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Abstract. In a recent paper, we established asymptotic formulas for the eigenvaluesof titeuncations of certain infinite Hessenberg Toeplitz
matrices as goes to infinity. The symbol of the Toeplitz matrices was of the fafth=t~1(1—t)® f(t) (t € T), whereq is a positive real number
but not an integer anélis a smooth function il®. Thus,a has a single power singularity at the palntin the present work we extend the results
to symbols with a finite number of power singularities. To be more precise, we consider symbols of tretiorm 1 f (t) [1K_; (1t /t,) %

(t € T), wheret, = €%, the argument8y are all different, and the exponentg are positive real numbers but not integers.
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1 Introduction and main results

Given a functiora € L* on the unit circle in the complex plarig we denote by

2n )
ag = / a(e®)e*®de/2n, ke z,
0
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the kth Fourier coefficient and by,(a) then x n Toeplitz matrix(aj_«)|_;. We are interested in the behavior of the
eigenvalues of,(a) asn goes to infinity. The functiom is usually referred to as the symbol or the generating function
of the sequencéTy(a)}i_q-

For real-valued functiona the matricesl,(a) are all Hermitian and a number of results on the asymptotics of the
eigenvalues of,(a) are available in this case: see, for example, [6], [12], [15], [17], [19], [20], [21], [22], [24], [25],
[27], [28]. In this case the eigenvalues mimic in the one or other sense the distribution of the values of the &uaiction
equispaced points on the unit circle.

The picture is less complete for complex-valued symbols. Papers [10], [14], [18] are devoted to the limiting behavior
of the eigenvalues ofy(a) if ais a rational function, while papers [1] and [26] embark on the asymptotic eigenvalue
distribution in the case of hon-smooth symbols. In [23] and [26], it was observed thatlif° and the essential range
R (a) does not separate the plane, then the eigenvalugs(af approximate® (a), which resembles the Hermitian
case. Many of the results of the papers cited above can also be found in the books [5], [7], [8].

An extreme situation is the one wheag= 0 for k < —1. Then, the matrice$,(a) are lower triangular and hence
the spectrumspT,(a) is just the singleto{ap}. Note thatag captures almost no information about the functaon
itself. The first interesting case beyond this trivial situation is the one whgeg has an additional super-diagonal
and thus is a Hessenberg Toeplitz matrix. Of course, this happens if and agh¢ D for k < —2. Such symbols can
be analytically continued into the punctured dk |zl < 1, which, as pointed out in [18] and [26], can result in an
eigenvalues distribution along points and curves that are very different from the fai@ge On the other hand, the
presence of singularities in the symbol causes the opposite tendency, that is, it somehow forces the eigenvalues to mimic
the range [26].

In [4], we considered symbols with a singularity of the tyfle-t)® (t € T) in order to illustrate certain instability
phenomena in the eigenvalue distribution. The eigenvalues of the Hessenberg Toeplitz matrices geneftted by
t~1(1—1)® were studied in [2]. The recent papers [9] and [16] contain intriguing numerical experiments for individual
eigenvalues of Toeplitz matrices whose symbols have a so-called Fisher-Hartwig singularity. These are special symbols
that are smooth off minus a single point but not smooth on the entire cifElesee [7], [8]. Papers [9] and [16]
motivated us to take up the singularity—t)® again, and in [3] we established fairly precise results on the eigenvalues
of Ty(a) in the case whera(t) =t~1(1—t)% f(t) and f satisfies certain smoothness and analyticity requirements. In the
present paper, we generalize these results to symbols with several singularities of the power type.

Let H* be the usual Hardy space of (boundary values of) bounded analytic functions in the utiit @skena <
C(T), we denote byvind, (a) the winding number odabout a poinh € C\ % (a) and byD(a) the setof alh € C\ R (a)
for which windy (a) # 0. In this paper we study the eigenvaluesTgfa) for symbolsa(t) = t=2f (t) []K_; (1 —t /t) %

(t € T), wheref is a smooth function subject to additional conditions, the pdints €% are all different, and the
exponentsig are distinct positive real numbers but not integers. Thus, we require in particulantiad, for k # £.

Our approach also works if two or more of the exponeftsoincide, although then a series of technical details emerges.
To keep this paper within a reasonable volume, we decided not to embark on the case of coinciding exponents here.

We enumerate the singularity poingsas follows: let; be such that; = min;<k<x {0k} and number the remaining
tx counterclockwise. Le{Tk}E:1 be the connected componentsof {ti,...,tc } and denote bylosTy be the arcTy
together with its two endpoints. Léit):= a(t)t andhg be its zeroth Fourier coefficient. We assume théias the
following properties.

1. he H* andhg # 0.
2. f eC*(T).
3. hcan be analytically extended to an open neighbortaaf T \ {t,...,tk } not containing the set,...,t }.

4. The derivatived (t) does not vanish fare T\ {t1,...,tk }, eacha(closT) is a Jordan curve which surrounds the
points in its interior clockwise, and fér+ ¢, the interiors of the curves(closTy) anda(closT;) are disjoint.

