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Abstract The paper is a concise survey of some rigorous results on the Fox–Li

operator. This operator may be interpreted as a large truncation of a Wiener–Hopf

operator with an oscillating symbol. Employing theorems fromWiener–Hopf theory

one can therefore derive remarkable properties of the Fox–Li operator in a fairly

comfortable way, but it turns out that Wiener–Hopf theory is unequal to the task of

answering the crucial questions on the Fox–Li operator.

1 Masers, Lasers and the Fox–Li Operator

The story begun 50 years ago. Fox and Li [13] considered the repeated reflection of

an electromagnetic wave of wave length � between two plane-parallel rectangular

mirrors. By a tensor product phenomenon, it suffices to suppose that the mirrors

are infinite strips of height 2a with distance b between them. A distribution u.x/,

x 2 . a; a/, of the field on one mirror goes over into the distribution given by

.Au/.x/ D
ei�=4

2
p

�

Z a

 a

�.x  y/u.y/dy; x 2 . a; a/; (1)
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on the other mirror. Here � is the function

�.t/ D e ik
p

t2Cb2

.t2 C b2/1=4

�

1C bp
t2 C b2

�

(2)

where k D 1=� denotes the wave number. What Fox and Li were interested in

were the eigenvalues and eigenfunctions of the operator A: if Au D �u, then the

distribution u.x/ will after n reflections be transformed into �nu.x/. The number

1 j�j2 is the energy loss of the mode u at one step. This setup is called a maser in

the case of microwaves (� � 1 cm) and a laser when working with light waves, in

the range � � 5 � 10 5 cm.

Let us consider the integral operator A given by (1) on L2. a; a/. Being

compact, it has at most countably many eigenvalues with the origin as the only

possible cluster point. Cochran [11] and Hochstadt [16] provided a rigorous

argument which proves that A has at least one eigenvalue. However, there is no

theorem that would imply more or anything else of interest about the operator A.

Well, A has a difference kernel and hence one would expect that for large a the

eigenvalues of A somehow mimic the values of the Fourier transform of �,

O�.�/ WD
Z 1

 1
�.t/ei�tdt; � 2 R:

The function O�.�/ is even, exponentially decaying as j�j ! 1, and in L1.R/. Had

it been in C.R/, we would have had a theorem implying that the eigenvalues of A

cluster along the range O�.R/ as a !1. However, O�.�/ behaves like

r

�

2bj�  kj Œ1C i sign.�  k/�

as � ! k and hence it is not even in L1.R/. In addition we should mention that

the case a � b is not the really interesting case in physics. One is therefore left

with tackling the eigenvalue problem for A numerically, the big problem in this

connection being that the kernel � is highly oscillating: note that k � 20;000 cm 1

for light waves.

Fox and Li found an ingenious way out. The physically relevant case is the one

where a � b. They wrote

exp. ik
p

t2 C b2/ D exp
�

 ikb

�

1C t2

2b2
CO

�

t4

b4

���

;

and since jt j < a, one may ignore theO term if kba4=b4 � 1, that is, if a4 � �b3.

As � � b, this assumption automatically implies that a � b, and therefore .t2 C
b2/1=4 and b=

p
t2 C b2 may be replaced by

p
b and 1, respectively. In summary, the

operator A may be approximated by the operator
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.A1u/.x/ D ei�=4e ikb

p
�b

Z a

 a

e i.k=2b/.x y/2

u.y/dy; x 2 . a; a/:

The change of variables x ! ax, y ! ay yields the operator

.A2u/.x/ D aei�=4e ikb

p
�b

Z 1

 1

e i.ka2=2b/.x y/2

u.y/dy; x 2 . 1; 1/; (3)

and abbreviating ! WD ka2=.2b/ D a2=.2�b/ and
p
i WD ei�=4 we arrive at the

equality A2 D
p

2�e ikbF�! with F
�
! and F! defined on L2. 1; 1/ by

.F�! u/.x/ D
r

!i

�

Z 1

 1

e i!.x y/2

u.y/dy; .F!u/.x/ D
r

!

�i

Z 1

 1

ei!.x y/2

u.y/dy:

Note that F�! is really the adjoint of F! . The operator F! is now called the Fox–Li

operator, and the eigenvalues and eigenfunctions of this operator are what one wants

to know.

After the change of variables x ! x=
p

!  1, y ! y=
p

!  1 the operator F!

becomes the operator given by

.F!u/.x/ D 1p
�i

Z 2
p

!

