusion of the theorem, take any & & of(x) .

In view of (4.9) ,

g(xiv) > £(v) .
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Observe that £ ¢ 3g(x;0) because g(x,0) = 0. Since g(x;.) is
a convex function of the variable v, one can apply Theorem 5.10 (Chapter 1)

to see that there exists p e P(x) such that

S ENSEE

T

£, © §ft(x) y-almost everywhere,

This establishes the set inclusion in the theorem.

Finally, let a = lim inf iiﬁiﬁ!lxz_fﬂll . To prove the regularity

A0
of f at x , it suffices to show that

folxiv) <a

For this purpose note that
a > f{(x;v) = f;(x:v) , for all t & T(x) ,

which implies

a > max f°(xiv) . (4.10)
teT(x)

By the assumption §ft(x) = Bft(x) one has

g(x3v) = max{g(v): & e»aft(x)  teT(X)) .,



Observe that £ ¢ 39(x;0) because g(x;0) = 0. Since g(x;.) 1is a convex
function of the variable v, one can apply Theorem 5.10 (Chapter 1) to see

that there exists py ¢ P (x) such that
e - Je,()uien,
T
&t € 3ft(x) p-almost everywhere.
This establishes the set inclusion in the theorem,
Finally, let a = liminf f(x+Av) - f(x).
2
To prove the regularity of f at x, it suffices to show that
fo(x;v)ga.
For this purpose note that
a > f;(x;v) = f:(x;v), for all t & T(x),

which implies

(]
a > max  f (x3v).
“teT(x) V)

By the assumption §ft(x) = Bft(x) one has

g(x;v) = max {&(v): £ ¢ aft(x); t e T(x)}.
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Combine the latter equality with (4.10) and (4.9) to see that
f°(x;v) <o, and indeed f is regular at x . To show that equality holds

in the theorem, let

e [ sy

T

be any element of the set in the right hand side of the inclusion in the

theorem, Then for every v e E one has

&(v) =f€t(v.)u(dt)
T

< [ fitavuen
A

[ft(x;v)u(dt)

T /ft(xh\V)U(dt) -f ft(X)u(dt)
T T

= lim
M0 A

./. Fx+av)u(dt) :/F f(x)u(dt)
T T

A

[ oY

lim sup
A0

f(x+iv) - f(x

1im sup

AY0 A

flix;v) = f°(x3v) &

Thus, £(v) < f°(x;v) and £ e 3f(x) . m
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2.5 Geometric Illustrations

Let C be a nonempty subset of E . We recall that the distance

function is:

dc(x) = inf{ [|x-c]|: c e C}.

Proposition 5.1

The distance function is Lipschitz of rank 1 on E .
Proof. For every positive e , there is ¢ e C such that

dc(x') > Ix'=c| - € .

Hence
dc(x) <Hx=clf < ffx=x"Il + [Ix'cll < Ix=x'|| + dc(x') + €,
Since e is arbitrary, we conclude that

9(x) - dgx)] < Nlex'l] . m

oL LI LI

let x e C . The Clarke tangent cone of C at x 1is the convex

cone

T(Cix) = {v e E: d'c’(x:v) =0}.
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The normal cone to C at x is the polar cone of T(C;x):

N(Cix) = {€ ¢ E': £(v) <0, for all v e T(Cix)} .

Proposition 5,3

We have the following:
i) N(ci;x) = w*-cl cone 3dc(x) :
ii) T(C;x) = {v e E: for X; € C, ty > 0 with X;j* Xt +0,

there are vy € E with v, TV and x5 * tivi ¢sC) .

Proof. For the first aﬁsertion we use definitions: v ¢ T(C;x) if and only

if dE(x;v) =0, which means that v(g) <0 for all ¢ e—adc(x) .
Hence (T(C:v))°® = w*-cl . cone 8dc(x) .

For the second part, suppose first that v e T(C;v) and X; * X

ti + 0 are given., Since dE(x:v) =0, one has

d (x.¥t.v) - d.(x.) d.(x.+t.v)
Tim 1 i C7i _ lim —_i i

t. t.
j . i

=0, (5.1)

Let & C C satisfy: ,

|Ixi + - cillf dc(x1+tiv) + ti/i . (5.2)



Set

v, = (c_i - xi)/ti .

Then (5.1) and (5.2) imply that flv - viﬂ + 0. Moreover,

x. + t.v, . .
i iYi T &% ¢ ¢

Conversely, let v be a vector as stated in ii).

Xi * X and ti >0, ti + 0 such that

da(x.+t.v) - d.(x.)
dE(x;v) = lim i Al .
t.
i

In order to show v e T{(Cix) we have to prove

o . -
dc(x.v) =0,

It suffices to prove that dE(x:v) < 0 because

lim sup d(x'+tv) - d(x')

x'+x t
t+0

dE(x:v)

lim sup d(x+tv) - d(x
t+0 t

rv

(A
o
-

Choose
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X; '

(5.3)
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let ¢y e C with the propertyi

”t:.i - xi|| < delxy) + tili . (5.4)

Then Cy X By assumption, there exist Vs with vyt and

c; + tivi eC.

Using Proposition 5.1 and (5.4) we obtain the relations:

de(x,+t,v) < dele +tov,) + Hxi - Ci” +t, llv - viH

A

1
dC(xi) + ti(||v—vi|| + 3 ) .
This makes the 1imit in (5.3) nonpositive and v e T(Cix) . m

Definition 5.4

The contingent cone or Bouligand's cone of € at x is the cone

(not necessarily convex)

K(C;x) = {v € E: there are Vit vt Y0

such that cittiv, c c}).

Note that in the definition above it is necessary that x e cl C .

It is clear that T(C;x) € K(C:;x) .



The set C 14s said Lo be regular at x provided
T(Ci;x) = K(Cix) .

Theorem 5.6

Assume that f s Lipschitz near x , and 0 £ 3f(x) . Llet C be

the level set of f at f(x) . Then
{veE: fo(xsv) <0} < T(Cix) .

Moreover, if f 1is regular at x , then equality holds and C is regular

at x .
Proof, Note first that since O ¢ 3f(x) , there exists Vg € £ such that
f°(§:vo) = sup{£(vy): € e 3f(x)}< 0.
Hence, for every v with f°(xjv) <0 and € small enough one has
fe(xyv +'ev0) <0.

In this way, it suffices to show that

fo(x;v) < 0 implies v e T(Cix) .
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Indeed, by definition of f°(xi;v) , there exist positive numbers ¢

and § such that

x' ¢ x+ eB and t <e imply f(x'+tv) - f(x') < -8t .

For any X+ and ti + 0 one has

f(x) < f(x) o

and when i 1is large,

f(xi + tiv) < f(xi) - 6ti < f(x) - éti

] ]
(because 1lim sup f(x ftv)t- f(x') . 0).

x'+x
t+0

Consequently, x; + tiv e C if 4§ s large, and in view of Proposi-

tion 5.3, v e T(Cix)

Now if in'addition f 1is regular, we prove that

v e K(Cix) implies f°(xiv) <0,

which shows that C 1is regular and equality holds. One has by definition:

dc(x+tv)
Yim inf -5 = 0.
t4v0



In particular, for each positive €, there exists t, ¢ 0 with

dC(x + tiv) < Eti .

Hence there exist P C such that

lIx + t.v - xi]| <2et, .

and of course
f(xi) < f(x) .

Cne deduces then

f(x+tiv) - f(x) f(xi) + 2€2ti - f(x)
<

< 2eh

ti 'f._i
where % is a Lipschitz constant of f near x . This follows that

fo(xsv) = f'(xiv) <0 . m

Corollary 5.7

Let C be as in Theorem 5.6 . Then

N(x]C) S cone af(i) .
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Moreover, equality holds if f 1is regular at x .

Proof. By Theorem 5.6, one has the inclusion:

{vi f°(xiv) <0} € T(C:ix),

which implies

(T(C:x))® S {vi fo(xiv) < 0}° .

This is the same as
N(x|C}) & w*-¢1 cone 3f(x) .

To conclude the result it suffices to note that vcone 3f(x) is closed be-

cause 3f(x) 1is weakly compact and not containing zero. m

Corollary 5.8

Let C={xe X: fi(x) <0, i=1,,4.4n} and Xy € C with fi(xo) =0,
i=1e004n . Then, if fi are strictly differentiable at X0 and
DSfi(xO) are positively linearly independent, it follows that € dis regu-

lar at x and

n
N(x|C) = {1_51 ADsfilxg) + Ay >0, 4= Tiuuun) o



Proof, Define
f(x) = max{f,(x) : i =1,...0n} .
Then f is Lipschitz near Xg. and regular at Xg ¢ The set

C=1{x: f(x) <0)

is regular at Xg where f(xo) = 0. Inview of Corollary 5.7 we have

equality

N(xo|C) = cone af(xo) .

By Theorem 4.5, af(xo) is the convex hull of DSfi(XO) « This im-

plies the result of the corollary. m

2,6 Fkeland's Variational Principle

Let X be a complete meiric space with metric d{x,y) , and let
f: X+ RU {+2} be lower semicontinuous bounded below., We shall study the
points which almost minimize f . For this purpose we need the following
partial order in the product space X x R : for a fixed € >0,
(xya) > (x'4a') if a-a' +ed(x,x") <0 . It is obvious that the order
> above is reflexive, antisymmetric transitive, Moreover, for each fixed

(Xo.ao) e X x R, the set
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{(xya) ¢ X xR : (x,a) > (xo.ao)}
is closed,

Lemma 6.1

let S be a closed set in X x R with the property that there is a
number m such that a > m whenever (x,a) € S. Then for every

(xO.aO) ¢ S, there is a maximal element (x4,ay) in S with
(xgo0y) > (xgeg) -

Proof. Define a sequence {(xn.an)) in S by induction starting with

(xo.ao) :

w
I

= {(x,a) e S : (xya) > (xn.an))

3
n

infla : (x,a) ¢ Sn v some x 6 X},
It is clear that m >m. Take (xn+].un+]) € 5 with the property:
1
>3 (o -m). (6.1)

Then Sn are closed and Sn+1 =S .

Moreover, by (6.1) one has



1 _ n
lun.ﬂ - mn+‘||5 —Z-Ian - mnl < 'ao m|/2" .
Hence, for every‘ (x4a) C Sn+1 '
g - ol <la - m 1< log-ni/2",

d(xn+1.x) < |u0 -m|/2" .

In other words, the diameter of Sn tends to zero.

Since X and R are complete, one has

N Sn = {(xg00y))
n>1

By definition, (Xy,0y) > (xn.un) for all n . Now we show that this
element is maximal in S, In fact, if (x',a'} > (x4.@,) + then by tran-

sitivity, (x',a') > (xn.un) for all n, whence (x',a') & F\Sn . which
n

implies that
(X|' l) = (X*'(l*) [

The proof is complete. @
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Theorem 6,2

If is a point in X satisfying

*0

fxg) < inf f +e,

for some € > 0, then for every A > 0, there exists x., ¢ X such that

A
) fx,) < f{xp)
i1) d(xy0%) < A

iii) for every x # Xy + one has

f(x) + i d(xixy) > f(x,) .

Proof. Set S =epi f, a-= i . (xo.ao) = (xo.f(xo)). According to Lem-

ma 6.1, there exists a minimal element (xx.a) ¢ S with the property

(xy0a) > (xgo fxy)) « (6.2)
Since (xx.a) e S one has

(xk'f(xl)) > (XA'U) "

which implies a = f(xx) by maximality..
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It follows from (6.2) that
f(xx) - f(xo) + ad(xx.xo) <0, (6.3)

which implies i) of the theorem. The maximality of (xk,f(xx)) in S shows

that for x e X, x # Xy the relation
(x £(x)) > (x,0f(x,)) o
is impossible. This implies iii) of the theorem, Finally, since

f(xo) <dinf f + €,

one has

f(XA) > f(xo) -€ .

Combine the latter inequality and (6.3) to see ii). m

2.7 Problems

1. Prove that if f is continuously Gateaux differentiable
at x , then it is strictly differentiable at this point,

and hence Lipschitz near x .
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2,

3.

Calculate f°(x;¢) of the function

f(x].....xn) = max X,
i=lyeaaqn

Calculate 3f(0) of

f(x) = x2 sin(1/x)

to show that 3f(x) # Df(x) .

‘Let £ e L7[0,1] . Show that for

X
f(x) = S g(t)dt
0

af(x) = [E(x), E+(x)] . where ¢ and t* are the essential

supremum and infimum of £ at x .

Let f be Lipschitz on an open set. Then f is differen-
tiable almost everywhere on that set. Let Qf be the set
where Vf does not exist. Then for each set S with

Lebesgue measure O -, one has

3f(x) = conv {lim Vf(xi): X+ Xy Xy é¢Su Qf} .

Prove this fact.
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10,

let f1. f2 be Lipschitz near x . Show that f1f2 is

Lipschitz near x (x e—R‘) and
a(f]fZXx) c fz(x)af](x) + f](x)afz(x) .

Llet f., f, be Lipschitz near x e R . fz(x) # 0 ., Show that

1" 2
f1/f2 is Lipschitz near x and

fo(x)af (x) ~ £,(x)af,(x)

3(f /f,)(x) €
(£, (x))?