Figure 2 shows two concrete examples of such functions.
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If f is identically 1, that is, ifa(t) = t~1[]K_;(1 —t/t)%, then properties 1 to 4 are satisfied if and onlyit
yK_ 0k < 2. To see this, let revolve the unit circle once counterclockwise starting atVe have

a(t) = tl(l—t/tl)"l!i (i::ﬁ:)ak

Taking into account that the argument(af—t /ty) /(1 —t/t;) is piecewise constant and that (1 —t/t;)° describes a

loop that encircles the points in its interior exactly once clockwise if and ordyif2, it is not difficult to see that the
range ofa is a flower withK non-overlapping petals and that the petals surround their interiors exactly once clockwise
ifand only ifo < 2.

Let Dn(a) denote the determinant dh(a). Thus, the eigenvalues of T,(a) are the solutions of the equation
Dn(a—A) = 0. Our assumptions imply thdk(a) is a Hessenberg matrix, that is, it arises from a lower triangular matrix
by adding the super-diagonal. This circumstance together with the Baxter-Schmidt formula for Toeplitz determinants
allows us to expred3,(a—A) as a Fourier integral. The value of this integral mainly dependsand on the singularity
of each(1—t/tx)% at the pointy. LetWp be a small open neighborhood of zeroGn We show that for every point
A € D(a)N (a(W) \Wo) there is a unique poirtt ¢ D such tha@(ty) = A. After exploring the contributions of and
the singular point to the Fourier integral, we get the following asymptotic expansiomfga—A).

Theorem 1.1. Leta(t) = t~*h(t) be a symbol with properties 1 to 4. Then, for every small open neighboiVpod
zero inC, everyA € D(a) N (a(W) \Wp), and every real positivg,

1 Akﬂs
Dn(@a—A) = (—hg)" 1 | ——— —= — +Ry(A 1.1
n(@=A) = (~ho) (t{‘*za’(t)\) (kfsz)abﬁltl?naszﬂ"" 1( ,n)), (1.1)

where £, is the collection of all the triplegk, /,s) such thak € {1,...,K}, £ € {0,1,...},s€ {1,2,...}, andoys+ ¢+
1<
sin(okts)l (axs+ £+ 1)
]
im0 0-0

g(8) = (€® —1)/(i8), andRy (A, n) = O(1/n¥) asn — o, uniformly with respect ta € a(W) \ Wp.

Y

Ak,é,s -

F3(te®)g5(8) ;a1 — €0/t 5]
ei9(5+1)

Of course, in Theorem 1.1 the superscfijtmeans “take derivatives with respect t8” and the subscripd =0
means “evaluate i = 0".

The order of the sum in (1.1) i5/n®*1. Thus, among the singularities of the symhglthe factor(1 —t/t;)%
makes the biggest contributionBy,(a—A). Changing to the variablg't; in a, we can obtain a new symbalin which
the first singularity point will bel. Moreover,spTy(a) = spTa(8); see [18] or [5, Section 11.1] for details. In order to
simplify some of our forthcoming results, we henceforth assume without loss of generality-thht

Let wn:= exp(—21i/n) and J,:= {J € {0,...,n—1}: a(w,%) ¢ \No} also lety:= minj<x<k{0k: ax > a1} and
C=min{l,01,y—01}. Aspis any real posmve number, we can develop (1.1) with an arbitrary error bound, but to
make our calculations reasonable and readable, we use Theorem 1pl-wih+ a; + 1 to obtain the following two
results.

Theorem 1.2. Leta(t) = t~1h(t) be a symbol with properties 1 to 4. Then, for every small open neighboivpod
the origin inC and everyj € J,, the equatiorDn(a—A) = 0 has a solutiorh = Aj , such that

142 '
— w%n(u1+1)/n 1+ [ +ZZ] |0gm a2((}.‘)']1) . 1
=1 Al,O,l(Q%J a(wy) ) minm

! Acts +R2<j,n>) , (1.2)

_ — ] -
Al,O,l (k,é,S)EKtl?as 1((Dn)n0ks+€ a1+1



26 J. M. Bogoya, A. Bttcher, S. M. Grudsky, and E. A. Maksimenko

where X is the collection of all triplegk, /,s) # (1,0,1) such thatk € {1,...,K}, £ € {0,1,...}, s€ {1,2,...}, and
oS+ ¢ < 2+ a1. The remainder satisfies

Re(j,n) = O(1/n**) + O(logn/n?)
asn — oo, uniformly inj € 4.

The termdog™(-) /(m! n™) are large whem), is close to one of the singularity poirtisand are small whea, is far
from all thetj’s. Thus, these terms correct the behavior of the eigenvalues close to each singularity point.

Theorem 1.3. Leta(t) = t~1h(t) be a symbol with properties 1 to 4. Then, for every small neighborkigaaf zero in
C and everyj € Jn,

X . R |0 n
Ajn=a(wh) + (a1 + L)kl (el 22"

_ o [1+2q aZ(Q}J%) 1
+wa (w log™ : ’
el (6n) nZl J (Al,O,lw%Ja/((ij) m! nm

PPN
_ on@ () 5 jAk%s +Rs(j,n), (1.3)

A17071 (KZ,S>6Xtl?asfl((kh)ndkSJrffulJrl
wherel and X are as in Theorem 1.2 and

Rs(j,n) = 0(1/n®*1) + O(logn/n?)
asn— oo, uniformly inj € J,.