0

ei.x y/2

u.y/dy; x 2 .0; 2
p

! /; (4)

on L2.0; 2
p

! /, and since ! D a2=.2�b/ may also be assumed to be very large,

F! is a very large truncation of a Wiener–Hopf operator.

In summary, the Fox–Li operator is a reasonable approximation to the original

physical problem and at the same time a large truncated Wiener–Hopf operator

whenever �2b2 � a4 � �b3. Using the dimensionless parameters OaWD ka and
ObW D kb, these inequalities read Ob1=2 � Oa � Ob3=4, and ! becomes Oa2=.2 Ob/. Fox

and Li themselves showed that already the moderate choice Oa D 25, Ob D 100 leads

to acceptable numerical results.

2 Wiener–Hopf Operators

An integral operator on L2.0;1/ of the form

.W u/.x/ D
Z 1

0

%.x  y/u.y/dy; x 2 .0;1/;

is called a Wiener–Hopf operator. Such an operator is bounded on L2.0;1/ if

and only if the Fourier transform a WD O%, taken in the distributional sense, is a
function in L1.R/. The function % is uniquely determined by its Fourier transform
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a, henceforth we denote the operatorW byW.a/. The function a is usually referred

to as the symbol of W.a/. Note that W.a/ is the compression to L2.0;1/ of the

operator which acts on L2.R/ by the following rule: take the Fourier transform,

multiply the result by a, and then take the inverse Fourier transform.

For � 2 .0;1/, the truncated Wiener–Hopf operator W� .a/ is defined on

L2.0; �/ by

.W� u/.x/ D
Z �

0

%.x  y/u.y/dy; x 2 .0; �/: (5)

The Fourier transform of %.t/ D eit
2
is O%.�/ D

p
�i e i�

2=4. Thus, letting �.�/ D
e i�

2=4, we see that the Fox–Li operator F! given by (4) is nothing but W2
p

!.�/,

and the problem is to find the eigenvalues and eigenfunctions of W� .�/ as � D
2
p

! !1.
The spectral theory of Wiener–Hopf operators is well developed, one could say

that Wiener–Hopf operators and their discrete analogues, Toeplitz operators, are the

best understood nontrivial classes of non-selfadjoint operators. We refer to [4] for

a presentation of the matter. However, as already said, no result of this theory is

immediately applicable to provide any deeper insight into the spectrum spW� .�/ of

W� .�/. The best that is available to date is the following result.

Theorem 1. We have spW.�/ D D and spW� .�/ � D for every � > 0, where D

is the closed unit disc in the complex plane.

This was established in [7]. The nontrivial part of the theorem is that spW.�/ is

all ofD. In [7] it is actually shown that spW� .�/ is contained in the open unit disc D

and that each point � 2 D belongs to the essential spectrum of W.�/, which means

thatW.�/  �I is not even invertible modulo compact operators.

3 Eigenvalues

The physicists’s intuition, like in Vainshtein’s paper [23], and numerical computa-

tions, made by Cochran and Hinds [12] for probably the first time, indicate that the

eigenvalues of W� .�/ lie along a spiral commencing at 1 and rotating clockwise to

the origin: cf. Fig. 1. To date, no person alive has been able to prove this, even less

so to derive rigourously the shape of the spiral. The following result gives an idea

of what one is already proud of.

Theorem 2. The operator W�.�/ is a trace class operator with at least one

eigenvalue for every � > 0, and with the possible exception of at most countably

many � 2 .0;1/, the operator W� .�/ has a countable number of eigenvalues.

This was proved in [11,16,19]. The approach of [11,16] is based on proving that

det.I  zW� .�// is a nonconstant entire function of z. This function has infinitely

many discrete zeros of finite multiplicity unless it reduces to a polynomial, which
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Fig. 1 The eigenvalues ofW� .�/, with � D 2
p

! D 25; 50 and � given by (4)

is shown to happen for at most countably many values of � . Combining Theorem 1

with the observation that W� .a/ is of trace class, one can say even a little more.