Prove that if C 1is convex, then N(x|C) coincides with

the normal cone in the sense of convex analysis.

Prove that 0 e 3f(x) + N(x|C) if f 1is Lipschitz near x and

attains a minimum over C at «x .

Let f: X + X be a directional contraction, where ¥ is a

complete metric space, This means that f s continuous and
there exists € ¢ (0,1) such that for every x e X with
f(x) £ x , there is y e (x,f(x)) with d(f(x),f(y)) < ed(x.y) .

(it is supposed that
d(x, f(x)) = d{x,y) + d(y,f(x)) .

Prove that f admits a fixed point, i.e. there is x4z ¢ X

with f(xg) = x4



CHAPTER 3

OPTIMALITY CONDITIONS

3.1 Existence of Extrema

Let X be a nonempty set of a topological space, f a map from X

to R.

Definition 1.1

A point x° € X s called a minimum point (resp., a strict minimum

point) of f on X if the inequality
f(x) > f(xo) (resp., f(x) > f(xy)) (1.1)

holds for all xe X, x # Xg It is called a local minimum point of f
if there exists a neighborhood U of Xg in X such that (j.1) holds for
all xe U,

Maximum and local maximum points are defined in a similar way, We
shall also use the notion of infimum of f on X . It is the greatest num-

ber (denoted inf f) such that
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f(x) >inf f, for all x e X,

the notion sup f 1is defined similary.

Remark: A number t e R is the infimum of f if and only if
f(x) >t for all x € X and there exists a sequence {xn} in X with

Tim f(xn) =t . Apoint xg € X is minimum if and only if f(x0)= inf f.

Lemma 1.2

A minimum point of f on X exists if and only if the set
f(X), ={teR:t>f(x), some xeR} isclosed and has a finite Tower

bound.

Proof., 1f Xy is a minimum point of f on X, then f(x0)= inf f and
f(X), = {t 2 t > f(x)} . hence it is closed and has a lower bound, for

instance f(xo) .

Conversely, if f(X)+ has a lower bound, then its infimum say to
is finite. Moreover, since the set is closed, this infimum belongs to it.
In other words, tO z'f(xo) ¢ some Xy € X . But f(xo)e f(X)+. one ob-
tains actually tO = f(xo) which shows that X9 is a minimum point of f

on X, =

Theorem 1,3

Given f on a nonempty set X . It attains its minimum on X in

the following cases

i) X iscompact, f is lower semicontinuous.
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ii) There is t e R such that 1evf(t) is compact nonempty and

f is lower semicontinuous on this set,

Proof. Suppose that i) 1is satisfied. In view of Lemma 1,3 it suffices
to show that f(X)+ is closed and it has a lower bound. In fact, if it has
no lower bounds, there exists a sequence {xn} in X such that 1lim f(xn)=—w.

Since X 1is compact, we may assume that 1im Xp=Xg € X .

The value f(xo) is finite, neverthless, lim f(xn) = -
which shows that f cannot be lower semicontinuous at Xge Thus, f(X)+ is
bounded from below, Let t be the infimum of this set, Then by defini-
tion, t is also the infimum of f, Hence there is a sequence (xn) in X
such that 1lim f(xn) =t , Again, since X 1is compact one can .assume that
lim Xy = Xg € X . Due to the lower semicontinuity, t = lim f(xn) > f(xo).

hztually, we have t =_f(x0) and Xq is a minimum point of f on X .

For the second case it suffices to observe that if X0 is a mini-
mum point of f on the set 1evf(t) . then it is also a minimum point of

f on the whole set X . ®

3.2 Optimization Problems

Let X and f be as in the preceding section. The minimization

problem corresponding to X and f can be given in the form:
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(P) min f(x)

Sat. X € X .

Furthermore, let h1.....hk v 9qresesly be functions from X to R,

The problem with constraints is given in the form:

(cP) min  f(x)
s.te x e X
gi(x)f 0, i=l,...4m (2.1)
hj(x)= 04 j=levensk (2.2)

Constraints (2.1) are 'inequality constraints, and constraints (2.2)
are equality constraints, It is useful to observe that inequality cons-
traints can be transformed to equality constraints and vice versa., For
instance, given {2.1) . introduce slack variables Yyreees ¥p € R and

express (2.1) as

g;(x) + yf =0 yi=lieaum,

Conversely, given (2.2), one can write it as

hj(X) f 0 .
-hj(x) f 0 ’ j=1|-.-'kc

One calls (P) an unconstrained probiem and (CP) a constrained

problem. Sometimes it is supposed that X is the whole space when
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examining unconstrained problems., The set of feasible solutions of (CP)

is defined as
X0={x e X : gi(x)=0 . hj(x)=0 I P I £ IR '3

Definition 2.1

A point Xq € X 1is said to be an optimal solution of (CP) if it is
a minimum point of f on the set of feasible solutions XO t in this case

f(x in the optimal value of (CP).

0)

Theorem 2.2

Suppose that X is compact, f, qreeeeg, are lower semicontinuous,
while h]""‘hk are continuous on X . Then (CP) has optimal solutions

whenever the feasible solution set is nonvoid.
Proof. It follows from the lower semicontinuity of 9; and continuity of
hj that XO is closed, hence compact. Now the result is deduced from

Theorem 1.3. ®»

3.3 General Optimality Conditions

Let us consider a constrained minimization problem:



97

(P) min f(x)
s.t. x € X,
91()() _<_ 0. i=10-10|m

hj(X)

u

04 j=lieverky

\

where f, g; hj are functions from a Banach space E to R,
X CE. We shall assume that X is closed, f, 95 hj are Lipschitz near

any point of X with a common Lipschitz constant 20 . We shall write
g = (g]v----gm) v h= (h-‘|o--' hk) .

Lemma 3.1

Suppose that f attains a minimum over CC X at xeC, Then

for every £ > 2, , the function
f(y) +2d.(y)

attains a minimum over X at x . Moreover, if 2> 20 and C 1is closed,

any other point minimizing the above function over X must also lie in C .

Proof. Suppose to the contrary that there exists y e C and £ > 0 such

that

f(y) +2d.(y) < f(x) -%¢ .
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Let ¢ be a point in C such that
lly = cll < de(y) + €.
Then one has

flc) < f(y) + 2 |ly - cff

tA

f(y) + 2(de(y) +¢€)

< f(x) ,

which contradicts the fact that x minimizes f over X .

Now, let £ > 20 y and let y minimize f(*) + ldc(') over X,

Then

fly) + 2dc(y) = f(x)

<) + (R+20)d(y)/2 .
Hence (2-—20)dc(y) <0, and dc(y) =0 ..

Lemma 3.2

Suppose that f attains a local minimum at x . Then 0 ¢ af(x) .



Proof. It is clear that f°(x;v) > 0 . By Proposition 3.2, 0 ¢ 3f(x) . =

Definition 3.3

The lLagrangian of (P) 1is the function

L(xyAsEame®): E X R x R™ X R

k x R+R

L(X'Avglnvl) = Af(x) + €9(X) + ﬂh(x) + 2|(leﬁ-n)| dx(x) .

Theorem 3.4

Let x be an optimal solution of (P) . Then for every £ > 20 ’

there exists A>0, >0

and n not all zero such that

0e¢ BXL(X.X‘Q-H.R)

£g(x) =0 .

Proof. Let us consider the following parameter set:

T={(t=(NEn): A20, 620, [(Mem)| =1} .

This set is compact.

defined by

For every € > 0, consider the map F: E + R

F(y) = max{ t(f(y) - f(x) + &, g(y) » h(y)) : t e T].
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It is obvious that F(x) = € . Moreover,
F(y) >0, for all ye X. (3.1)

In fact, if F(y) <0, then y is a feasible solution and f(y) < f(x) - ¢,

which is a contradiction, In this way,

F(x) <inf F + €.

By Theorem 6.2 (Chapter 2), there exists u € (x + vE B(0,1))N X such

that for each y € X one has

F(y) + /& fly - ull ¢ F(u) .

It is easy to see that given & > 20 o if € is small enough, &
is a Lipschitz constant of the function F(y) + v€ ||y - u|| near u . In
view of Lemma 3.1, u 1is a local minimum of the function

y »F(y) + v lly - ull + 24 (y) =

=max {L{y.AMEineR) = Af(x) + €A} +vE {ly - u]|
(M Eyn)eT

By Lemma 3.2, one has

0 e 36(u) + vE B4(0,1) , (3.2)
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where G(y) = max{L{y, A\ E,m L) - Af(x) + €}}
T

Bu(0,1) = {y eE': Jlyll<1}.
This is because:
3ly - u]l = Bx(0,1) at y=u.

Now we want to calculate 3G(u) by using Theorem 4,5 of Chapter 2 .

We §how first that the map
(toy) » 3 Lyits D (3.3)
is closed in the sense that
§XL(y.t.2) = BXL(y.t.Q) '
where

§XL(y.t.l) = w¥-c] conv{y e E': there exist Y, € BXL(yi.ti.l)

with y,‘ + Y t'l + t, Y,Iwi Y} N
In fact, for any t1. t2 € T, the function

y * L()’-t]vl) - LKY|t2|Q) = (t-l"tz) (flguh)()')
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is Lipschitz of rank 2|t1 - t2| near x ; thus, by Propositions 3.2 and
4,2 of Chapter 2,

3. L{yityi2) € 3, L(ystye2) + l|t] - t2| B,(0,1) .

This and the closure property of the generalized gradient (Proposi-

tion 3.4, Chapter 2) imply that the map (3.3) is closed.

Moreover, since F(u) > 0 (because u ¢ X and (3.1), there is a
unique tu € T at which the maximum defining F , hence G 1is attained.

In fact,

max ta > 0 ,
teT

if tia = tya = $2? ta . tiit, e T and t, # t, « then taking
ty = (t] + t,)/2 we have that Htoll < 1. Take t.* = to/”toll to see
that ty e T and tya = toa/HtOH > tia , which is a contradiction, Now

applying Theorem 4,5 to (3.2) one has
0e¢ BXL(u.tu.l) + /€ B,(0,1) . (3.4)

It is clear that if g;(u) <0, then the corresponding &; in t,

equals zero. (This is because

t a = max ta = max ta ,
teT téconv T



and if gi > 0, taking E; + 0 one arrives at a contradiction

max ta > max ta =t a ) .
te convT teT

Now, with €; + 0 one sees that uj *x and tu converges to
C i
some t ¢ T . This and relations (3.3), (3.4) imply

0¢ BXL(x.t.l) .
The proof is complete, ®

3.4 Optimality without Constraints

Let us consider the problem

min f(x)

s.t. x e X,
where X is a nonempty set of a Banach space E , fi: E + R . Suppose that
the first derivative Df(x) and the second derivative DZf(x) exist and

are uniformly continuous on a neighborhood of Xq € X.

Theorem 4,1 (First-Order Condition)

1f Xg is a local minimum point of f on X, then

Df(xo)(v) >0, for all ve K(X;xo) .
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Conversely, if at xp € X where X is in a finite dimensiona) sub-

space of E ,
Df(xo)(v) >0, for all v ¢ K(X:xo) .
then Xg is a strict local minimum point of f on X .

Proof, Llet v € K(X;xo) « Then exist ti e R, v, € E with VitV

t'._i + 0 such that

By the mean-value theorem,
f(xi) - f(xo) = Df(yi)(tivi) . for some y; € [xo.xi] .
Since Df s uniformly continuous,
lim Df(yi)(vi) = Df(xo)(v) .

Now, since Xy is local minimum one has

f(xi) - f(xo) .0

Df(xo)(v) = }im Df(yi)(vi) = lim

Y
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Conversely, if X0 is not a strict local minimum point, there exists

x; € X, X ¢ Xg o+ 1im X; = Xg such that

f(x) < fxg) »

By the finite dimension assumption, one may assume that

v = (xg - XO)/”xi - xOH converges to a vector v e E . Then v ¢ K(Xixqg)s

On the other hand

Df(xy)(v) = Vim Df(y,)(v,) = Vim —1 Y 509

which contradicts the assumption (the points y; € (XO'Xi) exist by the

mean-value theorem).®

Theorem 4.2 (Second-Order Condition)

Suppose that Xy is a local minimum point of f on X where

Df(xo) =0, Then for each v ¢ K(X;xo) one has

sz(xo)(v.v) >0.

Conversely, if X is contained in a finite dimensional subspace of
E and at a point Xy € X Df(xo) = 0 and for every v € K(X;xo) e v#ED

one has

sz(xo)(v.v)'> 0,
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then xg s a strict local minimum point of f on X .

Proof. Llet v e K(X;xo) . There exist ti +0, VitV such that

Xg= x4+ tivi € X, Since sz(x) is uniformly continuous, one has

F(x;) = f(xg) = DF(xXx;=x,) + % sz(xo)(xi—xo.xi—xo)

+ r(xi - xo) '

2
where ||r(xi—x0)||/||x1—x0|| >0 as x; ¥ xy.

In other words,
f(xi) - f(xo) - Df(xo)(xi-x

)
2 . 0
D f(xn)(vev) = 21 . (4.1)
(x0 VyV im t2

i

Since Df(xo) =.0 and f(xi) > f(xo) whenever i s large enough,
(4.1) implies

D2F(xg)(vav) 2 0 .