Figures 1 and 2 illustrate Theorem 1.3.
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Figure 1. The picture shows a piece®fa) for the symbola(t) = t=3(1—)%3(1—t/e&?)%4(1—t/e*)%5 (solid blue
line) located far from zero. The black dots ap4096(a) calculated byMatlab. The red pluses, blue crosses, and green
stars are the approximations obtained by using 2, 3, and 4 terms of (1.3), respectively.
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a(t) =t=1(1—1)%6(1+1)%9

-1.5f
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Figure 2. The black dots and the green stars, are the spectrlyzs@) calculated withMatlab and formula (1.3) with
4 terms, respectively.
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2 Toeplitz determinant
Consider the functiob™ (t):= 1/(h(t) — At) whereX € D(a) andt € T.

Lemma 2.1. Leta(t) = t~*h(t) be a symbol with property 1. Then, for eack D(a) and everyn € N,
Dn(a—2) = (1) 50, (2.1)

Wherebg‘) stands for thenth Fourier coefficient ob®™ andhg for the zeroth Fourier coefficient of

Proof. The Baxter-Schmidt formula, which can for example be found in [5, p. 37], says that3f 1 are integers and
f is a function which is analytic and non-zero in some neighborhood of the origin, then

fo "Dn(t™"f) = (=1)™[1/f]o"Dr (t /1),

where] |, denotes theth Fourier coefficient. Because of property 1, the funcfi@i:= h(t) — At satisfies the hypothesis
of the Baxter-Schmidt formula. Finally, taking= 1 we easily obtain the lemma. O

With the aid of expression (2.1) we will calculate the Toeplitz determibyté— A) as a Fourier integral. As in
the one singularity case [3], this is our starting point to find an asymptotic expansion for the eigenvdi{es. ofhe
major contributions to this integral comes framvhenA is close toR (a) and from the singularity pointz. We analyze
them in separate sections.

3 Contribution of A to the asymptotic behavior ofDy,

Recall that

(A):l/n (A) (0 o-inB
o = 5= | b (e%)e e,

is thenth Fourier coefficient of the functiob® .

Lemma 3.1. Leta(t) = t~th(t) be a symbol satisfying properties 1, 3, and 4. Wetbe a small open neighborhood
of zero inC. Then, for each\ € D(a) \ W sufficiently close taR (a), there is a unique poirth in W\ D such that
a(ty) = A. Moreover, the point, is a simple pole fob®).

Proof. Enumerate the coIIectiorﬁTk}l'(‘:1 in the following way: forl < k < K let Ty be such thaty andty.; are its
extreme points, and €k be such thatx andt; = 1 are its extreme points. The symbmimaps each arcfi to a
different petalP.:= a(Tyx) in R (a); see Figure 3. A& belongs toH* and can be analytically extendedwh the map

h can be thought of as a bounded and analytic functioP inW. Sincehg = h(0) # 0, the functionz *h(z) = a(2)

is unbounded iD. Thus, the ma@ must sendD \ {0} to the exterior ofR (a), that is, the unbounded connected
component ofC \ R (a), and it must accordingly sett! \ D to D(a) Na(W).

By property 4,8 (t) # O for everyt € Ty. TakeS= {t € T: a(t) ¢ Wo}. As & is also analytic iW, for eacht € S
there is an open neighborho\iﬁ() C W of t such tha#/(t) # O for everyt € Vt(k>. Then, there is an open neighborhood
Ut(k) - Vt(k) oft such thatis a conformal map (and hence bijective) frtniﬂ( to a Ut(k)) As eachSis compact, we can
take a finite sub-cover fror{1Ut(k) }t s sayu® U . It follows thata is a conformal map (and hence bijective)
fromU® 5 sk to a(U ) > a(sk).

LetU:=JK_;U®. The lemma holds for every c a(U) N (D(a) \ Wo). Finally, sinced/(t)) # 0, the pointt, must
be a simple pole db®). O
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| a(w)

Figure 3. A typical range for the mapwith 3 singularities over the unit circle.

Lemma 3.1 allows us to write 1

T hat)(z-t)

whereb® is analytic with respect ta in W and uniformly bounded with respect doin a(W) \ Wo. Taking Fourier
coefficients and writing™ (8) instead ob™ (€9), we easily obtain

b (2) +bM(2), (3.1)

) -1
SR —— 3.2
t2al(ty) (3.2)
where
[= L / "™ (9)e g
=on) .

The firsttermin (3.2) time(sfl)”h?,+1 is the contribution of,, to the asymptotic expansion Bf,(a—A); see (2.1). The
functionb® has singularities at eadh, and we use this fact to exparidn the following Section.

4 Contribution of ty to the asymptotic behavior ofDy,

We start this Section by constructing a particular partition of the unity. st a small number satisfying< & <
min;{|8; — 6|} /2 and take a functiorpg € C*[—11, 1] which is supported if{—5/2,6/2) and is identicallyl in
(—6/4,6/4). We may also suppose th&l(Po) = [0,1].

For eachx € [—Tt 11, let @y (B):= ®Py(6 — X). The collection

P.= {CDel,...,CDeK,CD*},

with ®*(8):=1— SK_, ®g, (), is a partition of the unity for the interval-1 7). By pasting segments-1t, 1 in both
directions, we continue this partitiaP to the entire real lin&R.

We will use the following well known asymptotic results, which are, for example, in [11, p.47] and [13, p. 97],
respectively.

