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Abstract. We discuss the optimality of a sufficient condition from [12] for
a point to belong to the essential spectrum of a Toeplitz operator with a
bounded measurable coefficient. Our approach is based on a new sufficient
condition for a composition of a Muckenhoupt weight with a Blaschke product
to belong to the same Muckenhoupt class.
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1. Introduction and main results

Let T = {¢ € C: |¢|] = 1} be the unit circle. A number ¢ € C is called a
(left, right) cluster value of a measurable function a : T — C at a point ¢ € T
if 1/(a —c) & L>(W) for every neighbourhood (left semi-neighbourhood, right
semi-neighbourhood) W C T of {. Cluster values are invariant under changes of
the function on measure zero sets. We denote the set of all left (right) cluster
values of a at ¢ by a(¢ — 0) (by a(¢ + 0)), and use also the following notation
a(() = a(¢ —0)Ua(¢+0), a(T) = Ucera((). It is easy to see that a(¢ — 0),
a(¢+0), a(¢) and a(T) are closed sets. Hence they are all compact if a € L*(T).

Let HP(T), 1 < p < oo denote the Hardy space, that is HP(T) := {f €
LP(T) : f, = 0forn < 0}, where f, is the nth Fourier coefficient of f. Let
T(a) : H?(T) — H?(T), 1 < p < oo denote the Toeplitz operator generated by
a function a € L>®(T), i.e. T(a)f = P(af), f € HP(T), where P is the Riesz
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projection:
1 1 g(w)
P = - — —d T.
00) = 5900 + 3= [ L% dw, ce
P:L?(T) — HP(T), 1 < p < oo is a bounded projection and

+oo +oo
P( > gn<"> = gnl"™.
n=-—00 n=0

If a(¢) consists of at most two points for each ¢ € T, in particular if a is
continuous or piecewise continuous, then the spectrum of T'(a) can be described
in terms of a(¢ £0), ¢ € T (see [3, 4, 13]). This is no longer possible if a(¢) is
allowed to contain more than two points (see [2, 4.71-4.78] and [10]). It is no
longer sufficient to know the values of a in this case, it is important to know “how
these values are attained” by a.

Since a complete description of the essential spectrum of T'(a) in terms of the
cluster values of a € L*°(T) is impossible, it is natural to try finding “optimal”
sufficient conditions for a point A to belong to the essential spectrum. Results of
this sort were obtained in [11, 12]. In order to state them we need the following
notation.

Let K C C be an arbitrary compact set and A € C \ K. Then the set

U(K;/\):{hwu—i ‘ weK} cT
is compact as a continuous image of a compact set. Hence the set Ay (K) :=
T\ o(K;A) is open in T. So, Ax(K) is the union of an at most countable family
of open arcs.

We call an open arc of T p-large if its length is greater than or equal to
%,Whereq:ﬁ, 1<p<oo.

The following result has been proved in [12].

Theorem 1.1. Let 1 < p < 0o, a € L>®(T), A € C\ a(T) and suppose that, for
some ¢ € T,

(i) Ax(a(¢ —0)) (or Ax(a(¢ +0))) contains at least two p-large arcs,

(i) Ax(a(C+0)) (or Ax(a(¢ —0)) respectively) contains at least one p-large arc.
Then X belongs to the essential spectrum of T'(a) : HP(T) — HP(T).

A weaker result (with Ax(a(¢)) in place of Ax(a(¢ £ 0)) in condition (ii))
was proved in [11] where it was also shown that condition (i) is optimal in the
following sense: for any compact K C C and A € C\ K such that Ay (K) contains
at most one p-large arc there exists a € L*°(T) such that a(—1£0) = a(T) = K
and T'(a) — Al : H"(T) — H"(T) is invertible for any r € [min{p, ¢}, max{p, ¢}].
A question that has been open since [11] is whether or not condition (ii) can be
dropped, i.e. whether condition (i) alone is sufficient for A to belong to the essential
spectrum of T'(a) : HP(T) — HP(T). The following result gives a negative answer
to this question.
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Theorem 1.2. There exists a € L°°(T) such that a(1—0) = {£1}, |a| =1, T(a):
HP(T) — HP(T) is invertible for any p € (1,2), and T(1/a) : HP(T) — HP(T) is
invertible for any p € (2, 400).

The proof of Theorem 1.2 relies on an argument which is related to the
following question. Suppose v is an inner function, i.e. v is a nonconstant function in
H®(T) such that |v| = 1 almost everywhere on T. If b € L°°(T), then bov € L>°(T)
and the question is whether or not the invertibility of T'(b) : HP(T) — HP(T)
implies that of T'(bowv) : HP(T) — HP(T).