For the converse part, suppose to the contrary that there are

X, € X, Xy ¥ Xg o Tim X, = X such that

f(xi) < f(xo) .



We may assume that v,

i = (xi—xo)/”xi - XOH converges to some

veft. Then v K(X:xo) . Moreover, by (4.1),
2
D f(xo)(v.v) <0,

which is a contradiction to the assumption. =

3.5 Optimality with Constraints

Let us consider the following constrained problem:

(CP) min  f(x)
s.t. gi(x) <04 1= 1esarm
h. =0, J="Treaerk
J(X) J

The set of feasible solutions is denoted by X C E . Let Xg
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We say that inequality constraint gi(x) < 0 is active at Xg 0 in this case

i is called an active -index, if gi(xo) = 0 . The set of active indexes is

denoted by 1 = {11.....ie} .

Denote

S(xo) ={veckE: Dhj(xo)(v) =0, 3= 1yeeark

Bgi(x)(v) <0, iel},
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Lemma 5.1

For every xg € X , one has K(X:xo)g S(xo) .

Proof. let v e K(X.xo) . There are X, € Xy Xp ¥ Xge b ¥ 0 such

that

Since X, are feasible solutions,

hj(Xn) = hJ(XO) =0 [ J = 1'---|k
g,(x ) <0

g{(xo) =0,iel,.

In view of the mean-value theorem one has

: ho(x ) = h.(xq)
Dhj(xo)(v) = lim A A LA R L 04 j=1Nveeerk

t
n

9.(x ) - g.(x4)

Dg. (x)(v) = lim—t L0 ¢, ieq.n
1 0 t =

n

Theorem 5.2 (Kuhn~Tucker Condition)

Suppose that Xy is an optimal solution of (CP) and it is regular

in the sense that K(X.xo) = S(xo) . Then there exists a nonzero vector

k

(Aemt) € R™ x R® with A > 0 called Langrange multipliers such that



m k
~ ’
Df(xo) + 2.,4 )‘1' Dgi.(xo) +Z uJ. Dhj\xo) =0 (5.1)
i=1 Jj=1
)\191(x0) = 0 ) i=1|-u-'m . (5.2)

Conversely, suppose that E is finite dimensional and a feasible

solution X, satisfies (5.1), (5.2), and Df(xo)(v) # 0 whenever

vV e S(xo). v#0 . Then % is a strict local minimum point of f on

X .
Proof. According to Theorem 4.1,

Df(xo)(v) >0, for all ve K(X.xo) .

Since K(X;xo) = S(xo) + the above relation show that -Df(xo)
belongs to the polar cone of the cone S(xo) . The polar cone is the convex

hull of the cone generated by vectors
Dgi(xo) . el and Dhj(xo) ' —Dhj(xo) v J=leaank

Hence there exists (X.u1.u2) >0 such that

k

. k
“Dflxg) = D ADa(xg) + D widh.(xg) + D (D (x))
iel j=1 =1

- which implies (5.1) and (5.2) by taking A, =0 if i¢ 1 and

TRV
AR R I
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Conversely, in view of Lemma 5.1, K(X.xo) - S(XO) + therefore one

has by (5.1),

m k
Df(xo)(V)=(—i§ >\1-D<_J1.(x0)—jz_:1 Hy Dhi(xg)(v) 2 0.4

for a1l v e K(X,x This and the condition Df(xo)(v) # 0 whenever

0)'
vV e S(xo) v v# 0, show that

Df(xo)(v) >0 , for all ve K(X.xo) s viOD . @

It remains to apply Theorem 4.1 to complete the proof.

Before presenting second order conditions let us make some notations.,

For a fixed vector (X, p)e Rmek. denote

m k
L(x) = f(x) + 3, A0.(x) +35 w h.(x)
i=1 j=1 3 J

'}

So(xo) ={ veeE: Dhj(x0)= 0 for j=1,..u4k
Dgi(x0)= 0 if iel, Ai>0.

Dgi(xo)f 0 if iel, A1=0 }.

Theorem 5,3, (Second Order Condition)

Suppose that Xg is a regular optimal solution of (CP). Then there

exists a vector (A,p) as stated in Theorem 5.2 such that for each v e So(xo),



111

p2Llxg)(vav) > 0 .

Conversely, if E is finite dimensional and Xy is a feasible solu-

tion where the following conditions hold:
i) there exists (A,u) satisfying (5.1) (5.2)
ii) 02 L(xo)(v.v) >0 for ve S(xo) with Df(xo)(v)=0. v # 0,

then Xg is a strict local minimum point of f over X .

Proof.  For the first part, ()u) exists according to Theorem 5.2. More-

over, if denote

X0={x e X gi(x) <0 if Ai =0,
gi(x) =0 if Ai >0 },

then Xg minimizes L on XO . Observe that DL(xO) =0, hence in view

of Theorem 4.2,
D2L(xg)(vav) 2 0 for v e K(Xguxg) = So(xy) »

As to the converse part, suppose to the contrary that there are

X, € X, LI x0 with

f(xn) < f(x (5.3)

0) '
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One can assume that

X - x
1im -2 0

kx|

=vet,

It is evident that v e K(X,x and by (5.1),

0

Df(xy)(v) > 0

0
On the other hand, by the mean-value theorem and by (5.3)
DF(x)(v) <0 .

Hence Df(xo)(v) =0 . Again applying the mean-value theorem and remember-

ing that X, = 0 if i¢é 1 one has

D2L(xg)(viv) € 0
which contradicts 11); [ ]
3.6 Convex Problems
Let us consider a problem
(P) min f(x)

s.t. gi(x) <0 ; i= Traaee
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where f, gyee..vq  are convex functions from E to R.

He suppose also that there functions are differentiable,

Proposition 6.1
If X9 is a local optimal solution of (P), then it is also a glo-

bal optimal solution.

Proof., Suppose to the contrary that there is some feasible solution «x

with

f(x) < f(xo) .

Then for every t e (0,1) , tx + (1-—t)x0 is also feasible. More-

over, since f 1is convex, one has

f(tx + (1-t)x0) < f(xo) .

When t approaching 0, tx + (1-t)x0 tends to Xo and the above

>

inequality contradicts the local optimality of o ®

Theorem 6.2

If at a feasible solution Xg of (P) there exists A >0 such

that
m
Df + E =
(xo) 2 xiDgi(xO) 0,
i=

A’lg1(x0) =0 ' i= 1'--.'m v
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then xq s an optimal solution of (P) ,

Proof. Suppose to the contrary that X is not optimal, i.e., there is a

feasible solution x with

f(x) < f(xo) .

Consider the vector v = x - Xg * Since f is convex, one has

f(x0+tv) - f(x

DE(x.)(v) = Tim o (6.1)
0 L -

t+0 -t

Furthermore, by condition Aigi(xo) = 0 , one has Ai = 0 whenever

i is an unactive index. Hence

g(x0+tv) - 91(’(0)
AiDgi(xo)(v) = 1im Ai <0, (6.2)

t+0 t

for i =1,,..,m. Combine (6.1) and (6.2) to see the contradiction
Df(xo)(v) + I AiDgi(xo)(v) <0.

The proof is complete. ®
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3.7 Problems

1. Let X be the unit ball in a Banach space. Is it true that

any continuous function attains its minimum on X?

2. Let X be a closed convex set in a separated topological

vector space E . The recession cone of X 1is the cone

Rec(X)={v e E: X + tvc X for all t >0} .

Prove that if f s a convex continuous function on X with
the property that g(t) = f(x+tv) 1is an increasing function
on t >0 for any fixed x € X y, v € Rec(X) with

lim g(t) =« , then f attains its infimum on X .
e

3. Prove that K(X.xo) = S(xo) in the following cases
i) the constraints are linear
ii) h].....hk' are linear, g, + 1€ 1 are convex

iii) the constraints are convex and int X £ ¢

iv) Dh1(x0).....th(x0) ' Dgi(xo) v i €1 are linearly

independent.

4, Give an example to show that for a convex problem in Section

6, it is not necessary for XA > 0 exist which yields

m
Df(xo) + gé% AiDgi(xo) =0,
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where xg 1S an optimal solution,

5. Prove that a point Xg € int X 1ds a minimum point of a convex

function f if and only if

0 e af(xo) .



CHAPTER 4

DUALITY THEOQRY

4.1 Duality via Conjugate Functions

Consider a minimization problem:

(P) min  f(x)

s.t. xe X,

where X 1is a separated topological vector space, f is a function from

X to the extended real line R = R U {&=} ,

Let ¢ be a function from X XY to R, where Y is another to-

pological vector space,

Suppose that ¢ (x,0) = f(x) . We consider the minimization problem

(Py) min @ (X,y)

s.t. xeX.

This problem is called a perturbed problem of (P) .

117
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The conjugate function of ¢ is defined as

e*(g.n) = suple(x) + n(y) - (xyy): (x,y) e X x Y},

for every (g,n) e X' xY',

One defines a maximization problem called the dual problem of (P) :

(P*) max -« ¥(0,n)

s.t. neyY'.

Theorem 1.1  (Weak Duality)

For every x e X, neY' one has

f(x)

Iv

-«0*(0-1’1) .

Moreover, if there are Xg € X, ng ¢ Y' such thst

f(xo) -¢*(0.n0) ]

then is an optimal solution of (P) , o is an optimal solution of

*0
(P*) and the optimal values of theseAprob1ems are equal,
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Proof. It follows from the definition of conjugate function that
¢*(0yn) > n(y) - e{x,y) 4y for (xyy) e XxY,ne¥' .
In particular when y = 0 one has
f(x) = ¢(x,0) > +*(0,n) .

In the case where Xy and N, exist as stated in the theorem, it
is immediate that they are optimal solutions of (P) and (P*) respecti-

vely.m

Following the scheme described above one can constructs the dual

(P%%)  for (P¥) and so forth, It is obvious that
(P¥) = (P¥*¥)

It can also be seen that if ¢ is a convex closed function which

is not identically « or -, then

’

(P) = (P¥¥)
Set.

h(y) = infe (x,y) (the marginal function) ,
xeX
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Lemma 1.2

Assume that ¢ (x,y) s a convex closed function not identical to
4o or -« , Then
i) hly) 1is a convex function on Y
ii) h¥(n) = ¢*(0,n) , for all ne Y
iii) HHE(0) = sup = h*(n) .

neY

Proof. For the convexity of h , let Yis ¥p € Y, te[0,1]). If h(y1)

or h(yz) = +o , the convexity is obvious,

Assume that both of them are smaller than +o , By definition of

inf , for each a > h(y1) ¢« b> h(yz) one can find XpeXy € X such that

h(y]) S 14 (X-Ily‘]) f a

hly,) € @ (x50y,) <b
This and convexity of ¢ yield

inf ¢ (xity, + (1-t)y,)

1-t))=
h(ty, +y2( b)) inf

1A

o (txg + (-t)x, o tyg + (1-t)y,)

In

t ¢(x1.y1) + (1-t)e (xz.yz)

A

ta + (1-t)b .
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Let a run to h(yl) . b to h(yz) . We obtain

h(tY] + (1-t)y2) _<_ th(y-|) + (1"t)h(y2) ’

which shows that h is convex.

For ii) let us calculate h*(n) :

h*(n)

i}

sup {n(y) = h(y)}
yeY

i

sup{n(y) - inf ¢ (x,¥)}
y X

sup sup{n(y) - ¢(x,y))
y x

¢ ¥(0,n) .
The last equality of the lemma is derived at once from ii).m

Definition 1.3

(P) is to be normal if h(0) is finite and h is lower semiconti-

nous at 0 .

Theorem 1.4

Assume that ¢ (x,y) is convex closed not identical to + @ or - =,

Then the following conditions are equivalent
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i} (P) is normal

ii) (P¥) s normal

iii) inf f(x) = sup - h¥(n) and this value is finite.
xeX ney'

Proof, We shall prove i) <=»> 1iii). The equivalence between 1ii) and

iii) follows directly from the fact that (P*¥¥) = (P),

Assuming (P) to be normal, we have
h¥* < ¢l h < h (1.1)

Since (P) 1is normal, ¢1 h(0) = h(0) e R, Since ¢l h 1is convex

lower semicontinuous and it admits a finite value at 0, it is proper.

Apply Theorem 4,4 of Chapter 1 to have the relation
(¢l h)** = ¢l h .
The inequalities of (1.1) yield
h¥* = h*¥ > (c1 h)* > h* ,

Consequently, h* = (c1 h)*¥ and h** = (¢1 h)** = ¢1 h , whence

€1 h(0) = h(0) = h**(0) . In view of Lemma 1.2 this implies iii).

Conversely, it follows from iii) that h(0) = h*¥(0) ¢ R ., We have

then from (1.1) h(0) = ¢1 h(0) , which shows that (P) is normal.m



Problem (P) 1is said to be stable if h(0) is finite and h s

subdifferentiable at 0.

Lemma 1.6

The set of optimal solutions to (E*) is identical to 3h¥*(0).
Proof, Let Ny be an optimal solution of (P¥) , Then
- ¢*(0ing) > - ¢¥(0,n) , for alln ¢ Y' .,
This implies that
- h¥(ng) = h**(0) ,
which is equivalent to Ny € 2h¥*(0) . m

Theorem 1.7
The following two conditions are equivalent to each other:
i) (P) 1is stable

ii) (P) s normal and (P*) has optimal solutions.