Namely, let f�n.W� .�//gNnD1 denote the eigenvalues of W� .�/ counted with their

algebraic multiplicities. Then

N
X

nD1

�n.W� .�// D trW� .�/ D 1p
�i

Z �

0

ei�0
2

dx D �p
�i

;

and since j�n.W� .�//j � 1 for all n, it follows that

�p
�
D
ˇ

ˇ

ˇ

ˇ

ˇ

N
X

nD1

�n.W� .�//

ˇ

ˇ

ˇ

ˇ

ˇ

�
N
X

nD1

j�n.W� .�//j � N;

which reveals thatW� .�/ has at least �=
p

� eigenvalues.

Vainshtein [23] even raised a conjecture on the shape of the spiral.1 It says that

its parametric representation is � D exp. ˛.�/x�  iˇ.�/x�/, x 2 .0;1/, with

� D 2; ˛.�/ � �.1=2/�3=2

8
p

2 �3
; ˇ.�/ � �2

4�2
; (6)

where �.1=2/ is Riemann’s zeta function at the point 1=2, and that x D n gives

approximately �n. We will return to this conjecture below.

1According to [12], this conjecture comes from “using a distinctly physical approach based on

wave-guide theory”, but we admit that we have not been able to follow the argument of [23].

Moreover, numerical computations do not support the conjecture.
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Theorems of the type of Szegő’s limit theorem [14] give asymptotic expansions

for the trace tr'.W� .a// D
P

n '.�n.W� .a///, where ' W C ! C belongs to a

certain class of so-called test functions. The following first-order result for the case

'.z/ D zj was proved in [7].

Theorem 3. For each fixed natural number j ,

trW j
� .�/ D �

p

�ij
C o.�/ as � !1:

The operatorW
j

� .�/ is the integral operator on L2.0; �/ with the kernel

mj .x; y/ WD 1

.�i/j=2

Z �

0

: : :

Z �

0

exp

 

i

j
X

nD1

.xn  xnC1/
2

!

dx2 : : : dxj ;

where x1 D x and xjC1 D y. The trace of W
j

� .�/ is
R �

0
mj .x; x/dx, and in [7]

we proved that the leading term of the asymptotics of this multivariate oscillatory

integral is �=
p

�ij . We have not been able to determine the second term of the

asymptotic expansion for general j .

Results like Theorem 3 can be used to test conjectures on the asymptotic

eigenvalue distribution. Suppose we are given a family fb�g�>0 of functions

b� W.0;1/ ! C and we want to know whether it might be true that the eigenvalues

ofW� .�/ are asymptotically distributed like samples of b� .x/ at x D n. We have

trW j
� .�/ D

X

n

�j
n.W� .�//;

Z 1

0

bj
� .x/dx �

X

n

bj
� .n/;

and this is the motivation for saying that the eigenvalues ofW� .�/ are asymptotically

distributed as the values of b� (in a very weak sense) if, for each natural number

j � 1,

trW j
� .�/ D

Z 1

0

bj
� .x/dx C o.�/ as � !1:

Using Theorem 3 we showed the following theorem in [7], which justifies at least a

few pieces of Vainshtein’s conjecture.

Theorem 4. Let b� .x/ D exp. ˛.�/x� iˇ.�/x�/ with positive real numbers ˛.�/,

ˇ.�/, �. Then the eigenvalues of W� .�/ are asymptotically distributed as the values

of b� if and only if

� D 2; ˛.�/ D o

�

1

�2

�

; ˇ.�/ D �2

4�2
C o

�

1

�2

�

:
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4 Singular Values

The singular values of W� .�/ are the positive square roots of the eigenvalues of

W� .�/W �
� .�/. SinceW �

� .�/ D W� .�/, we have

.W� .�/W �
� .�/u/.x/ D 1

�

Z �

0

�Z �

0

ei.x t /2

e i.t y/2

dt

�

u.y/dy; x 2 .0; �/;

and hence W� .�/W �
� .�/ D V �C1V where V is the unitary operator given by

.V u/.x/ D eix.� x/u.x/ and C1 is defined by

.C1u/.x/ D 1

�

Z �

0

sin.�.x  y//

x  y
u.y/dy; x 2 .0; �/:

The change of variables x ! x=� , y ! y=� shows that C1 may be replaced by

.C2u/.x/ D 1

�

Z �2

0

sin.x  y/

x  y
u.y/dy; x 2 .0; �2/:

The Fourier transform of sin t=.�t/ is �. 1;1/, the characteristic function of the

interval . 1; 1/. Consequently, the singular values of W� .�/ are the square roots of

the eigenvalues of the operator C2 D W�2.�. 1;1//. This observation was probably

first made in [6].