Theorem 4.1. If a < B, ve CK[a, B], andv(® (a) = v®(B) = 0for 0 < s< K, then

B . B .
/ v(8)e "0de = — ! - / viK)(8)ede = o(1/nK) asn— .
a (ln) a
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Theorem 4.2. Let > 0,8 > 0,ve C”|[0,9], andv® (8) =0for all s> 0. Then, for everK € N,

S O (B kP

d
p-1 indqq
/0 P @ o= 5

+ RK7V(n)7

where|Rq v(n)| < Ck v/nP+K| the branch of the powe + k is the one corresponding to the argumentinr, 1, and
I(z) is Euler's Gamma function. M depends on a parameter and th® norms of the derivativeg® for 0 < s< K
have bounds that do not depend on the parameter, then one can take a single dongtamtall parameters.

Lemma 4.3. For every sufficiently small positivie we have

1 K /840 )
=~ / ®g, (8)b™ (8)e"°dO + Qy (A, n), (4.2)
245, Jo-5

whereQ1(A,n) = 0(1/n*) asn — oo, uniformly with respect ta in a(W) \ Wp.
Proof. Using the partition?, we may write/ = I; +---+ Ik + I* where

L= %1 /e f:é ®g, (8)6™ (8)e"dp
fork=1,...,Kand
R / " o+ (6)6™ ()¢~ de.
21 n
Takingv(8):= ®*(8)b™ (8), a:= 61, andB:= 21+ 8, in Theorem 4.1 we easily gét = 0(1/n™) asn — oo, uniformly

with respect to\ € a(W) \ Wo.
Using (3.1), we arrive afy = I« — Ixp Where

Bk+0 )
o= — / “ g, ()b (8)e "°dB 4.2)
0k—0

and

de.

. 1 6x+0 cpek(e)e—ine
o= o [

T om a-5 Ha(th) (9 —ty)

Finally, lettingv(8):= ®g, (6)/(tha (ty)(€° — 1)), o= B — &, andPB:= 6+ & in Theorem 4.1 we easily obtaif, =
0(1/n*) asn — oo, uniformly with respect ta in a(W) \ W. O

Expression (4.1) says that the value/dfasically depends on the integrad) (8)e~""® at the singularity arguments
Bk. As we can také as small as we desire, we may assume that in every integral of the sum of (4.1) the \&igable
arbitrarily close t®y. Keeping this idea in mind, we will develop an asymptotic expansioh®r For future reference,
we rewrite (4.1) as

K
1= Z Ik1+Ql()\’n)’ (43)
k=1

whereQs (A, n) = 0(1/n) asn — oo, uniformly inA € a(W) \ Wo. Writing h(8) instead oh(€®), we obtain the following
lemma.

Lemma 4.4. For everyk € {1,...,K} and every sufficiently small positide

12 1/9k+6q39k(e)h5(e)e—ine

I
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Proof. Note that
1 -1 1

Ney -~ -+ L
0™(0) = g) —ne® ~ e 1A Te Bn(o)

Letk € {1,...,K}. As|h(8)| — 0 when|8 — 6| — O, there is a small positive constaltsuch thaiA—te 1®h(8)| < 1
for every|8 — By| < O. Letd = minj<x<k{}. Thus,

A -1 ¢ 0 L)
b () = 5o Zj()\ —®nh(g))° 2 yerigusD (4.5)

for everyk € {1,...,K} and every|6 — 6| < &. Finally, inserting (4.5) in (4.2) finishes the proof. O

We will use the notation
do. (4.6)

_ -1 6x+0 q)ek(e)hS(e) —|n9
Ikls-: /

21\sH1 05 gb(s+1)

Once more, taking(8):= —®g, (6)/(2m\e®), a:= 6 — 3, andB:= 6+ & in Theorem 4.1 we easily obtaifs|s—o =
0(1/n*) asn — oo, uniformly with respect ta € a(W) \ Wo. With the previous notation, we can rewrite (4.4) as

Ikl — ZL Ile+ QZ(k;A7 n)a
S=

whereQz(k,A,n) = 0(1/n") asn — oo, uniformly with respect ta € a(W) \ Wo. Now we use Theorem 4.2 to express

Is asymptotically. We recall that(t) = f(t) []K_; (1 —t/t)%, wheret, = €%, the argument8y are all different, and
the exponents are positive reals but not integers, with = miny<x<x {0k }.

Lemma 4.5. Let f be a function with property 2 anadbe any positive real number. Then, foe {1,... K},

Jor — Ak (s
k1= SIS+

(L, s)e L

+Q7(k,A,n), 4.7)

where L} is the collection of all pairg/,s) such that’ € {0,1,...},s€ {1,2,...}, andoxs+ £+ 1 <
FO(t®)g™(8) 141 — €%/t %]

g(s+1) )
6=0

sin(axts)I (oks+ £+ 1)
it

Ak,é,s =

g(8) = (€® —1)/(i8), andQ(k,A,n) = O(1/n*) asn — oo, uniformly with respect td € a(W) \ Wp.

Proof. Changingd to 8+ 6 in (4.6), we obtain

de.