Proof. For the implication i) => ii) , suppose that (P) 1is stable.
Then h(0) 1is finite and 9h(0) # & . Hence h(0) = h¥**(0) ¢ R . This

means that (P) 1is normal and in addition

123
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Ih¥*(0) = 3h(0) £ ¢ .

In virtue of Lemma 1.6, (P¥*) has optimal solutions,

For the implication ii) => i) , if (P) is normal, h(0) = h**(C)eR,

and if (P*) has optimal solutions, the set 3h¥**¥(0) = 3h(0) ds nonempty,

Hence (P) is stable.m

4,2 Lagrangians and Saddlepoints

As in the previous section, ¢ (x,y) : X x Y + R s a perturbation

of (P) .

Definition 2.1
The function L: X x Y' » R defined by

L(x,n) = inf{ @ (x,y) - n(y)}
yeY

is called the Lagrangian (classical) of (P) relative to the given pertur-

bations.,

Proposition 2,2
L{xyn) 1is a concave upper semicontinuous function in the variable
n for every fixed x ; and it is convex in x for every fixed n whenever

¢ 1is a convex function.
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Proof. It is clear that for every fixed x e X, the function g(y) =e¢(x,y)

has its conjugate

g*(n) = - L(x,n)

which is convex lower semicontinuous. Hence L{x,n) 1is concave upper semi-

continuous in n .,

Now, suppose that ¢ 1is convex. Let Xq1 X, € Xy te(0,1). The

inequality

L(txy + (1-t)xyen) < tL(xyen) + (1-t)L{x,en) (2.1)

is obvious if L(x1.n) or L(szn) = 42 , Hence we may assume that both
of them are not += , Llet a > L(x].n) « b > L(xz.n) .’ There are

Yyr ¥y € Y such that

L(xpen) € @ (xq0yq) - nlyy) < a

L(szﬂ) < (X21y2) - ﬂ(yz) < b.

These inequalities and the convexity of ¢ show that

A

L{txy + (1-t)xpem) tle(xyyq) - nlyy)] + (1—t)[¢(x2.y2) - n(y,))

A

ta + (1-t)b .
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when a runs to L(x].n) and b runs to L(xz.n) » the above relation

implies (2.1) .®m

We shall express problems (P) and (P%*) din terms of L . Without

assuming anything about ¢ one has

sup {E(x) + n{y) ~e (x,y)}

’P*(gv n)
. Xy Y

= sup{&(x) + sup{n(y) - ¢ (x,y)}}
x y

sup{£(x) - L(x,n)}
X

whence the problem (P*) defined in the previous section can be written

in the form

(P#*) max inf L(x,n) .
neY' xeX

Similarly, if ¢ s assumed to be convex closed, then

e (xyy) = g¥*(y)

sup{n(y) - g*(n)}
n

sup n(y) + L(x,n)}
n

where g(y) = ¢ (x,y) for a fixed x e X .
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Hence problem (P) can be written as

(P) min sup L(xyn) .
xeX neY'

Remark 2.3

Given a function L(a,b) : A X B+ R ., One can consider the minimax

problem

n

sup inf L(a,b) = inf sup L(a,b) . (2.2)
b a a b

In general it is true that

sup inf L(a,b) < inf sup L(a,b) .
b a a b

Hence Theorem 1.1 can be derived from this trivial general relation.

Theory of minimax problems siudies conditions under which (2.2) is true,

Definition 2.4

A point (xo.no) e X X Y' is called a saddlepoint of L if
L(xolrl) S L(xoino) f L(X!no) *

for all xeX,neyVY' .
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Theorem 2.5

Assume that ¢ is a convex closed function. Then the following two

conditions are equivalent to each other:
i) (xo.no) is a saddlepoint of L

ii) X0 is an optimal solution of (P) , Ny is an optimal solution

of (P¥) and the optimal values of these problems are equal,
Proof. First we show the implication i) => ii). By definition one has

Lixgeng) = m;n L(xyng) = - ¢*(04ng)

L(xging) = mra]x L(xoon) = ¢ (x0) .

These equalities and Theorem 1.1 show ii).

Now suppose that 1i) holds, Then

¢ (x430) = = #%(0,n )

But one has by definition
w(xo.o) = s;:\p L(xgsn)

- ‘o*(oﬂlo) = inf L(X.no) .
X
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Kence s:p L(xo.n) = L(xo.no) = i:f L(x.no) which means that (xo.yo)
is a saddlepoint.m

Proposition 2.6

Assume that ¢ is a convex closed function, and that (P) s sta-

ble. Then x, 3is an optimal solution of (P) if and only if there exists

0
e Y' such that (xo.no) is a saddlepoint of L .

o
Proof, The if part follows from Theorem 2.5 . Now, if Xo is an optimal
solution of (P) and (P¥) is stable, then (P¥) has at least one optimal
solution, say o (Theorem 1,7) and the optimal values of these problems
are equal. Apply Theorem 2.5 to see that (xo.no) is a saddlepoint of

L .@

Now we turn to the conditions for the existence of saddlepoints,

Let us consider the general minimax problem as pointed in Remark 2.3:
L(a,b) : AXB-+R,

where it is assumed that

i) A, B are convex closed nonempfy subsets in reflexive Banach

spaces

ii) L{a,*) 1dis concave upper semicontinuous in b .,

L{*ya) 1is convex lower semicontinuous in a .
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Proposition 2.7

Assume, in addition to the conditions i), ii) above, that for every
fixed b, L(*.b) is Gateaux differentiable on A while for every fixed
a, L(a,*) 1is Gatcaux differentiable on B . Then (ao.bo) e AxB isa

saddlepoint of L 1if and only if

al(a .bo)

- — (a-ao) >0, for all acA (2.3)
da

BL(aO.bo)

——————— (b-b,) <0, for all bcB (2.4)
ab 0% -

Proof. Suppose first that (ao.bo) is a saddlepoint. Then

3L(anby) L(a +t(a~-a )yby) - L(an.by)
———jZl—il— (a—ao) = Jim 207 % %0'20 .

ab t+0 t

But L(aO + t(a-ao).bo) > L(ao.bo) by definition of saddlepoints,

Hence (2.3) follows. ke]ation (2.4) is proven in a similar way.

Conversely, if (2.3) holds, then by the convexity assumption, for

each a e A one has (Proposition 5.1 of Chapter 1)

L(al bo) - L(aoi bo)

L(a0 + (a-ao).bo) - L(aO.bO)
L(a0+t(a—a0).b0) - L(ao.bo)
t




131

whenever t e (0,1) . It is know that

BL(ao.bo)

da

L(a, +t(a-a.),b.) = L(a,.,b.)
(a—ao) = inf 0 0~ 0 00"
t>0 t

Hence (2.3) implies L(a.bo) - L(aO'bO) >0,

Similarly, L(ao.bo) - L(ao.b) > 0 , which completes the proof.g

Theorem 2.8

Assume in addition to conditions i) ii), that A and B are boun-

ded. Then L possesses at least one saddlepoint (ao.bo) on A XB and

L(aseb,) = min max L{a,b) = max min L{a,b) .
0'"0
a b b a

Proof. Since the spaces are reflexive, A and B are compact in the weak
topologies. Moreover, since L(a,b) is convex in a , concave in b , the

properties of semicontinuities are true in weak topologies.

We first prove the case where L(+,b) 1is strictly convex for each
fixed b . It follows that L{+,b) attains its minimum over A at a uni-

que point, say e(b) e A:

£(b) = min L(asb) = L(e(b)sb) .
a
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The function f(b) is concave and weakly upper semicontinuous on

B ., Therefore it attains its maximum over B at a point bO :

and obviously,

f(bo) = max f(b) = max min L(a,b) ,
beB beB acA
f(bo) < L(a.bo) « for all ae A, (2.5)

whence

L(a.(]-k)bo +2b) 2 (1—A)L(a.b0) + AL(a,b) .

In particular when a = e, = e((]—k)b0 4+ Ab) one obtains

f(bo)

v

f(('l—)\)b0 + Ab)

L(ex. (1—A)b0 + Ab)

v

(1-M)L(eyby) + Al(eyib)

> (1-0)f(by) + AL(e,sb) o

f(by) > L(eyib) o for 211 beB .

By the concavity assumption, for ae¢ A, b e B, A e (0,1) one has

(2.6)
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We may assume that e, converges weakly to 2, ¢ A when X runs

A
to 0. We prove that 3 is a minimum point of L(a.bo) y d.e,

2, = e(bo) . In fact,

L(ek.(1—k)b0 + Ab) < L(a.(]—x)bo + M), for aeA,

and by the concavity one has for every a ¢ A :

(1—A)L(ex.b0) + AL(eA.b) < L(a.('l—)\)b0 + 2b) .

Since L(ex.b) is bounded below by f(b) and the function is lower

semicontinuous in the first variable, one obtains

L(a.,b.) < Vim inf L(e,,b.)
0' 0’ - M0 A0

Tim inf (1-A)L(e.,b.) + A(e,,b)
A0 A0 A

1A

1im sup L(a.(1—)\)b0 + Ab)
A

A

L(a'bo) (2.7)
It follows from (2.6) that

f(by) > 'l;"m inf L(e,«b) 2 L(ap:b)
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for every b e B . By definition of f(by) and by the Tatter inequality

together with (2,5) one can conclude

f(bo) = mgx m;n L{a,b) = L(aO'bO) .

This fact and the general inequality
max min L(a,b) < min max L(a,b)
a a

show that

L(aqeb,) = max min L{a,b)
0*o b a

min L(a.bo)
a

min max L{a,b) .
a b

In the second equality we have used relation (2.7).

Now for the case where L is not strict convex, one considers

LE(avb) = L(aob) + E”a” + €20,

Then Le is strict convex in a and it satisfies all requirements,

which yield the existence of a saddlepoint (as'be) :
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Lagrb) + € llall < Lagiby) + € llall < Laub) + € llagll + (2.8)

for a1l aeA, beB.

By the weak compactness one can assume that

a Y 2 bE ¥ b0 when ¢-+0,

Remembering that L s Tower semicontinuous in the first variable

and upper semicontinuous in the second one, one deduces from (2.8) that

L(xo.b) < L(ao.bo) < L(a.bo) , for aeA, bsB.

This means that (ao.bo) is a saddlepoint.m

Theorem 2.9

Assume in addition to i), i1) that there exist a, ¢ A and by ¢ B

such that

1i4) lim  L{a,by) = =
||+

iv) 1im  L(agb) = - =
bl

Then L possesses at least a saddlepoint and

L(ao.bo) = min sup L(a,b)-= max inf L(a,b) .
a b b a
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Proof. For a fixed positive u, let

Au ={aeA: Jal

A

u}-

A

Bu ={beB: |ib|} <u}.

One can choose p Jarge so that x4 ¢ Au v by © Bu . These sets
are obviously convex closed bounded. In view of Theorem 2.8, there exists
(au.bu) a saddlepoint of L on Au X Bu « which means that

L(au.b) < L(au.bu) < L(a.bu) . for (a,b) ¢ Au X Bu (2.9)

Since L(*,by,) is convex lower semicontinuous, condition iii) im-

plies that it is bounded below:
-o<a<Ll{aby) for all aeA.

Similarly,

+®> 8 > L(ag:b) + for all beB.
In particular, using (2.9) and two inequalities above one has

L(au.b*) < L(a*.bu) <B

L(a*'bu) > L(au.b*) >a



for all u . It follows from conditions iii) and iv) that (au) ' {bu}

are bounded. One can assume that they converge weakly to 3, and b0

respectively., Relation (2.9) yields

L(agsb) < Llasby) « forall ae A, beB.

Hence (ao.bo) is a saddlepoint of L on AXB ,®

4.3 Special Cases

Case 1. Let us consider the problem

(P) min  f(x,Ax)

s.t. x € X,

where A is a linear continuous operator from X to Y and

f: XXY+R.,

We consider the perturbations
¢ (xyy) = f(x, Ax-y) .

It is easy to see that the dual problem is of the form

(P*) max -9¢¥*(0,n) = -f*(A*n,-n)

s.t. neVY'.

137
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It is also clear that ¢ s convex if so is f , and ¢ 1is convex

c¢losed not identical to + = or -« if so is f .

Theorem 3.1

*Assume that f s convex, inf f(x,Ax) is finite and that there
X
exists Xq € X with f(xO.Axo) < +o suych that the function f(xo.y) is

continuous in y at Axo .

Then (P) s stable:

inf f(x,Ax) = sup - f¥(A¥n, -n)
X n

and (P*) has at least one optimal solution n . -
Proof. It is evident that the function
h(y) = inf f(x,Ax-y)
x

is convex with h(0) finite. Moreover, f(xo.y) is continuous at Ax0 '
hence it is bounded on some small neighborhood of Ax0 . Consequently,
h(y) is bounded on a neighborhood of zero, which implies that it is conti-
nuous at zero, By Proposition 5.7 of Chapter 1, 3h(0) is nonempty. This
means that (P¥) is stable. Theorem 1.7 shows that (P¥) has an optimal
solution, say n . With this n . the equality stated in the theorem

holds.m
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Case 2. Consider (P) with f{x,Ax) = f(x) + g(Ax) . It is easy to

verify that
f*(g,n) = f*(£) + g¥(n) .
Hence the dual problem can be written as

(P%) max - f¥(A*n) - g¥(-n)

s.t. ne¥Y'.