We are thus led to Wiener–Hopf with real-valued symbols. So, let us suppose

that a 2 L1.R/ is real-valued. Then the operatorsW.a/ andW� .a/ are selfadjoint.

Hartman and Wintner [15] showed that spW.a/ equals the convex hull of the

essential range of a. In [5] it was proved that spW� .a/ � spW.a/ for all � > 0 and

that spW� .a/ converges to spW.a/ in the Hausdorff metric. Using these general

results and taking into account that kW� .a/k < kak1 unless a is a constant, we

arrive at the following.

Theorem 5. The set of the singular values of W� .�/ is contained in Œ0; 1/ for every

� > 0 and converges to the segment Œ0; 1� in the Hausdorff metric as � !1.

Szegő’s limit theorem gives the first term of the asymptotics of the trace of

'.W� .a// for arbitrary real-valued a 2 L1.R/ and the first two terms of the

asymptotics if, in addition, a is smooth enough; see [4, 14]. Hence, for a D �. 1;1/

we cannot derive a second order result in this way. Fortunately, the case where

a D 
�.˛;ˇ/ was studied in detail by Landau and Widom [18].
2 They proved that if

2The reader might enjoy knowing the following, which is cited from [1]: “Harold Widom grew up

in Brooklyn, New York. He went to Stuyvesant High School where he was captain of the math

team. Coincidentally, the captain of the rival team at the Bronx High School of Science was Henry

Landau . . . ”.
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˛ < ˇ and 
 > 0 are real numbers, then

tr '.W�.
�.˛;ˇ/// D �
'.
/.ˇ  ˛/

2�
C log �

�2

Z 


0


'.x/  x'.
/

x.
  x/
dx CO.1/

for every ' 2 C1.R/ satisfying '.0/ D 0. This was conjectured by Slepian [20].

A second proof of this result is in [24]. In [6] we applied this formula toW�2.�. 1;1//

in order to get the following result on the finer distribution of the singular values

ofW� .�/.

Theorem 6. Denote by N.x; y/ the number of singular values of W� .�/, counted

with their multiplicities, which lie in the interval .
p

x;
p

y/. Then for each ı in

.0; 1=2/,

N.1 ı; 1/ D �2

�
 2 log �

�2
log

1  ı

ı
C o.log �/;

N.ı; 1 ı/ D 4 log �

�2
log

1  ı

ı
C o.log �/;

N.0; ı/ D1:

Thus, although, by Theorem 5, the singular values fill Œ0; 1� densely as � goes

to 1, the overwhelming majority of them are concentrated extremely close to the
endpoints of the segment.

5 Complex Wave Numbers

Let us assume that the wave number k lies in the lower complex half-plane, k D
k0  i" with k0 D 1=� and " > 0. This assumption may not be of great interest in

maser and laser theory, but it might be satisfied in problems of acoustics and, more

importantly, it makes the problem nicely accessible to Wiener–Hopf theory.

Replacing k by k0  i" in (2) and proceeding as in Sect. 1, the operator (3) now
becomes

.A2;"u/.x/ D aei�=4e ikb

p
�b

Z 1

 1

e i.k0a2=2b/.x y/2

e ."a2=2b/.x y/2

u.y/dy; (7)

and letting ! D k0a2=.2b/ and � D 2
p

!, we get the operator

.F!;"u/.x/ D 1p
�i

Z �

0

ei.x y/2

e ."=k0/.x y/2

u.y/dy; x 2 .0; �/ (8)
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in place of the operator (4). Here � is a large number. The spectrum of (7) is

what we are looking for, and this spectrum is
p

2� e ik0be "b times the complex

conjugates of the points in the spectrum of F!;". The Fourier transform of

.1=
p

�i/eit
2
e ."=k0/t2

is

�"=k0 .�/ D 1
p

1C i"=k0

exp

�

 ."=k0/�
2

4.1C "2=k2
0/

�

exp

�

 i �2

4.1C "2=k2
0/

�

and hence we may write F!;" D W� .�"=k0 /. Obviously, for " D 0, the symbol

�"=k0 coincides with � . The function � is in L1.R/ but not in L1.R/, neither it is

continuous on the one-point compactification PR of R, which causes a great deal of
problems in employingWiener–Hopf theory. In contrast to this, �"=k0 is in L1.R/\
C. PR/, which facilitates matters significantly.