-1 3 Do(8) Fo(tke®) (1— €9) T u (1 €8 /t) o8
fas= 21\st1 [5 eie(s_,_l)tl?+s+1

It is easy to verify thatl — €® = —iBg(8), whereg(8):= 1+ i08/2+ (i8)?/6+ 0(8°%) as® — 0. Thus, we can write
Ias = [%58%v(8)e "°d@, where

(1) (B) FS(tel®)g™S(8) .k (1 — €%tk /) 1
v(8):= 2rAsHlglst s ,

31
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the branch of the powexys being the one corresponding to the argument-m, 1. Note that for every sufficiently
small positived we haveg € C*[—9, 8] andg(0) = 1. Clearly,

0
flas = [ 6%v(B)e ™de+ / 6%5v(8)e "d

_ / 8)%Sv(—8)e"°de + / 89Sy(0)e M = g + i, (4.8)

where :
Ias1= ( )aks/ eGkSV( )einede’ Taoi= / GGKSV(e)e_inede,
0

Note thatv(+8) € C*[0,8] andv(®(438) = 0 for all s > 0 becausaby = 0 in a small neighborhood af3. Applying
Theorem 4.2 tdyiq and Ik, We obtain

L-1 (_1)aks+év(f)(0)r(aks+£+ 1)i0(ks+é+1

Ilel = ;j nCIkS-‘ré—i-lg! + Q3(S7 kv Lv)\> n)>
[ (ogS+ £+ 1)i—ks—t-1
g = /Z; e fQuskL), @9)

for everyL € N, whereQz andQg are O(1/n%st+1) asn — o, uniformly in A € a(W) \ Wp. Substitution of (4.9) in
(4.8) yields

L1y O(ks+€+l . _
OB s iy

+Q5(Sa ka Lv)\7n)7

for everyL € N, whereQs(s,k, L,A,n) = O(1/n%stL+1) asn — oo, uniformly inA € a(W) \ We. At this point, one could
be tempted to write

g L-1
o Ak,é,s
fa = sZi (Zo W +Qs(sk, LA, n)) +Q2(k,A,n) asn — oo, (4.10)
whereA ¢ s equals
; ¢
sin(oyTs)I (ags+ £+ 1) | Po(6) F3(tke®)gS(8) (1 — €%t /tj) %S ©
i) g8(stD) oo

Note that we can drop the factdy(0) above becaus®y = 1 in a neighborhood 0 = 0. However, representation
(4.10) does not permit us to get an appropriate bound for the remaindgy. ofVe therefore tackle the problem as
follows. First notice that

K
h(8+6x) =f(8+6 1— %%, /t:)%
(8+6k) = f(6+86k) ﬂ( k/tj)
= (1—€®)%f (84 8y) I_L(l—eietk/tj)“i = 0(6%) as8 — 0.
I#

Thus, from (4.5) we obtain

S1 hS(0+8))
A _ K M)
b™(8+6y) = Z))\s+1€|(9+ek)<s+1) + fi's(6) (4.11)
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for everySe N and evenk € {1,...,K}. Here fk(g(e) = 0(8%5) as® — 0, uniformly in A € a(W) \ W. Inserting
(4.11) in (4.2) and (4.3) we obtain

b= 3 hast o [ 00120/ A0+ Qulk A
S; 21_[_ 76 k7s ) )

S-1L-1 AkZS

N Z\; 7\S+1t”n0‘k8+€+1 + iZIQE(S, k,L,A,n)

+oo [ P0(0) 3 (B)e ™8+ Qa(k A1) (4.12)

for everyL,Se N. The functiond®y(0) f&)(e) belongs taCl%% [, & and thus by Theorem 4.1, the integral on the right

side of (4.12) io(1/nl%S) asn — o, uniformly inA € a(W) \ Wp.

Fix Se N such thafa,§ > p. Then, the integral on the right side of (4.12)oigl/n") asn — oo, uniformly in
A €a(W)\Wp for everyk € {1,...,K}.

Now fix L € N such thati; + L+ 1 > p. Thus,Qs(s,k,L,A,n) = O(1/n") asn — oo, uniformly inA € a(W) \ W, for
everyk € {1,...,K}. Therefore, the finite surfis_; Qs(s,k,L,A,n) is O(1/n¥) asn — oo, uniformly in A € a(W)\ Wy
foreveryk e {1,...,K}.

In summary,

S-1L-1 Acts

ZMZh ASHIInaS T+ +Qe(k,A,),

whereQgs(S k,L,A,n) = O(1/n") asn — oo, uniformly inA € a(W) \ Wp for everyk € {1,...,K}. Finally, avoiding the
unnecessary terms of the sum we finish the proof. O

Proof of Theorem 1.1Combine (2.1), (3.2), (4.3), and (4.7). O

5 Individual eigenvalues

In order to find the eigenvalues of the matrigéa), we need to solve the equatiobg(a—A) = 0. We start this
Section by locating the zeros bf,(a—A).
LetWp be a small open neighborhood of zeraddrandwn:= exp(—2ri/n). Let

Jni={j€{0,....n—1}: a(w}) ¢ Wo}. (5.1)
Recall thatA = a(t) ). Take an integef € 5. Using the representations
1 1 1 1

ﬁﬂmzlﬁﬂmo O(Itr — ), ¥MY:¥mb+mm_@m

wheret) belongs to a small neighborhoodcq%, we see that the determinadg(a—A) in (1.1) equalg —hg)"™** times

th — b
>+O<MW10+&ON, (5.2)
wheret, belongs to a small neighborhoodco,%,

_ 1 - Acrs A101(14Qg(A,n))
1_: %’ 2 — - = -
t)r\]l ]Zja/(( )J) k(5 [26 as+l (w},)tl?n“kyr“l az(( )J )n°‘1+1