Observe that if f and g are convex closed not identical to + =,

or -, then so is ¢ .

Corollary 3.2

Assume that f and g are convex, inf{f(x) + g(Ax)} is finite and
that there exists a point Xy © X with f(xo) <o, g(AxO) < o suych that
g 1is continuous at Ax0 . Then (P) 1is stable and (P*) has at least

one optimal solution, ”

Proof. Invoke this to Theorem 3.1.®

Corollary 3,3

The two following conditions are equivalent:

i) Xg solves (P) , g solves (P¥) and optimal values of

these problems are equal
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ii) A*n0 & af(xo) . - nd e ag(AxO) .

Proof. It follows from 1) that

o
|

= f(xo.Axo) + f*(A*nO- - ﬂo)

f(xo) + f*(A*no) + g(Axo) + g*(- no)

¥ (A% - ¥(en_)-
(f(xy) + f¥(A*ng) = Any(x))) + (g (Axg) + g*(-ng)-ny(Axy)l.
Observe that each of the two terms of the last line is nonegative,
hence it must be zero. In view of Proposition 5.5 of Chapter 1, one con-

cludes

A*no.e 3f(x0) and - g © Bg(Axo) . -

Conversely, if i) holds then
- *(A¥n ., -
0= f(xO.AxO) + F(A*n,, ng)

which implies i) .®

Case 3, Llet Y be ordered by a pointed convex cone C, i.e. Y929 if
and only if Yy -y, € c.

Denote
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c*={ncYy : n(y) >0 for all y e Cl.

Suppose that XO is a nonempty convex closed subset of X and f
is a convex lower semicontinuous function on X0 + g 1is a map from X0 to Y
which is convex with respect to the order in Y ,

Let us consider the problem

(P) min f(x)
St x¢ X0 '

g(x) <0,

Define a perturbation ¢ as follws
t+ @ otherwise.

¢ (xoy) = {f(x) if xe XO v g(x) <y

It is obvious that ¢ is a proper convex function, le compute

¢*(0,n)

¢*¥(0,n) = sup { nly) - ¢ (x,y)}
XY
= sup {n(y) -e(x,¥y)}
xeXO.er.g(x)fy

= sup sup  {n(g(x)) + n(z) - f(x)}
xeXy 2eY,220

inf  {-n(g(x)) + f(x)} if n<o
= XGX .

0

- ™ otherwise.
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The dual problem can be written as

(P¥) sup inf  {-n(g(x) + f(x)}
n<0 xeh

Proposition 3.4.

Assume that inf f(x) dis finite and there exists X

xeXog(x)fo

*0%%

with —g(xo)< 0. Then (P) is stable .

Proof. Under the above hypothesis, the function y-+¢(x0.y) is finite
and continuous at 0 . Hence h(e) is finite and continuous at O . The

argument of the proof of Theorem 3.1 is applicable.m

4.4, Problems

1. Assume that in the first section, ¢ is convex, inf f(x)
is finite and there is a point Xg € X such that
y + (xo.y5 js finite and continuous at 0 e Y . Prove

that (P) 1is stable.

2. 1s Theorem 2.8 true if L 1is continuous in both variables,
quasiconvex in a , quasiconcave in b (rgcall that a
function is quasiconvex if its level sets are convex, and

it is quasiconcave if its minus is quasiconvex)? "
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3, Find the dual problem of a linear problem

min ¢x

s.t. Ax > b

>
tv
o

where A is a matrix, b and ¢ are fixed vectors, x ¢ R” .

Study the normality and stability of it.



CHAPTER 5

UNCONSTRAINED OPTIMIZATION TECHNIQUES

5.1 Oescent Algorithms and Convergence

Suppose that we have to solve an optimization problem, say

(P) min f(x)
s.te x € X,

Where f s a function from a topological space £ to R, X is a

nonempty subset of E.

Definition 1.1
An algorithm on E is a set-valued map A from E to E,

Given an algorithm A on E and an initial point Xg © X , one can

obtain a sequence of points through iteration by the rule

X ¢ A (xk) . (1.1)

k+1

144
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Definition 1.2
A subset SC X is called a generalized solution set of (P) if

the points of S satisfy certain necessary optimality conditions,

It is frecuent to take in the role of S the set of optimal solu-
tions of (P). Sometimes one considers a larger set, for instance in the

case f is differentiable and X 1is open ,

S= {x € X 1 VF(x)=0 }:
or in the case f is Lipschitz ,

S= {x ¢ X ¢+ 0Dedf(x) }.

Definition 1.3

Let S be a generalized solution set of (P} , A an algorithm on
E. A continuous function v : E + R is said to be a descent function for
S and A if

iYe (x) > (y) for all ye A(x) + x ¢ S

i) e (x) > (y) for all ye A(x) , xe S,

We recall that A is said to be closed at Xg v if for any sequence
{xk] converging to xg and Yy € A(xk) ' {yk} converging to y, » one has

Yot Alxgy) .
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Theorem 1.4

Let A be an algorithmon E, S a generalized solution set of (P).

Let {xk} be a sequence generated by (1.1) with an initial point «x As-

0"
sume that

i) all X, are contained in a compact subset of E
i1) there exists a descent function ¢ for S and A
111) A is closed at any point outside S .

Then the 1imit of any convergent subsecuence of {xk} belongs to S .

Proof. Assume that a subsequence {xk } of {xk} converges to x,. Then by
i

the continuity of ¢,
lim ¢(xki) = @(xy)e
Since { w(xk) } is nonincreasing , one has
1im ¢(xk) = (xy) . (1.2)

We show that x, e S . Suppose to the contrary that x, € S . Con-

sider the subsequence [xk +.l}. Without loss of generality one can assume
i

that it converges to some point y . Since € A(xk.) by the cons-

X
ki+1 i

truction (1.1) , and since Xg€ S where A is closed, one has

ye Alxg). (1.3)



Apply v to the points x, and y to deduce from (1.3) the inequality
e(y) <e(xy)

which contradicts {i.2). m

Most of descent algorithms can be described as follows, Starting
from a point x, one chooses a direction dk and minimizes f on the line

x 4td « £ 20 . Aminimum is taken as x, and the procedure is repeated

+1

until some optimality criteria are satisfied. The process of determining
the minimum point LI is called line search, One assumes of course.

that the space E is linear.

Definition 1.5
The line search algorithm A 4s defined by

A(x,d) ={y e E: y=x+ad with f(y) = min f(x+ad)} .
a>0

Theorem 1.6

If f dis continuous, the line search algorithm is closed at (x,d)

in the case d #0.

147
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Proof. Assume that {Xk} + X {dk} +d#0. Let Yy € A(xk.dk)

Y * Y. We have to show that y e A(x,d) . By definition,
Ye = % + @ d

K

Hence

It is obvious that

Hence y = x + aod v where g = Tim a -

Since

f(yk) < f(xk+adk) o« for al1a >0, k=1,2,u1044

the continuity of f dimplies that
f(y) < f(x+ad) , for a1l « >0,

which means that y ¢ A(x,d) .m®

and
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Definition 1,7

Let {xk} be a sequence of real numbers converging to AO . The

order of convergence of {Xk} is the supremum of the number p such that

ey = 2l

0 <limsyp ——————— <= ,
koo _— p
1A - 2]
1f
P\ Al
1im k1 g B<11,
ko IAk - x0|

we say that the sequence converges linearly to AO with convergence ratio

B . The case B =0 1is referred to as superlinear convergence.

Definition 1.8

Let {kk} converge to XO . The average order of convergence is the

infimum of the number p > 1 such that

1/pk = .I-c

Tim sup |A, = Aql
K k 0

In the case p = 1, the amount
. 1/k
Tim sup |A, - Al
K k 0

is called the average convergence ratio.
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Definition 1.9
Let (xk} be a sequence in E converging to Xq » Any continuous
function ¢ on E wused to measure convergence of {xk) is called the error

function,

Proposition 1,10

let ¢ and ¢ be two error functions with ¢ (xO) = w(xo) =0. If

for each x e X,
0< u,.l«:(x) <P(x) < ach(x) » Some  ag.a, > 0. (1.4)

Then a sequence {xk} converges linearly to Xg with average ratio
B with respect to one of these functions, it also does so with respect

to the other.

Proof. Assume that {xk} converges linearly to Xy With average ratio 3

with respect to ¥ , then by (1.4),

1/k

]1/k

lim sup[¢(xk)] Tim sup[a1¢(xk)

1/k
)

in

lim sup{¢(x

B

IA

1im sup[u?«’(xk)]'l/k
]1/k .

1im sup[w(xk)
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The converse part is proven in a similar way because (1.4) yields

also

0 <o) < v () <L ux) . g
%2 *

A useful example of ¢ and Y is given by the functions:

w(x) = (x - xo)O(x - xo)

|2

e(x) = |x - x51% 4

where Q 1is a positive definite symmetrix matrix.

The numbers @ + @, can be taken as the smallest and largest

eigenvalues of Q.

5.2 One-dimensional Search Techniques

Let f: R+ R -be a unimodal function, which means that it has a mini-
mum point x, and f(x) decreases to its minimum as x monotonically

tends to xy .

Lemma 2.1

Suppose that x4 € [a,b] and a < Xy < X, < b . Then one has

’ Xy e'[a.xz] if f(xz) > f(x1)

Xy € [x1.b] otherwise .



152

Proof., I1f f(X2) > f(x1) then x, cannot lie in [xz.b] because otherwise
f decreases from x, to x, and one would have f(xz) < f(x1) . The

other case is proven similarly.m

An interval [a,b] containing x4 1is called an interval of uncer-

tainty.

Four methods that we are going to describe next are used to reduce

intervals of uncertainty to as small as possible,
Search with Fixed Step Size
1) Choose an initial point Xq € R and a step length s .
2) Set Xy = Xg* 4

3) If f(x1) < f(xo) « in view of Lemma 1.1, x,

v

Xg Search

X, = X

; st s cen be continued until f(xi) > f(xi_1) v

which shows x4 € [xi-Z'xil .

4) If f(xq) > f(xy) + in view of Lemma 1.1, x4 < x Search

IA

0"
X_j =% - (i-1)s must be carried,

5) If f(x1) = f(xo) , one has x, € [XO'X1] .

6) If. f(x1) and f(x_z) > f(xo) + one has x, € [x_z.x1] .

By this procedure we are able to define an interval of uncertainty

of length no bigger than 2s .
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Dichotomous Search
Suppose that xy € [an.bn] . Let <, be the midpoint,

1) Choose a small positive € and set

n= %" €/2

>
1]

«<
Il

c, * e/? .

2) 1f f(yn) > f(xn) v by Lemma 1,1, x4 € [an,yn] « otherwise,

Xy € [xab ] .

The length of the interval of uncertainty is reduced by a factor

near tc 1/2 .

Fibonacci Search

This method uses Fibonacci numbers to reduce the length of tlie inter-
val of uncertainty Fibonacci was an italian scientist of the 13th century

who created a sequence of numbers Fn with the property:

Fo=Fo=1,F =F _+F

0= F n = * P2 (2.1)

To understand how these numbers occur let us assume that it takes one
month for rabbits to mature to fertitity and another month to produce a 1lit-
ter of two. letting Fn to be the number of pairs of rabbits alive after n

months and starting with one pair of rabbits, one sees that Fn is obtained

exactly by (2.1).
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In Fibonacci search it is assumed that the initial interval of uncer-
tainty is given, say [a1.b1] and the total number of experiments to be

done is also given, say n .

1) At iteration k , the interval of uncertainty is [ak.bk] .

Set
F
- n-k -
x, = a + - (bk ak)
n+2-k
F
- _ n-k -
Ye=bem T (by - 2,)
n+2-k

2) Compute f(xk) ; f(yk) .

If f(xk) < f(yk) « then x4 ¢ [ak.yk] s otherwise

Xy € [x.b ] .

3) Denote the new interval of uncertainty by [ak+1'bk+1] and

continue this procedure until k = n-1,

4) At the last iteration, x is the midpoint of

n-1 " Yn-1
[an_1.bn_1] . To reduce the interval of uncertainty to
about one-half its length, take € small and set

X =a + €

n-1
Y1 = bn—1 + €.
After n iteratives, the length of the interval of uncertain-

ty is
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Golden Section Search

It is supposed that the number of experiments is large (n + «) in

the Fibonacci search.

Denote

= tim 2 & 0618

In the Fibonacci search one changes in 1):

a -1

a (bk - ak)

(bk - ak) .

<
=~

"

[
=

+

a

With this, the length of the interval of uncertainty after k itera-
: 1,k-1
)

tions is reduced by a factor of (a . The name "golden section" comes

from the belief of ancient greek architects that a building with the sides
a,b (a > b) yielding the relation 9%2 = % = a will have the most pleasant

properties.

The four methods described above have advantage that they are easy
to performance and there is always convergence. Disadvantage is that they
require a large number of function evaluations in order to achieve reasona-

ble accuracy in the location of xy .
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Interpolation Me thods

The basis for these methods is to approximate f by a polynomial, the
minimum of which can be determined analytically. We present here only a

quadratic approximation.