An equivalent form of this question is in terms A, classes (see [1, Section 1]).
We say that a measurable function p : T — [0, +-00] satisfies the 4, condition if

sup (ﬁ' /I p"<<>|d<|); (|}| /I p‘%<>|d<|)é — <00, (L1)

where I C T is an arbitrary arc and |I| denotes its length. The question is whether
or not p € A, implies pov € A,.

Although the answer is positive in the case p = 2 (see, e.g., [1, Section 2]),
it turns out that for every p € (1,400) \ {2} there exist a Blaschke product B
and p € A, such that po B ¢ A, (see [1, Theorem 9]). Equivalently, there exists
b € L*>(T) such that T'(b) : HP(T) — HP(T) is invertible, but T'(bo B) : H?(T) —
HP(T) is not invertible (see [1, Theorem 12]).

We prove a result in the opposite direction, namely we describe a class of
Blaschke products for which the implications

peEA, = poBEeA,,

T(b) : HP(T) — HP(T) is invertible =

T(bo B): HP(T) — HP(T) is invertible
do hold.

Consider the Blaschke product
0

i0 ¢
B() =]l T

1—rpe?’
k=1 k

where 7, € (0,1) and >, (1 —rg) < 1.

0 € [—m, 7], (1.2)

Theorem 1.3. Suppose ri <ro <---<r, <---, and

P
f———— > 0. 1.3
T (1.3)

If p satisfies the A, condition, then po B also satisfies the A, condition.

Corollary 1.4. Let 1 < p < o0, a € L*(T), and let a Blaschke product B satisfy
the conditions of Theorem 1.3. Then T(a) : HP(T) — HP(T) is invertible if and
only if T(ao B) : HP(T) — HP(T) is invertible.

Proof. The invertibility of T'(a o B) implies that of T'(a) according to [1, Theorem
12]. The opposite implication follows from Theorem 1.3 (see [1, Section 1]). O
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2. Auxiliary results on inner and outer functions

According to the canonical factorisation theorem (see, e.g., [5, Theorem 2.8]), any
function from HP(T)\ {0} has a unique, modulo a constant factor, representation
as the product of an outer function from HP(T) and an inner function.

A function F' € HP(T) is called an outer function if

F(2) = e exp (1 /ﬂ e te " log (1) d ) 2] <1, (2.1)

2 J_ . et

where c is a real number, ¢ >0, log¢ € Ll([—ﬂ',w]), and ¢ € LP([—m,7]).
A function v € H*(T) is called an inner function if |v| = 1 almost everywhere
on T. Any inner function v admits a unique factorisation of the form

v(2) = e“B(2)S(z),

where c is a real number, B is a Blaschke product
- m Zk — 2
H lz] 1 —Zk 2

with m € NU{0}, z, = riexp(ify) # 0, Hk € (—mm), rp=|z| <1, > (1—rp) <
1, and S is a singular inner function

s =ew (- [~ S )

with a nonnegative measure p which is singular with respect to the standard
Lebesgue measure on [—m, 7).

We are particularly interested in the case where v has a unique discontinuity
at z = 1 and infinitely many zeros zj. In this case, limg_ o 2 = 1, the singular
measure p is supported by the point ¢t = 0, and

z+1

S =
(z) = exp (li P
(see [7, Ch. II, Theorems 6.1 and 6.2]). We will also assume that B(0) # 0. Then

), Kk = const > 0

2, — et
H P b 0 € [—m,m]. (2.2)

1—zeif’

Theorem 2.1. (6, Theorem 2.8]) Suppose B has the form (2.2) and limy_.c 2, = 1.
Then one can choose a branch of arg B (e”) which is continuous and increasing
n (0,27), and which satisfies the following condition

TEIOI-IFO arg B (e ) = A, <0, Tilzﬂ?_o arg B (e ) = A_>0.
Moreover, at lest one of these limits is infinite and
| =2 (Zo20(m +01(0)) + Lo,<o0r(6)) , 0 € (0,7,
arg B (610) = (2.3)
2 (Lo, <o(m = 61(0) = o, 50 06(0)) 0 € [=7,0),
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where

0—0k 1 — Tk
0) = arct t = . 2.4
¢k(0) = arctan <5k cot—, > B At T (2.4)

Theorem 2.2. (See [6, Theorem 2.10 and the end of the proof of Theorem 5.9].)
Suppose a real valued function n is continuous on [—m, 7]\ {0} and

i (n(t) F wlog [¢]) = 0.