— o)

tn

ﬂ—%+o(
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with Qg(A,n) = O(1/n%) asn — oo, uniformly with respect ta € a(W) \Wo. Here £, Ac (s, and{ are as in Theorem

1.1. Expression (5.2) makes sense only whas sufficiently close t@o) and thus it is necessary to know whether there
is a zero oD, (a—A) close towh. Letty:= p€?. Itis easy to verify thafl; — 7> = 0if and only if

5.3
A1 018 (00h) 5:3)

0= ('a(d)!2\1+Qg(n)}na1+1> 1/n
|

and

1 (a(@h)(14Qe(m) )  2ms
@—(Ps—narg< A17o,10)%ja/(wlj1) n

wheres € {0,...,n—1} andQg(A,n) = O(1/n%) asn — o, uniformly with respect td € a(W)\ Wp. Whenn tends to
infinity, (5.3) shows thap remains greater than 1 apd— 1. The functionZ; — 7; hasn zeros with respect th € D(a)
given by

a(pe®), ..., a(pe¥-1).

As Lemma 3.1 establishes a 1-1 correspondence betiemadlt,, the functionD,(a— A) is analytic with respect to
A € a(W) \ W, that is, analytic with respect tg € W\ a-(Wp). We can therefore suppose thgt— 7> hasn zeros
with respect tdj, in the exterior ofD given by

Z0=pe®, ... 7y y=peP

We take the function “arg” in the intervé-1t 10. Thus,z; = €% is the nearest zero o). Consider the open neighbor-
hoodE; of z; sketched in Figure 4.

The boundary oEj isM=T,UlN,UlMN3UlMNs. We have chosen radial segmehtsandl4 so that their length is
1/n® with € € (0,min{1,a1,y—0a1}) andy = min{a;: aj > ai} and all the points i , have the common argument
(@j+1+ 9;)/2, while all the points i 4 have the common argumef®;_1 + @;) /2. As we can see in Figure 4, these
points run from the unit circl& to (1+ 1/nf)T. Note also thaf; C (1+1/nf)T andl'3 € T. Recall4, from (5.1). We
putdiam(Ej):=sup{|z1 — 2|: 71,20 € E; }.

Figure 4. The neighborhodg; of z; in the complex plane.
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Theorem 5.1. Suppose(t) = t~1h(t) is a symbol with properties 1 to 4. Let (0,min{1,a;,y— 01}) be a constant.
Then, there is a family of sef&; } <4, in C such that

1. {Ej}jey, is a family of pairwise disjoint open sets,

2. diam(E;) < 2/nf,

3. whe 0Ej,

4. Dp(a—a(ty)) = Dn(a—A) has exactly one zero in ea.

Proof. Assertions 1, 2, and 3 can be deduced from the above construction. We prove assertion 4 by studying the
behavior offDh(a—A)| in dependence o € I'. Forty € '1 we have, as — oo,

|Tl|r1:1_<1+ 1>Lexp<—““>+o<exp<—n“>>,

a(wh) \" nf ol (ch)| nZe-1
Tolr, = 1 |A01(1+Qg(n))
2|l — no1+1 az(oqjq) )

ty — wh

&

B 1
=0\ qaret )

1-¢ j
exp—n b —wn
:O(Fx )), |O<‘}\ |>
nt n01+1
M

M

()

and\Rl(n,tA)\rl = 0(1/n"). Whenn goes to infinity, the absolute value @} decreases at polynomial speed over
while the absolute values of the remaining terms in (5.2) are smallefgvdihus,

Dn(a—A 1 A 1
nIgnJrl ) = n011+1 217071; 0 <n(‘11+8+1> asn — .
0 My a ((’%)
Fort, € '3, asn — o, we get
1 1 |A101(1+Qs(n)
‘(Iih_s: N |Tz|r3: O1+1 ’ ( ] ) ’
& (oon)| e a?(wn)

1
=0 (ndl-’rZ) )

M3

~o(3): Jo(tt)

M3

J(=S)

and\Rl(n,tA)\r3 = 0(1/n*). Whenn goes to infinity, the modulus @f; remains constant ovérs, while the moduli of
the remaining terms in (5.2) are smaller there. Consequently,

1 1
= —+0( - asn— .
- lah T \n

As for the radial segments; and[ 4, we start by showing thaf; and—7> have the same argument there. Sincis a

zero of Ty — I, we deduce that
1 A101(14Qg(n))
A il | ~ O T 2 it
Zjwn'a (on) a*(up)nrt

Dn(a—A)
h8+1
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asn — o and thus

1 A101(1+Qs(n)
_ncpj+arg<uw>:arg< 101{512(&)%)8 ))

] 1
) _ _2((pj1+(pj)+arg<(&%ja’(0)nj)>

Fort) € ', we have

arg‘1) =arg| ————
o g(txuﬁ‘a’(u%)

n A101(1+Qg(n)
:2((pj—¢jl)+arg< 10122(%)8 ))
:n+aw<A““@A{%m»>::mq—%)

a?(wh)

Here the third line is due to (5.4). In addition, s~ oo,

1 [ty — b 1
O( )‘ :O<n€\txl”>’ |O< et )| = 9\ perret )
r2 M2

and|Ru(n, )|, = O(1/n¥). Furthermore,

t, — i
K

Dn(a—A)
h8+1

A101

a?(wh)

1
0 nu1+e+1

N————

40 )
L G\ e

overl, ash — co. The situation is similar for the segmdry.

|Az04]
%1+ a(wh)[2

Figure 5. The absolute value Bf,(a—\)/h™ overE;.