Assume that x4 > Xo (say Xg = 0) . We are going to determine a

quadratic function
q(x) = a + bx + cx2 .

To do this we need to know the values at 3 points It is

XqrXoe Xy o
important to choose XqsXpeXg SO that by solving equations q(xi) = f(xi)
one obtains the coefficient ¢ > 0 which guarantees the existence of mini-

mum of q(x) .
The procedure is as follows: -
1) Fix t > Xg and compute f(t) .

2) If f(v) > f(xo) ., .compute f(t/k) « k = 2,4,... until
f(t/k) < f(xo) .
Take Xq = Xg v Xo = t/k X3 = 2t/k v and determine a,b

and c. The condition f(t) > f(xo) > f(t/k) assures the

existence of the minimum of q(x) .
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3) if f(t) ¢ f(xo) , compute f(2kt) v k=120, until
f(2%t) > £(25" ) at the first time.
Take Xy = Xg e Xy = ok-1¢ v ¥y = Zkt and determine a,b,c .

The minimum of q(x) exists because
flxy) > F2*0) > f(2*)

It is useful to observe that the minimum of q{x) can be obtained easily

by solving .linear equation dq(x)/dx =0 .

5.3 The Method of Steepest Descent

Assume that f is a function of class C] on R" . The gradient
of f at x ¢ R™ is denoted by Vf(x) . The steepest descent algorithm

is defined by
Alx) = x - a¥f(x) , (3.1)

where a is a number hinimizing the function f(x-a9f(x)) over a >0,

The theoretical basis for the name of the algorithm is as follows.
Suppose that Vf(x) # 0 . Let v be a unit norm vector in R" . The rate

of change of f with respect to the step length dt along v is

df(x + tv) l =< Vf(x)y v >,

dt t=0
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where < *,* > denoles the inner product, We want to choose v so that

this quantity is minimal, i.e. we solve the problem

min < Vf(x), v >

seto veR , vl =1.

Using Lagrange function and optimality condition (section 3.5) one can ob-

tain the optimal solution

v=-9(x)/ | vF(x) |

Proposition 3.1

The steepest descent algorithm described by (3.1) is closed if

Vf(x) £ 0 . Moreover, if we take

S={xe X Vf(x) =0}

as the generalized solution set, then ¢ (x) = f(x) is a descent function
for A and S . Consequently if starting from Xq one generates the se-

quence {xk} by

X =X

k+1 - Qk Vf(Xk) ' (3-2)

k

and this sequence is bounded (ak is a number minimizing f(xk-qu(xk))

over a > 0) , then any cluster point of the sequence belongs to 5.
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Proof, The closedness of A is immediate from Theorem 1.6, Furthermore,

under the condition Vf(x) £ 0 , one has

min  f(x-aV¥f(x)) < f(x),
a>0

which shows that in fact the function ¢ = f 4s a descent function for
A and S . The last part of the proposition is derived from Theorem

1.4.m

Let us now take up a particular case where f 1is a quadratic func-

tion of the form

f(x) = = xQx -~ bx ,

A I ]

where Q 1s a positive definite symmetric (n x n)-matrix, b e R" . It is
known that Q has n positive eigenvalues 0 < ) 1 < aee < An . The
function f s strictly convex and it has the unique minimum x4 which can

found by solving the equation :
0= Vf(xy) =Qx, - b,

"~ The algorithm (3.2) takes the form

< Vf(xk). Vf(xk) >

Xal = X _ vi(x) o (3.3)
VE(x,) Q VH(x,)
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where Vf(xk) = ka -b.

Denote

fo(x) = f(x) + 1 xeQxy o
2

Lemma 3.2
The iterative process (3.3) satisfies the relation

< VF(x,)y VE(x,) 52
folxq) = 11 - o Jolx) -
(9F(x, DQVE(x ))(VE(x )Q VE(x,))

Proof. Let us calculate

ol = Foliyen) 2oy TH)Axyoxs) - of VF(x,)Q7F(x,)

folx) (xxw) Qx %)

< UH(x, )0 TE(x,) >2
= ..

(Ve QT8 (x ) (FF(x, )07 E(x, )

Lemma 3.3 (Kantorovich Inequality)

n
For every vector x ¢ R one has

< XeX > 4x, A

(xQx)(xQ” 'x) (x]+xn)2



Proof, By an appropriate change of coordinates, the matrix Q becames

diagonal with diagonal (A1.....An) « One has then

n
2 ): Xf
< XgX > - i=1
n n
(xQx)(xQ" %) L oaxl & X/,
i=1 A | i=1 ] 1

161

= — ! : (3.4)
Tot.a, I ot./A
=t V=1 U
where
2
%
t;l= _n 2 »
'z X;
i=1
Denote the amount of (3.4) by a(y) where y = (t1.....tn) . 0b-
serve that
n
A=Yt
i=1
is a convex combination of Ai » and
n
h(y) = ti/xi
i=1

is a convex combination of 'I/)\_i .
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We prove that

A+ A= A
h(y) ¢ ———2—

X1An

Let us do it by induction on n . The case n=1 is trivial,

posing (3.5) is true for n-1 , we consider it for n .

t, €, b gt
kR e
AN An-2 . A1 An

2z

i=1

X +x - (x t +...+A

1 t +xn(tn_1+tn))

-2°n-2

n
A= I8 g At b (A - A ) .

n
A +>‘n - Zi=1xiti tn-]

n-1
M, MAadna

n
MR - T Aty

AiA

A4 = A
L n

A A

(3.5)

Sup-
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In this way

A

a(y) > min vn .
A(A1+An—k)
The minimum is attained at
A+ A
L
2

which implies the required inequality.ms

» Theorem 3.4

For any Xg € R" ., the method of steepest descent (3.3) converges to
the unique minimum point x, of f .
Furthermore with. fo(x) defined before Lemma 3.2 , at each step k

one has

Y
fol) S{(——)fotx) - (3.6)

AL

n 1

Proof, The relation (3.6) is derived at once from Lemmas 3.2 and 3.3.
This implies that ‘fo(xk) converges to 0 ., Since Q 1is positive defini-

te , {xk} converges to the minimum point xy .®

Note that by Definition 1.7, with respect to the error function fo '
the method of steepest descent converges linearly with a ratio no bigger

than [ (An - A1) / (kn + k])]2 . This means that if Q has eigenvalues
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with the difference An —A] small then the convergence is quick ,

In general, the algorithm (3.1) behaves well at first iterations .
After some iterations the convergence is slow because it uses only linear
approximations at each step and the directions obtained at the last iterations

are generally not effective,

5.4 Conjugate Gradient Methods

Originally these methods have been creating for solving quadratic pro-
blems. Then they are extended to more general problems and nowdays they
belong to the best general purpose methods of nonlinear optimization. In

this section Q denotes a symmetric positive definite n x n - matrix .

Definition 4.1

A family of vectors VareesaVy € R™ are said to be Q-orthogonal, or

conjugate with respect to Q if
vinj =0, for all 1i,j,i#j. (4.1)

Proposition 4.2

If Vyrsres V) are nonzero, conjugate, then they are linearly inde-

pendent .

k
Proof. Suppose that there are some scalars X; with L avy = 0.
i=j
Multiplying this by Qvi yields
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Since vi 4 0 and Q is positive definite , we conclude a, = 0.y

Theorem 4.3

Let Viveeos ¥V be nonzero conjugate . Starting from xi¢ R" and
following the algorithm

el = X 4V (4,2)

where @ ==V Vf(xk) / Vi Q Vi v we can reach the unique minimum xg of

the function

f(x) =% xQx - bx

after k < n steps.

Proof, By Proposition 4.2 , {v1.....vn] forms a basis set.of R" , hence ther

are Greeesd
n
X% = X =Za1.v1. .
i=1

Multiplying this by Qv,i we obtain



viQ(x*—x1)
a, = ————
v,Q v,

vi(b—Qx1)

v.Qv,

11

vin(x1)

viQvy
. vin(xi)

v.Qv'i

1

We have used the fact that Qxy = b and Xg = Xg b agvy o4 @ 1Vicg

according to (4.2) .m

Let us denote by Lin{v1.....vk} the subspace spanned by vectors

V.l....'Vk .

Theorem 4,4

The points X141 obtained in Theorem 4,3 minimizes the function

f(x) = % xQx - bx on the linear manifold
Xy + Lin{v1.....vk}.
Consequently, Vf(xk+1) v, = 0 for all i <k.

Proof. Observe that f is strictly convex, therefore the result follows

if it can be shown that Vf(xk+1) is orthogonal to Lin{v1.....vk} . We
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prove this by induction, For k=0 , the hypothesis is trivial. Assuming
Vf(xk) is orthogonal to Lin(v1.....vk_1} « we show that Vf(xk+1) is or-

thogonal to Lin{v].....vk} . By definition,

VE(xy4q) = Qlxypq) - b

Vf(xk) + quvk.
It follows from the definition of a that
kaf(xk+1) = kaf(xk) + ukkavk =0,
For 4 < k , the hypothesis of induction and the conjugacy imply
vin(xk+1) = vin(xk) + akvink =0.

Hence Vf(xk+1) is orthogonal to Lin{v].....vk) .8

The basic idea of the conjugate gradient method is to use conjugate
directions which are obtained with the aid of gradients in the role of search

directions.
The algorithm is as follows:

1) Starting at any point x; 6 R" Vi = - Vf(x1) = Qx1 - by k=1
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2) Define
kaf(xk)
Xeg1 = X + O V) o where a = - — (4.3)
v Qvy
vf(x, . .)Qv
k+1 k
Vigr = = V() + B v, o where B = ————— (4.4)
v Qv

3) Terminate when Vf(xk) =0.

eorem 4.5

The conjugate gradient algorithm possesses the following properties:

1) LIn{TF(x))eve e s ¥ECx )= Lin{vqeenavy )= Ln(TF(x))0QF(x))veena Q71061 )
ii) Viserssvy are conjugate

iii) @, and B, can be calculated by

llox ) 12
& = T
Vkak
. . 198, ) 112
k )
19 (x, ) 112

oof. We prove i), ii) simultaneously by induction, For k=1, the hy-

thesis is trivial, We show it for k+1 , supposing that it is true for
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By definition of X 41 One has

Vf(xk+1) = Vf(xk) +a ka .

K belong to the subspace

Lin{96(x)) + QUF(x)) veees Q*19F(x;)) . Hence Vf(x,,,) belongs to

By induction both Vf(xk) and v

Lin{Vf(x1). QVf(xl) veses Qka(x1)} . Moreover, by induction of ii) ,
Viressav, are conjugate, hence in view of Theorem 4.4, Vf(xk+]) is ortho-
gonal to Lin{vT.....vk} = Lin{Vf(x1) Ve Qk_1Vf(x])} . This fact implies

' that Vf(xk+1) ¢ Lin{Vf(x1) .....‘Qk—1Vf(x1)} . Hence one can conclude
Lin{OF(x) drae s TE(xp 1)) = LN(TFCR, Daennn Q996 ()Y o

Use the above part and the fact that Vgl T T Vf(xk+1) + Bkvk to use

that
Lin{vgeeraavy,y) = Lin(RCx)0 QUF(X)) 4eeey Qka(x1)} .

To show that are conjugate, remember that

V1'-.-'yyk+]
Vigr Qvg = = VRO 00v; + By v Qv

If i=k , the right hand side is zero by definition of Bk . If
i < k, the second term of the right hand side is zero by induction. The

first term is also zero because by the first part
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Qv; € Lin{v1.....v } € Lin{v].....vk)

i+l

and by induction, Vireessv, are conjugate, hence in view of Theorem 4.4,

Vf(xk+1) is orthogonal to Lin{vl.....vk) « In this way VieessaVp,q are
conjugate,.
To calculate a, observe that
- kaf(xk) = Vf(xk)Vf(xk) - Bk—1 Vi Vf(xk) . (4.5)

By Theorem 4.4 and ii), the second term of the right hand side is zero.
Replacing (4.5) to (4.3) we obtain the formula for @ .

As to Bk observe first that
Vf(xk+1)Vf(xk) =0,

because Vf(xk) ¢ Lin{v].....vk} and Vf(xk+1) is orthogonal to

Lin{v1.....vk} . Moreover,
Vf(xk+1) = Q(xk+1) -b= Vf(xk) + quvk .

hence

o - Vf(xk+1) - Vf(xk)
k .
e

These observations and (4.4) show the formula for 8, 1in the theorem. @
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Now we extend the algorithm for f of class C1 :

1) Start with Xy € X

2) Set vy - Vf(x]) o k=1

3) Find Xeal ™ the minimum point of f along X, +oavy

a>0.

4) Set Vigl = Vf(xk+1) + Bk Vi where

2
195(x,, )l

£ (x, )12

5) After n points restart with Xy =X 40 and terminate when

Vf(xk) =0,

Theorem 4.6

Assume that f & C1

and there exists Xq € R" such that the set
1evf(f(x])) is compact. Then the sequence {xk} generated by the algorithm
described above has the property that f(xk) > f(xk+1) of Vf(xk) #0.

One has also global convergence with the generalized solution set

S={xeR": 9f(x) =0} .