Then the function e admits the following representation
e = B (eit) g (B (e”)) d (e“) , t€l-mml,

where g,d € C(T), the index of g is 0, and B is the infinite Blaschke product with
the zeros

_ 2—exp(—k+1/2)

 2+4exp(—k+1/2)°

2k

We finish this section with an example of an outer function which is used in
the proof of Theorem 1.2.

Example 2.3. Consider the function

h(z) = exp (—iclog (2 ! 5 Z)) :

where ¢ > 0 and log denotes the branch of logarithm which is analytic in the
complex plane cut along (—oo, 0] and real valued on (0,400). It is clear that h is
analytic inside the unit disk, and since

1—
Im(i 2Z)>O, |z] <1,

h satisfies the following estimate

1< |h(z)] <eT™, |zl <1

Hence h,1/h € H*(T) and h is an outer function (see [7, Ch. II, Corollary 4.7]).
It is also clear that h € C°°(T \ {1}), and since

1 — et o . 0

we have
_ exp (cb), 0 € (0, ],
h(e)] =
exp (c(g —|—7T)) , 0€l-m0),

arg h(e?) = —clog

0
in—| . 2.
sin 2‘ (2.5)
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3. Proof of Theorem 1.3
Suppose the conditions of Theorem 1.3 are satisfied and let
A(9) .= arg B (em) , A(xm)=0.

The proof of Theorem 1.3 relies upon analysis of the properties of A. The cor-
responding results are collected in the following two lemmas. Since A admits the
representation (2.3), (2.4) (with 6, = 0 for all k = 1,2,...), it is convenient to
rewrite (1.3) in the following equivalent form

=:¢g > 0. (31)

. Ek+1
inf
E>1 &g

Lemma 3.1. a) The derivative A’ is increasing on [—m,0) and decreasing on (0, 7).

b)!

1 [A(0)] :
< A0) < — = ,
sind] = 9) < sinf)] VO € [-m, 7]\ {0}, ¢1:=min{cg,e1}
c)
A'Ofc) _ 5
A0) <c, Ve [-m x|\ {0}, Ve>1
Proof. Let
Ap(0) = arctan <£k cot g) .
Then - -
A0) = =2 Ax(0), A'(6) = -2 AL(6)
k=1 k=1
(see (2.3), (2.4)).
a) Since
Ek 1 Ek
—Ap(0) = — =
2sin® § 1 4 (ex cot 2)2 2 (sin2 % + (ey cos g)2>
£k

b

2 ((1 — £7) sin? g + E%)

A’ is increasing on [—m,0) and decreasing on (0, 7].

b) The equality

“k 1 1 €k CcOt 2
_A;c(a) - 281112 Q 1 P) 3 = Sine 1 2 - 3
2 1+ (epcot §) + (excot §)
implies
Ay (9) 1 w o
g _ ‘ t 10
‘ Ag(0) [sin6] (1+ u?)arctanuy ’ Uk = £k 0t

1We will not use the upper estimate for A’(6).
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Since
u u

su = lim =1,
ue(O,—I:oo) (1 +wu?)arctanu  u—0+0 (1 4 u2) arctanu

we get the second inequality in b). Let us prove the first one.
It is clear that

1 £k, cOt & 1 (I 6]
/ 0 2 _ —
0) 2 sin @ 0\2 | sin 6| 1+10L2 » Uky = Ehg COE
1+ (5ko cot 5) ko

2

for any ko € N. Let k¢ be the smallest natural number such that uy, < 1.If ky > 1,
then (3.1) implies
Eko _ U

co < —— <y, < 1.
5}6071 uk}o*l
Hence
Uk, > Cj
1—|—uio - 2
and
Co Co
A() > — > .
6) = 2[sin 6] ~ 4|sin |
If kg = 1, then
€1 ]. €1 €1
A(0) > > > .
(6) = QSiHQg 1+ (1 cot g)2 - 4sin22 - 4\sing\

This proves the first inequality in b).

¢) Since sin?) < csing and cot% > cot ¥, VO € (0,7/2], we have

A (0/c)  sin®§ 14 (g4 cot g)Q

[}
2 2
/ T a2 0 2
Ak(é)) sm- 50 1+(sk cot %)

< c”.