(5.4)
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Figure 5 resumes our analysis|B,(a— \)/h3™|. From the previous study 0Dn(a— )| overl” we infer that for
every sufficiently large we have

1

A101
‘Tl— T2|F > W

22(wh)

and

th — wh ‘t)\—&}jn‘ 1
ti‘Dm( ot | TR S O e )

Hence, by Roudkis theoremPp(a—A)/(—ho)™?! and7; — 7; have the same number of zerosHp that is, a unique
zero. O

r

As a consequence of Theorem 5.1, we can iterate the vatjaii¢he equatiorD,(a—A) = 0, whereDp(a—A) is
given by (1.1). In this fashion we find the unique eigenvalu®,¢&) which is located close ta(w)).

Proof of Theorem 1.2The equatiorD,(a—A) = 0 with Dy(a— A) given by (1.1) is equivalent to the equation

Aq 0,1t2a’(t)\) 1 Ak€

-n Uy LEN ,6,S

=" n,t 55

Moad(y)noett Al,o,l(k,e%ezuasfl(tx)ﬁ?”ak%g*ql FQuln ) 1 &9
(k,5)#(1,0,1)

whereQio(n,ty) = O(1/n*%~1) asn — oo, uniformly with respect td) € W\ a1(Wp). Recall from Theorem 1.1
thaty = min{aj: oj > az} and{ = min{1,a;,y—a1}. Aspis any real positive number, we can develop (5.5) with
an arbitrary error bound, but to make our calculations reasonable and readable, we limit ourgeleXte o1 + 1.
Equation (5.5) is an implicit expression figr We manipulate it to obtain a few asymptotic termstforRemember that

A belongs toD(a) \ Wp; see Figure 3. We can choodéso thin that = a(t, ), &(t, ), andt, are bounded and not too
close to zero. After taking theth root for the main branch specified by the argumeritim, 1] and expanding in (5.5),

i y(@1+1)/n e a(ty;,) 1
By =0RNT 1+ log - + Qua(j,n
o T r’rgl Aroatf &(ty,) ) mn™ (.1

1 Acrs .
el n
AL 1 G, 8 Iy, SENISH A Feullbm
(k7’€7s)7é(17071)

x| 1—

(5.6)

whereQq1 andQq2 are 0(1/n%*1) asn — oo, uniformly with respect tg € 4,. After multiplying in (5.6) we obtain

. [:H’ZZ] aZ(t}\ ) 1
t)\_ .= Jn(al+1)/n 1+ |Ogm j,n
e rrgl Al,O,lt)?j.na/ (ta j,n) m! nm

1 Acrs .
— — ) — + ng J ’ n ’ (5.7)
A17071 (k,Z%eLu as 1(t)\j,n)t|?naks+é ai+1 ( )

(k,£,9)#£(1,0,1)
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whereQqa(n,ty) = 0(1/n%+1) asn — w, uniformly with respect té, € W\ a~1(Wp). Note that, as — oo,

| | log?
o0 — exp( (0+ 12" ) — 1+ (@ + 8" + 0 (57, 58)

Thus, our first approximation fdyx, | is
t)\j‘n = (*)lj]+Ql4(jvn)v

whereQuq(j,n) = O(logn/n) asn — oo, uniformly with respect tg € .. Replacing,; , by this approximation in (5.7)
we obtain

_ [1+2¢] IO 1
t>\jn :Q)I!]n(01+1)/n 1+ Z |Ogm a (2(:)n) J —
’ =1 Aggin'd (wn) /) MN

1 A _
A Nos—1 (el };Sw_a +1+F<z(1,n) )
17071(k’[’s)€£11tka (Q)n)n k 1

(k.0,8)#(1,0,1)

whereR,(j,n) = O(1/r?*1) 4 O(logn/n?) asn — oo, uniformly with respect tg € . O

Proof of Theorem 1.3Inserting (5.8) in (1.2) we obtain

: logn [ a(w) 1
By = | 1+ (0 +1)——+ 3 log" (2j ,) J. e
n =1 Ago1n'd (wn) /) MN

1 A s .
_ %5 +Q]_5 i,n ’ (59)
Al,07l (k,Z,S eLﬂtEaS—l(O*)nak%Z—ul_;-l ( )

(k.£,8)#(1,0,1)

whereQis(j,n) = 0(1/n%+1) + O(log’n/n?) asn — oo, uniformly with respect tg € 4. _ _
Since the symbad is analytic in a small neighborhood of eagh,, we havej, = a(ty, ,) = a(wh+2) = a(wh) +
a(wh)z+ 0(|2?). Thus, applying the symbalto (5.9), we get
. . . loan
M=o + (o1 + Dhal ()

_ o+ aZ(Q)rJ'\) 1
+ wla (W log™ . :
Wy, ((Dn) mzl g <A17071Qﬁ]a,((*)1|) ml nm

PPN "
wha (wn) Ak,f,stk ol (¢ i i
_ . +ola )+ Qasl]. ),
A1,0.,1 (kj,s)ell“asfl(mjj)nGkS+f7(Xl+l n ((*)n)Q15(J ) Q16(J )
(k,£,9)#(1,0,1)

whereQig(j,n) = O(log’n/n?) asn — oo, uniformly with respect tqg € 4. O
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-3

x 10
7
6, -
] 1]
5 ../\.‘ ’-\. -
~, S FaY
ar oS R 1
3k N s e . o SR
. ~ . .: ]
2F : i
[ d ~
F
0 ° 1 1 1 1 1 °

Figure 6. The absolute value of the difference between the eigenvalTess(tf1(1—1)%6(1+1)%°) obtained with
Matlab and formula (6.2). The red, blue, and green dots correspond to the approximations of (6.2) with 2, 3, and 4
terms, respectively.