Proof. Suppose that Vf(xk) # 0 . Then the vector

Ve = - V‘F(xk) + By V1 .
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cannot be-zero, because {v1.....vk_1} are conjugate and Vf(xk) is ortho-

gonal to {hem, This implies that

f(xk) > f(xk+1) .

Hence {xk) belongs to the compact set 1evf(f(x1)) . Take ¢ =f as a
descent function and observe that the algorithm is closed outside S . Now

apply Theorem 1.4 to obtain the global convergence.m

5.5 Newton and Quasi-Newton Methods

Newton Method

fet us consider the problem

min  f(x)

s.t. x e R",

The idea behind. the Newton method is to approximate f near a point

x, by a quadratic function whose minimum can be calculated analytically.

k
Recall that sz(x) denotes the Hessian of f at x . By the truncated

Taylor series one has near X
1
fx) = Fx) + Fx)0coxy) + (x-x VPR (x ) (xox, ) o

The function in the right hand side is quadratic.
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If sz(x) is positive definite, then the minimum Xep1 s obtained
by
2 -1
X =X - [v f(xk)] Vf(xk) .

k+1

The Newton algorithm is given as

Ax) = x - [PEOTY 9F(x) . (5.1)

Proposition 5.1

If the Newton method converges, the order of convergence is two.

Proof, Suppose that x, 1is a point with Vf(xy) = 0 and sz(x*) is

nonsingular. Then
Xep1 " Kx T A(Xk) - A(xg) .

Hence one has by the mean-value theorem:

IA

|xk+1 - X*l ]A(xk) - A(X*)I

A

|VA(x*)(xk—x*)| + % |V2A(x0)| |xk-x*|2
where x, ¢ (xk.x*) . Since VA(x,) = 0, the above inequality implies

2
Ix g = %l < clx, = %1%
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where ¢ s a constant depending on If"'(X)I near xi @

Proposition 5,2

If f is quadratic, its minimum can be reached in one step by the

Newton method,

Proof. In this case, sz(x) =Q . The minimum of f is the solution of

the equation
x-b=0,

Hence x, = Q_1b . Now, starting from any point Xp 0 by the algo-

rithm (5.1),

X1 = X - 07(Qx, = b)

-1

=Q b

X*.

which completes the proof.m

Note that if f 1is not quadratic, the method may diverge, and it

may converge to saddlepoint or relative maxima.



Modified Newton Method

In order to guarantee convergence in the Newton method one modifies

the algorithm by several ways. A general scheme can be given as follows:

Xal = X T % Hka(xk) '

(5.2)

where Hk is a positive definite nxn-matrix, Q) is selected to minimize

f(x) + The positive definiteness of Hk guarantees that

f(xk+1) < f(xk) L}

whenever Vf(xk) #0.

In the case of quadratic function

f(x) = = xQx - bx ,

N |

a, can be given explicitely by

k

) Vf(xk)Hka(xk)
a = .
Vf(xk)HkQHk Vf(x

W)

Theorem 5.3

(5.3)

Let x4 be the unique minimum of the quadratic function f and

fo(x) = % (x-xO)Q(x—xo) . Then for the algorithm (5.2) with a

(5.3) one has
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defined by
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A=)
ey fo0x)

AactMk

fO(xk+1) <
where A

ak Xlk are the largest and smallest eigenvalues of the matrix

Proof. Llet us calculate:

Folxy) = Folxeyy) (VF(x,) H F(x))?
f.(x ) -1
0"k (Vf(xk)HkQ Hka(xk))(Vf(xk)HkQ Hka(xk))-
Letting
a - ul2 4 yi/2
Qk - Hk Q Hk [}
1/2
Pk = Hk Vf(xk) [
we obtain

2
folxi) = folx) < PPy >

folx,) (Pkokpk)(Pk0;1Pk)

Using Lemma 3.3 one deduces the result at once because HkQ is similar to

Qk (Hl/z QkH;.I/2 = HkQ) « hence they have the same eigenvalues.g

[
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Variable Metric Method
(Davidon-Fletcher-Powell Method)

Most of quasi-Newton methods make use of differences jn the gradient
values to approximate Vz f(x) iﬁ the Newton method. The Davidon-Fletcher-
Powell method constructs Hk in (5.2) with the aid of Hk-1 . Vf(xk).
Vf(xk+1) . The procedure is as follows :

1) Start with an initjal point\x1 and an approximation H1 =1, the
identity matrix . The iteration number is set to be k=1,

2) Compute Vf(xk) and set v, = - Hk Vf(xk) .

k
3) Find the minimum point LI of f along. X, * Avk-
A>0 .

4) Test Xp4] for optimality . If it is the case, stop .

Otherwise go to 5),

5) Calculate

e T %k T %k
Vk = Vf(xk+1) - Vf(xk)

Yy (Hkvk)(Hkvk)T
+ -

e = By

A AN

6) Set k = k+1 and go to 2).

Below qre some important properties of Hk .
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Theorem 5.4
We have the following

i) AN Hk constructed by the procedure above are symmetric positive

definite

ii) If f is quadratic, then Vitessavoare conjugate and

n

Hkvj =Yy o for all j<k .

Moreover H

kaj = yj‘ o for j<k .

In particular , H =Q .

!
Proof. The symmetry of Hk is obvious. For the positive definiteness sup-
posing by induction that Hk is positive definite, we prove it for Hk+1 .

Let 2z be an arbitrary nonzero vector in R" . By definition of Hepp o

2
(zy,)" | (5.4)
Y Vi

2
[ZHkZVkavk - (szVk) ]+

LA

Since Hk is symmetric positive definite , there exists the matrix

Hllz . Denote

v = H1/Zz u = HL/ZV

k ' k *

The expression under [...] in (5.4) can be written as .
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M 20T, - (#7908 = (v ) - (P,

which is nonnegative by the Cauchy-Schwatz inequality. The second term of

the right hand side of (5.4) is also nonnegative because

Nk = Ty yq) = TF(x)
= -Akkaf(xk) (Ak is found by step 3))
= Aka(xk)Hka(xk) (by definition of vk)

> 0 (by induction Hk is positive definite),
In this way

ZH .z2>0.

k+1

In fact, we have the strict inequality.

This is because the first term of the righf hand side of (5.4) is
zero if and only if two sectors v and u are proportional, which implies

that z and V,_ are proportional too. In other words, there is t # 0

k

such that z =tV Substituting this to the second term of (5.4) we ob-

k L]
tain
(2y,)°

2
= t ykvk [

i %



which is positive as we have proven.

Thus

sz+1z >0 and the positive

definiteness of Hk+1 follows.

The second part of the theorem is proven by induction. We remember

that

f(x) = = xQx - bx .

N |—

Observe first that

Qy - Q(x

j #17%3)

J

= Qxgyp) - b= Q) - b)

= Vf(x Vf(xj)

j+1) -
= Vj o for all j. (5.5)

For the beginning of induction, since H, = 1 . one has

| Y1y, ”1V1(”1V1)TV1
Hyvy = W + 1y - L1111
"9 WY

vy - (5.6)



We show that wvq v, are conjugate,

v2Av1

Let us calculate v2Av1

Vf(xz)Hsz]

Vf(xz)HzQy]/)\1 (because ¥y = A1v1)

Vf(xz)H2V1/A1 (by (5.5))

Vf(xy)y; (by (5.6))

(by step 3)) .

Now we prove the assertions for k+1 .

by definition of Hk+1 :

H RV

ke1'5 = MYy

For j < k , by induction

and by (5.5),

+

T

Let us calculate

T
ykkaj ) Hka(Hka) Vj

LA

H V.

THY. =

kk'j

V,HV

kkk

n
<

H

k+1

v

(5.7)

J
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(We have used the fact that VireserVy are conjugate by induction, hence

so are y1.....yk) .

Combine these relations and (5.7) to see that

Hk+1vj = yj  for j<k,.

In the case j=k , the equaTity

k+1 'k

is obvious from (5.,7) .

For the conjugacy of VyreessVy g it suffices to show that

vk+1ij =0 for j<k. Note first that since
X = x\_j + Ajvj + ees Akv and y. = A.v, ,

k+1 k J JJ

(ka+-| - b)y

Vf(xk+1(yj) j

= (ij -b+ )\J.Ov:j 4+ v + Akak)yj
= Vf(xj)yj + Aj’vquj

= VL. AL v, A
Vf(xJ)vJ AJ vJQvJ

Remembering that A, 1is a number minimizing f on xj + tvj '

t >0, one has
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Aj = —Vf(xj)vj / vJ.QvJ .

Hence

Vf(x

k1 )¥y =0 for j <k (5.8)

With this in hand we are able to calculate vk+10vj :

vk+1QVjv‘= - Vf(xk+1)Hk+1ij (by definition‘of vk+1)

Vg Mg @y Loy

Vf(xk+1)Hk+1vj / aj"'(sy (5.5))

Vf(xk+1)yj / A (by property of . Hk+1)

= 0 (by (5;8)) .

In the case k=n , since VirresaVy are independent, Hn+10v = v

for all v e R". Thus, H . =0 .

5.6 Problems
1." Is the result of Theorem 1;4 valid if instead of iii) we require

A to be upper continuous?

(Recall that A is upper continuous at x, if for any open
set V containing A(xo) « there is a neighborhood U of Xg

in X such that A(x) <V, for all xel ).
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2.

5.

Let {Ak} be a sequence of real numbers converging to 0 .
Suppose that (Ak} converges linearly. ' Find conditions of a
sequence {tk} of positive numbers such that (thk} conver-

ges linearly to 0.

Use quadratic interpolation to estimate the location of the

minimum of f(x) = x4 - 2x2 +1 over [0,2] .

Suppose that f has continuous second partial derivatives and
has a local minimum at x, . Suppose further that the Hessian
matrix H(xy) of f has the smallest eigenvalue A >0

and largest eigenvalue An . Prove that if [xk} is a

sequence generated by the method of steepest descent and conver-
ges to Xy Fhen {f(Xk)} converges to f(xg) linearly

with convergencé ratio no bigger than

M )2

(22—
Aty

What is the rate of convergence of the objective function

f(x,y) = x2 + y2 + xy - 3x

when applying the method of steepest descent.
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6. What happens- if we proceed the algorithm for f ¢ C1 in Sec-

tion 4 without restarting Xy = X at the step 5)7

n+l

7. Consider f(x,y) = 2x2 + 2xy + 5y2 .

Apply the conjugate gradient method to find the minimum.

8. Prove that in the variable metric method

0 - Yo

where

when f is the function % xQx - b x .,



CHAPTER 6

CONSTRAINED OPTIMIZATION TECHRIQUES

6.1 Methods of Feasible Directions

We consider a minimization problem

(P) min  f(x)

where X s a nonempty subset of R" , f 4s a function on R" which is

assumed to have continuous partial derivatives.

Definition 1.1

let x e X . Adirection v is said to be feasible at x if there

is a positive € such that

x+tveX forall t:0<t<e.,

186
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A general scheme of a feasible direction algorithm is as follows
A(x) = {y e X: y minimizes f(x+tv) over t e [0,e]} ,

where x 1is a feasible solution, v is a feasible direction. The feasible
direction algorithm can be written as the composition of the maps D and
M

A=MD, RO RD)
where D 1is a map of choosing feasible direction v , M 1is minimization
of f along the chosen direction. MNote that in general neither D , nor

M is closed.

Definition 1.2

The set 2 = {(x,v) e R"" x R" : x ¢ X » v is a feasible direction
at x} dis called a set of uniformly feasible direction vectors if there
exists 6 > 0 such that

x+tveX, forall tec[0,8], (xov) €.

Let us define a map M(5 from © to R"™ as follows

M(xev) ={yeX: y minimizes f(x+tv) over t e [0,6]} .
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Theorem 1.3

If v#0, the map M‘5 is closed at (x,v) .

Proof. Suppose that {(xk.vk)} converges to (x,v) with v # 0, and

Yy € Mé(xk'vk) converges to y .

We want to show that y e Md(x.v) . Since
Ve = Xt o Ve

one has

_ “yk- ’xk“
a = ————,

v, I

where obviously, ||ka >0 if k is large enough. Hence q, converges

to

l!— X”

a = .

vl

which implies that y = x + av . Moreover,
fly,) < flx, +tv) . for all t e [0,¥) .

By the continuity of f , one obtains
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fly) € f(x + tv) , for a1l t ¢ {0,6] .

This shows that y e Md(x.v) .8

An important consequence of Theorem 1.3 is that in order to develop
a globally convergent algorithm, it is necessary to generate a map D which

is closed and gives uniformly feasible directions.

Zoutendijk's Algorithm

Let us solve the following problem

min f(x)

Sete 9.(x) <0y Hyvieem .

The algorithm is described as follows:

1) Starting from a point Xy which is feasible we solve the

Jinear problem

(LP) min a

s.t. Vf(xk)v -a<0
gi(xk)-+ Vgi(xk)v —a<0, i=l,...,m

-1 evi <1, i,
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where v‘ denotes the ith component of v .

Let v, is an optimal solution of (LP) and let tk be the lar-
gest number in the interval [0,1] such that X+ tve s feasible.