]
Lemma 3.2. Suppose Vg, 1,02 € [—7, 7]\ {0}, signdy = signty = signvds, |Jo| >
|’L91‘ > |’l92|, and
[A(W1) — A(o)| = 2m = [A(V2) — A(V)].
Then

a) |99 — 91| < caldo|, where the constant co € (0,1) depends only on ¢ from
Lemma 3.1-b);

b)
[P0 — V1]
1< ozl o
>~ |1917192| >~ C3

where c3 depends only on c.
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Proof. a) Let 9 € (91,9) be such that
~ c1

A() — A@o)| = 5

IEOT

Then, according to the mean value theorem, there exists ¥* € (5, Jo) such that

C1

o (-0~
It follows from Lemma 3.1-b) that

*

C1 .
S —
2

_a Yo
4 |sin 2

‘ﬂo—&‘g% - ‘ﬂo—&‘g Ssin2 <

Since ‘190 - 15’ < |90|/2, the monotonicity of A implies

[Ado/2) — A(do)| >

Similarly

[A(90/27) = AWo/P )| 2 T, GEN.

Let M = [87/c1] + 1. Then

M
A(W0/2M) — A(W0)l = Y |A(Wo/2) — A(Wo/2 ) = M > 25 & = o,

4 C1
Hence 9 € (99/2™,9y) and
|190 — 191| < |190 — 190/2M| = (1 - 2_M) |’l90‘

This proves a) with ¢y =1 —2=M =1 — 2~ ([87/al]+1),

b) According to the mean value theorem, there exist ¢1 € (91,99) and ¢s €

(J2,11) such that
B0 — 01l _ [A(g2)
|91 =2 A (p1)]

It follows from part a) that

w2 V2 Uy ¥y 2 _ o—2([8n/cr]4+1)
1>=>-—"="=—= —>(1—-cy)"=2 1 .
T o1 Yo Y1 Yo 2 ( 2)

It is now left to use Lemma 3.1-a), c). One can take cz = 24(87/cil+1),
Proof of Theorem 1.3. Let 0; € (—m, ] be the points such that
A(0;) = —2mj, j=0,+1,+2,...

and let
I; = 7 (exp(ifj41),exp(if;)), j =0,+1,%2,...,

(3.2)

where v((,¢’) C T is the arc described by a point moving from ¢ to ¢’ in the

counterclockwise direction.
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Any arc I C T admits the representation:

(o))

where the~ set J is finite or infinite, the set j contains at most two elements, and
the arcs I; have one of the following forms:

a) if 7 # 0, then

I =« (exp(in),exp(iéj)) or vy (eXp(iéj)7eXp(i9j))

and
|A(0;) — A(0;)] < 2m;

b) if J = (), then J contains one element and

I =~ (exp(i§j+1),exp(i§j)> ,

where
|A(611) — A(6;)| < 4.
Case b). Suppose J = 0,

I=1I;=v (eXP(iég‘H)»eXp(iéj)) o AB11) — A(G))] < 4.

Since I may contain the point —1, but does not contain in our case the point 1, it
is convenient to switch from the function A defined on [—7, 7]\ {0} to the following
function defined on (0, 27):

A(y),  ifp e (0,7,
Al) = { A(— 27), if o € (i, 27). (3.3)

Let 1o < 91 be such that A(¢g) = A(0;11) and A(yr) = A(6;).
Using the change of variable u = A(¢)) we get

1 [, 1 o ,
A, = m/Ip (B(¢)|d¢| = e /w PP (exp(iA(v)))dy
1

A1) U
- [ esplin) s

wl - ¢0 A(2o) A/(w(u))
maxye g ) (A’ ()71 (A |
) Y1 = Yo /AWO) P (expliu))du.

According to the mean value theorem there exists 1* € (1o, 1) such that
A" (") (1 — o) = A1) — A(3o).
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It is now easy to derive from Lemmas 3.1 and 3.2 that

A7)
Minye(pg,p,] A (¥) \ A1) — A(¥o)

Cy4 A1) .
A(n) = Alo) /A(%) P (exp(iu))du,

where the constant ¢; depends only on ¢; from Lemma 3.1-b). Similarly,

Ap

IN

A(o)

L[ ca Ath) .
|I|/Ip (B(C))|dC| S J‘Wl)_v“('(/}())ﬁ(wo) 14 (exp(zu))du.