6 Examples

In this Section we consider two particular situations for symbols with two and three singularities. In these situations we
employ our formulas fot,,  andAj ,, and with the aid oMatlab, we calculate the corresponding numerical errors.

Example 6.1. Consider the symbal(t) =t~1(1—1)%6(1+t)%° with two singularities. In this case equations (1.2) and

(1.3) become
; 1 az(oqjﬁ (—1)nA201 .
— (nnl6/n - : _ . ,0,
D n <1+ n 09 <A170,1(;>n21af(0)nl) Aq01nt3 Rl (61)

and

, . ] 1o (o) 2(col
N = () + L6ufal () 29" 4 P8 () joq [ ECH)
n Aq 0100 @ (wn)

(—1)”A201w,j1a’((o.jq) .
— = R 6.2
A17071n1»3 + 3( Js n)> ( )

respectively. Here
Aro1 = 2%9sin(0.6m (1.6)/1,  Ago1 = 2°Csin(0.9mI(1.9)/1t

andRy, Rz are 0(1/n'®) asn — oo, uniformly with respect tg € %,. Table 1 shows the data, see also Figures 2 and 6.

Example 6.2. Consider now the symbol

a(t) =t H(1-1)%%(1—-t/e")%(1—t/e")%’
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| n 256

512

| 1024

| 2048

4096

1.1x10°2
2.6x10°3
2.5x10°3
1.4x10°2
1.6x10°3
1.4x10°3

(6.1) with 1 term
(6.1) with 2 terms
(6.1) with 3 terms
(6.2) with 2 term
(6.2) with 3 terms
(6.2) with 4 terms

6.8x10°3
7.9x10°4
7.9x10°4
7.1x10°3
5.8x10°4
4.4x104

3.3x10°3
2.3x10°4
2.2x104
3.5x10°8
2.2x10°4
1.8x10°4

1.7x10°3
7.1x10°°
6.6x10°°
1.7x10°3
7.5x10°°
6.0x10°°

8.4x104
2.2x10°°
1.9x10°°
8.5x10°4
2.6x10°°
2.0x10°°

Table 1. The table shows the maximum error obtained with formulas (6.1) and (6.2) for the eigenvalues of the matrices
Tn(t71(1—1)%6(1+1)%9) for different values oh. The data was obtained by comparison with the solutions given by
Matlab, taking into account only the 90% best approximated eigenvalues.

with three singularities. In this case equations (1.2) and (1.3) read

' 1 2( el
‘ n Aq 01000’ & (wn)

Azo 1eoni A‘SO lef4ni )
o ,U, _ i) R 63
Aroint2 — Aggint3 +Re(j,n) (6-3)

and
. o logn  whal (wh) a%(wh)
Ain=al(w)+1.40a () + |og - -
j.n=a(wy) onal (wp) n n Al‘O’l(A)f%Ja/((L)g])
A —2Ni ;) A (oo A ST PV _

~ Azp1e Mond (uon) _ ~301€ "Tnd (eon) +Rs(j,n) (6.4)

Aq 01012 Aqg1nt3
respectively. Here
Aio1 = sin(0.4mI (14)(1—e *)%8(1—e*)7/m
Az 01 =sin(0.6mI(1.6)(1— e2i)0,4(1 _ e_Zi)O'7/(T[e4i),
Agp1=sin(0.7mr (1.7)(1— e4i)0»4(1 _ e2i)0.6/(]_[e8i)7

andRy, R3 areo(l/n1-4) asn — oo, uniformly with respect tg € 4%,. Table 2 shows the data, see also Figure 2.

| n | 256

512

[ 1024

[ 2048

4096 |

2.5x10°2
1.0x10°2
7.8x10°3
2.6x10°2
9.2x10°3
5.7x10°3

(6.3) with 1 term

(6.3) with 2 terms
(6.3) with 4 terms
(6.4) with 2 terms
(6.4) with 3 terms
(6.4) with 5 terms

1.1x 102
3.0x10°3
2.4x10°3
1.2x1072
2.0x10°3
1.8x10°3

6.2x10°°
9.0x10°%
6.8x10°%
6.4x10°3
6.3x10°4
5.2x10°4

3.1x10°3
2.8x10°4
2.3x104
3.2x10°3
2.1x10*
1.9x10°4

1.6x10°3
9.5x10°°
7.8x10°5
1.6x10°3
7.8x10°°
7.0x10°°

Table 2. The table shows the maximum error obtained with formulas (6.3) and (6.4) for the eigenvalues of the matrices
To(t"2(1—t/e?)04(1—t/e*)08(1—t/€%)%7) for different values ofi. The data was obtained by comparison with the
solutions given byatlab, taking into account only the 90% best approximated eigenvalues.

Tables 1 and 2 reveal that the maximum error of (1.2) with one term is reduced by n&0liymes when consid-

ering the second term; see also Figure 6.
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