Set Vi = Hva e

2) Solve

min f(x

+ tyk) .
te{0,1]

k

Let the optimal solution be t, . Take

= X+ tuv

k ®k

3) Terminate when. v = 0. If Vi # 0 repeat 1) for Xp = X4 0

Theorem 1.4

Assume that the set of feasible solutions {x e R": g(x) <01} is
convex compact and every feasible solution is regular in the sense that
Vgl(x).....ng(x) are linearly independent. Then the Zoutendijk algorithm

has the global convergence property with the generalized solution set
S={xeR": Vf(x) + AVg(x) = 0, Ag{x) =0, some X >0} .

Consequently, any cluster point of the sequence {xk] generated by the abo-

ve algorithm belongs to S (it is called a Kuhn-Tucker point).
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Proof, It is obvious that the map xj, P v, in step 1) is closed. It

generates uniformly feasible directions with 6 = 1 . Hence the set
2 ={(xyv) ¢ x is feasible, v s obtained by step 1))

is compact. In view of Theorem 1.4 of Chapter 5, it suffices to show
that it is a descent algorithm, Llet x ¢ S, We state that the optimal
value of (LP) with X, = X "is nonzero, In fact if that is not true,
then dual progra@ of (LP)

max 5191(x) + 00e + Emgm(x)
s.t. 50 + oaee * Em =]
EgVF(x) + £,99(x) + ... + £ Vg (x) = 0 (1.2)

51 Z 0 'Y i=0|1g-oo'm (]

has also zero optimal value, i.e.
£191(x) + oov + 5.9 (x) =0,

hence only 51'5 corresponding to active constraints are possibly nonzero.
Remembering that x 1is regular, we conclude from 50-+g1 + ees t Em =1
that go >0 . Dividing (1.2) by EO one sees that x € S . This means
that x € S implies the optimal value of (LP) , a #0 . Actually a <0
‘because one can take vy ort-v. as well in the problem (Lp) . Hence,

it follows from the inéqualfty constraints of (LP) that v, is a feasi-

ble direction with
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Vi(x)ve < O .

This implies that f(xk+1) < f(xk) and the proof is complete.®

Gradient Projection Method (Rosen's Method)

For fhe sake of simplicity of presentation, assume that Qyeeeergy
are linear, - In this method feasible directions are obtained by projecting
the steepest descent direction - 7f(x) on the intersection of constraint
hyperplanes, hence there is no need to solve problem (LP) at every itera-

tion. How to calculate the projection of - Vf(x)?

Assume that at a feasible solution X o 9qreecedy o P<m are acti-

p
ve constraints and Vg(xk).....Vgp(xk) are linearly independent, Denote

H={x e R" : Vgi(xk) x =0, 1=10eesp }o

then x, € H, The projecticn of - Vf(xk) on H can be expressed as

k

p
Vi = -Vf(xk) -1- .angi(xk)

= -Vf(x,) - a A, 1.3)

where A is the matrix with columns Vgl(xk)""'VQp(xk) and a =(a1.....ap).

Yoreover, since vy € H, it is orthogonél to all Vgi(xk). i=1yeees p and

we have
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AT vy = 0.
Hence
o= - Vf(x,) AT (aaTy 1,
vy = Vf(xk) v, (1.4)
where

Val-aTaa)ya

called the projection matrix .

We have two cases to consider :

i) Vi #0 ., It follows from (1.3) that

v (x - IVf(xk)IZ . )

WV =

which means that A\ is a direction of descent.

ii) vy = 0. Then Vf(xk) + aA =0 ., One has two subcases

iia) a >0 . Then Xy satisfies the Kuhn-Tucker condition, in

other words, x, € S where S 1is defined in Theorem 1.4.

iib) there is an index j with aj <0, say j=p . Then denote
Ap the matrix obtained from A by cropping the column
Vgp(xk) , and use the projection VL of -Vf(xk) on the

subspace
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Hp = {x e R"; ngi(Xk) =0, i=1,.essp-1}

to obtain the relations

-Vf(xk) aA (1.5)

-Vf(x +ah . (1.6)

K=V

It is clear that vL # 0 (because if v& =0, (1.5) and (1.6)

should imply ay = 0 ). Moreover,
v o_ '
0> Vf(xk)vk = up Vgp(xk)vk

(this is derived from (1,5) and the fact that Ava =0 ), which implies

that
]
Vgp(xk)vk <0,

In this way, vi is a feasible direction of descent.
Now the algorithm can be formulated as:
1) Start with an initial feasible solution x; . Set k=1.

2) Calculate

vy = -yf(xk)v .
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T.-
where V=1 - AT(AA ) A

3) If v #0, solve

min{f(xk+tvk) tt>0, X, + tvk is feasible} .

tet x be the optimal point,

k+1

If v, =0, find a by a=-Pf(x) A (M),

If a>0, stop : X, € S
If not, goto?2) with the new A by deleting the column corresponding
to the most negative component of a .

This algorithm is in general not closed. Therefore no convergence
proof is available. Meverthless the method has been used successfully for
many nonlinear problems and no examples showing that it diverges in prac-

tice.

6.2 Penalty Function Methods

Suppose that we have a constrained problem

(P) min  f(x)

s.t. gi(x) S04 i=1eem,
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The crucial idea of penalty function methods is to solve an uncons-
trained problem with an augmented objective function f(x) + P(x)  instead

of f , where the term P(x) 1is to penalize infeasibility.

It is clear that if P(x) is define by the rule

0 if x is feasible
P(x) =

+o otherwise ,

then x4 1is an optimal solution of (P) if and only if x4 solves the

unconstrained problem

min  f(x) + P(x)

sot. x e R",

However, since P(x) is of bad quality, for instance it is discon-
tinuous at the border of the feasible solution set, one tries to use other
functions which approximate P(x) . The unconstrained problems obtained in
this way will provide approximating solutions to (P) . 1In the sequel it is

assumed that f and g; are continuous, and (P) has optimal solutions.

Interior Penalty Function Method

In this method one defines the augmented objective function by

m
¢ (xeq) = f(x) + o 35 Pyla;(x))

i=1
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where a > 0. 1s a penalty parameter and Po(y) is a continuous function

with the property:

Po(y) >0 for y<o0
lim Po(y) = = ,
yt0 0

It 1s common to take Po(y) a =-1/y , but sometimes one uses also
Poly) = Tn(-y) :

The interior penalty function algorithm is described next:

1) Start with a feasible point Xg which satisfies
gi(xo) <0, i=1..0em.,

Choose ay > 0 and set the iteration number k=1,
2) Solve the problem

m

min Y(x.ak) = f(x) - a :Z:

s.t. xeR" i=1

2
g;(x)

by unconstrained minimization techniques with the initial point

Xpop o to obtain a minimum Xy o

3) Test the optimality of L 1f it 1s an optima) solution of

(P) , stop. If not, go to the next step.
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4) Set a new penalty parameter & ., = ca with ¢ <1 and

set k = k41 , x = X

k-1 K and go to 2).

Theorem 2,1

The method described above has the following properties:

i) ¢(x,a) > f(x) for all a >0, x feasible.
1) g,(x,) €0, i = Teeresm o

iti) (w(xk.ak)} tends to the optimal value of (P) and any cluster

point of {xk} is dn optimal solution of (P) .

Proof. The first property is obvious. For the second property it suffices
to note that by definition of ¢ , if gi(xk) =0, then the value of

¢(xk.uk) cannot be fin{te.

For the last property, let x, be an optimal solution of (P) ,

We prove that

Tim @ (x 00, ) = f(xg) «
o k' "k *
Since {ak} decreases to 0, {¢(xk.ak)} is decreasing also. In
view of i), it is bounded below, hence it converges to some number, say

€9 > flxa) «

If e= A f(x4) is positive, then one can choose a point X

such that



f(X) < f(x)) + /2
9;(x) <0, i=1.um.
Take k to be large enough such that

1.
(x)

-ak z < €/2

9
and

‘P(xk.ak) -fo <gl2.

With these inequalities in hand we obtain:

¢y < © (xk.ak)'
< e (X))
m
< fD-q L L
=1 9%
< f(x) + /2
< flxg) + €

eg - fxg) + fxy)

_{po .

199
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which is impossible, Hence Y0 = fixy) .

Now, if X is any cluster point of {xk} y Say x = lim LI then

by 1)

e(x, 4o )} >f .
xkl ukl > f(x, )

ky,

Hence
en = limo(x, ,a ) > f(x) .
0 kg k2

This implies that X is also a minimum point of f on the feasible solu-

tion set.m

Note that in this method minimal points of ¢ (x.ak) are in the re-

gion of feasible solutions of (P) .

Exterior Penalty Function Method

In this method the augmented objective function is also defined by
m
e(x,a) = f(x) + a '21 0(g;(x)).
i=

The function Fb(y) must be a continuous function with the property.

Po(y) 0 if and only if y <0

Po(y) >0 forallycR.
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It is common to take

Po(y) = max[0,y] + or Py(y) = max{O.ylz .

The algorithm can be described as follows:

1) Start with any Xy € R" and choose e, ¢ R1 .

Set the iterative number k=1,
2) Solve the unconstrained problem

m
min f(x) + @ X max [0.91-(x)]2
=1

to obtain an optimum point, say Xy o

3) Check the feasibility of x, » If it is feasible, stop
(because X is then also an optimal solution of (P)).

Otherwise go to 4).

4) Choose @ > 9 Set k=k+1 and go to 2) .,

Theorem 2,2
The following assertions are true:
i) @(x,a) > f(x) for all a>0, xeR",
ii) {w(xk.ak)} is increasing if so is @ i

. 1i1) {#(xgva )} converges to the optimal value of (P) as q

tends to « , and any cluster point of {xk} is an optimal

solution of (P) .
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Proof. The proof is similar to that of the preceding theorem, so we omit

it.s

6.3 Cutting Plane Method

The basic idea of this method is to approximate the nonlinear objec-
tive and the constraints by linear functions and then solve the obtained

linear problem by linear programming techniques.

Consider the following problem:

(P) min  f(x)

s.te x € X,

where X is a closed convex set in R" . This problem can be converted to

a problem with a linear objective by introducing a new variable y :

min Yy
sste xe X, yeR
f(x) -y<o0.

It is evident that the two above problems are equivalent to each
other. In the case f is convex, the constraint set of the latter problem
is also convex. Thus, without loss of generality we may consider (P) with

f(x) = e¢x 4 a linear function.
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# A general scheme of the cutting plane algorithm is as follows:

1) Choose a polytope Pk containing X .

Solve the problem

min cx

s.t. X € Pk .

Let Xy be an optimal solution,

If X, € X ¢ it is also an optimal solution of (P) . Stop. Other-

wise go to 2)
2) Find a hyperplane
- n .
Hk ={xeR : ax < bk)
C
such that X C H, and X ¢ Hy

Update Pk to obtain Pk+1 including as a constraint

Specific algorithms indicate how to choose Hk and how to update
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Kelley's Algorithm

We solve the problem

(cP) min  cx

Xote gi(x) <0, i="eearm,

where 9qreessg, are convex differentiable,

An important property of convex functions that we shall use is
a(x) > g(y) + Yg(y)(x-y) + for all x,y . (3.1)

The algorithm is as follows

1) Solve

min cX

s.ﬁ. X € Pk ,

where Pk is an initial polytope containing the feasible solu-
_tion set of  (CP).
Let X be an optimal solution. If Xy is a feasible solution

of (CP) , stop. Otherwise go to 2).

2) Let i be an index maximizing gi(xk) . Define
Pegr = P {xe R . gi(xk) + ygi(xk)(x-xk) <0} . (3.2)

Return to step 1) .
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Proposition 3.1

Assume that the feasible solution set of (CP) is non-empty. Then
Pk+1 is a new polytope which contains the feasible solution set and does
not contain xk .
Proof. Observe first that Vgi(xk) # 0 because otherwise X would be a
minimum point of 9, and this would imply that (CP) has no feasible solu-

tions, Furthermore, if x is feasible, then g(x) <0 and by (3.1),

gi(xk) + Vgi(xk)(x_xk) f gi(x) E 0 ’

which shows that x e Pk+1 . finally, since gi(xk) > 0, one concludes

that X, ¢ Pk+1 m

Theorem 3,2

Let Gqrennagy be continuously differentiable. Any limit point of
the sequence {xk} obtained by Kelley's algorithm is an optimal solution

of (CP) .

Proof. Let {xk } be a subsequence of {xk} which converges to Xg *
i

Without loss of generality, one can assume that the index i in the second
step of the algorithm is the same throughout the subsequence., We sHow first
that x, is feasible. It suffices to show that gi(xo)f 0 because i s
the index maximizing gj(xk) v = 1ueeum . To this end, derive from (3.1)

with y =x , x= Xy for j' > j that
J j!
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9.(x, )< Vg O I dx o -x | 3.3
g 17k kyr © kg (3.3)

Since g, is continuous differentiable and x, ~ + xg . ”in(xk.)"
J J

is bounded with respect to j , and the right hand side of (3.3) tends to

zero as j ., j' tend to =, It follows from (3.3) that

9;(xy) = 1;m gi(xkj) <0.

Moreover, since the feasible solution set is contained in Pk . One

has
X, S ex for every feasible solution x ,
J
and for j =1,2,... « This implies that for any feasible solution «x ,
XCy S CX o

which completes the proof.m

6.4 Problems

1. Give examples to show that the maps M and D in (1.1)

are not closed.
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min X

3. Give a study of penalty function method by using a penalty

function 1In(-y) .
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