Hence

(|}|/IPP(B(C))dC|); (ﬁ/jﬂ‘q(B(C))dq); <

1 Aw) 1
" <“4(¢1)A(¢0) /Awo) P (eXp(’“))du> x

1 A1) L
(,4(1/;1)_,4(1/)0) /A(w) pq(exp(iu))du> < 2¢,Cp

(see (1.1)). The factor 2 appears in the right-hand side because A(1)1) —

may be larger than 27 but is less than 2 x 2.
Case a). Let Jy C Z be the smallest set such that

1c 5.
j€Jo
It follows from Lemma 3.2-b) that
DALl <es Y || < esll,
J€Jo JjET

where the constant ¢; depends only on ¢; from Lemma 3.1-b).
Let us estimate

Ay = / PBO)IdC].

J

A1)
! / e (exp(iu))du)

IEOT

A(vo)

This is similar but easier than the estimate for A, in the case b), because we do
not need to deal with the function (3.3) now. Since A(§;) — A(6;+1) = 27, we have

I —2mj I
A C4| ]| pp(eXp(ZU))dU _ C4| ]|

7P = 2 —27(j+1) 2

||p||ll),p(qr)-
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Hence
[rmol< | 0)ld¢| = Z/pp )ldc]
I J€ETy I; J€Jo
C4‘I| C4C5
< A oy = 5 1oy 3 1 < A2 1T
Ji€Jo Jj€Jo

(see (3.4)). Similarly

/fp’q<B<<>>|d<| S My 1
Hence
o o)’ ( [rmona)’ <
<| /i 1),

0405
HPHLP(T) o~ ||Lq(1r) < a0y .

O

Remark 3.3. The proof of Theorem 1.3 can be easily extended to any inner function
v such that argv(e’) has a continuous and increasing branch on (0,27), and
A(f) := argv(e’) has the following property
maxgc(o,,,.0;_,] A'(0)
minee[g ] A’(Q)
where 6;’s are defined by (3.2). Indeed, (3.5) is exactly what is needed for the case
b) in the proof of Theorem 1.3. The case a) relies also on Lemma 3.2-b) which in

turn follows from (3.5).
The above applies for example to the singular inner function

- C+1
S(¢) = exp <“<—1

<m < +oo, VjezZ, (3.5)

j+1,05-1

> , Kk =-const > 0.

Indeed,
; 0
A(0) = arg S(e?) = —k cot 3
and it is not difficult to see that (3.5) holds in this case. This corresponds to the
case of the so-called periodic discontinuity which was considered in [9].

4. Proof of Theorem 1.2
Proof. Let ag € L*°(T) be defined by
ap(e'™) = exp (2 g) , 7€ (0,2m).

Then ag is continuous on T \ {1}, ao(l £0) = £1, T(ag) : H?(T) — HP(T) is
invertible for any p € (1,2), and T(1/ag) : H?(T) — HP(T) is invertible for any
p € (2,400) (see [8, 9.3,9.8] or [2, 5.39]).
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Let hg = h exp (—z% log 2), where h is the function from Example 2.3 with
c¢= 5. Then

ho(eit) = |h(e”)\ et (®) , tel[-mml,

where

T .t
p(t) = ) log 251112‘
(see (2.5)).

Let f be a 2m-periodic function such that f € C®([—m, 7]\ {0}), f(t) = ¢(t)
if —r/2<t<0,and f(t) = —f(—t) if 0 <t <7/2. Then

20 = B (") g (B (")) d ("), tel-m ], (4.1)

where g,d € C(T), the index of g is 0, and B is the infinite Blaschke product with
the zeros

2 —exp(—k+1/2)
~ 2+4exp(—k+1/2)
(see Theorem 2.2). Since the index of g is 0, there exists go € C(T) such that g3 = g.
Let dy € C(T) be such that d3(e®) = d(e®) for t € [—m/2,7/2], do(e') # 0 for
t € [-m, 7] and the index of dy is 0.

Consider the function a € L*°(T) defined by

oo (ZLEDEL)

2k

It follows from (4.1) and from the definition of the function f that a?(e’) = 1 if
—m/2 <t < 0. It is clear that the second factor in the right-hand side of (4.2)
is continuous on {e| — /2 < ¢ < 0}, whereas the first one has infinitely many
discontinuities in any left semi-neighbourhood of 1. Hence a takes values 1 and —1
in any left semi-neighbourhood of 1. So, a(1 — 0) = {£1}.

The operator T'(a*') : HP(T) — HP(T) is invertible if and only if T'(aZ 0 B) :
HP(T) — HP(T) is invertible (see, e.g., [6, Theorem 2.1, Propositions 2.3, 4.1 and
5.4]). The latter operator is indeed invertible because T'(aZ') : HP(T) — H?(T) is
invertible and B satisfies (1.3) (see Corollary 1.4). O
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