The kernels of the operators (4) and (8) are complex-symmetric, which implies

that the symbol, i.e. the Fourier transform of the kernel function, is even. Note that if

a is even, a.�/ D a. �/ for � 2 R, then we may think of the essential rangeR.a/

of a as a curve which is traced out by a.�/ from a.1/ to a.0/ as � moves from

 1 to 0 and then backwards from a.0/ to a.1/ as � moves further from 0 toC1.
Complex-symmetric Toeplitz matrices and Wiener–Hopf operators with complex-

symmetric kernels have certain peculiarities. The following was established in [6]

and is the continuous analogue of results by Tilli [21] and Widom [25]. Namely,

let a 2 L1.R/ \ C. PR/, suppose a is even, and assume also that the essential range

R.a/ of a does not contain interior points. The last assumption is always satisfied if

a has some minimal smoothness. Then the spectrum ofW� .a/ converges toR.a/ in

the Hausdorff metric. Secondly, if ' W C ! C is any continuous function such that

'.z/=z converges to a finite limit as z ! 0, then

X

n

'.�n.W� .a/// D �

2�

Z 1

 1
'.a.�//d� C o.�/:

Applying these two general results to a D �"=k0 , we obtain the following two

theorems from [6].

Theorem 7. As � ! 1, the spectrum of W� .�"=k0 / converges in the Hausdorff

metric to the logarithmic spiral

R.�"=k0 / D
(

z 2 C W z D 1
p

1C i"=k0

e .iC"=k0/� for some � 2 Œ0;1�

)

:

Theorem 8. The number of eigenvalues of W� .�"=k0 / which lie close to the piece of

the logarithmic spiral of the previous theorem given by � 2 .0; �0/ is

2�

�

p

.1C "2=k2/�0 C o.�/:

Note that we are not able to prove something like these two theorems for W� .�/

because � is neither in L1.R/ nor in C. PR/.
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6 Pseudospectrum

Fix " > 0. The "-pseudospectrum sp"B of a bounded linear operator B on some

complex Hilbert space is the set of all � 2 C for which k.B  �I/ 1k � 1=".

The spectrum of B is considered to be a subset of sp"B . If B is a normal

operator, then sp"B is simply the closed "-neigbourhood of spB . However, for

non-normal operators this is in general no longer the case, and for such operators the

pseudospectrum is in many instances of even greater use than the spectrum [22]. The

notion of the psedospectrumwas independently invented several times [22], and one

of these inventions was made by Landau [17] when studying the Fox–Li operator.

We first state a simple result from [7].

Theorem 9. Given " > 0, there is a �0 > 0 such that sp"W� .�/ � D for � > �0.

This theorem may be restated as follows. Given " > 0 and � 2 D, there is a

�0 > 0 such that for every � > �0 we can find u� 2 L2.0; �/ satisfying ku�k D 1

and kW� .�/u�  �u�k � ". The following theorem is Landau’s [17]. He takes �

from the unit circle T and is able to say much more in this case.

Theorem 10. Given " > 0, � 2 T, and C > 0, there exists a �0 > 0 such that for

every � > �0 there are at least C� functions u�;n which form an orthonormal system

in L2.0; �/ and satisfy kW� .�/u�;n �u�;nk � ". Moreover, if �1 and �2 are distinct

points on T, then these functions corresponding to �1 and �2 can be chosen to be

mutually orthogonal.

Landau [17] writes that this theorem “shows that for large Fresnel number !

the laser cannot be expected to settle to a single mode.” Physical features of the

pseudospectrum of the Fox–Li operator are also discussed in the work by Sir

Michael Berry and his co-workers; see, e.g., [2, 3].

7 Challenges

So what are the big open problems for the Fox–Li operator we are, all progress

notwithstanding, left with? Here are a few of them. (a) Determine the absolute

value of the outmost or better of the outmost and next eigenvalues. (b) Prove that

the eigenvalues cluster, in some sense, along a spiral. (c) Prove that this spiral

migrates towards the unit circle as � ! 1. (d) Determine the shape of the
spiral. Is it as conjectured by Vainshtein (6), is it related to theta-three as tabled

in [6], or is it something completely different? (e) Describe the density of the

eigenvalue distribution along the spiral. (f) Determine the eigenfunctions: numerical

indications in [10] are that the eigenfunctions corresponding to leading eigenvalues

are trigonometric functions superimposed with low-amplitude rapid oscillation,

while for small eigenvalues the eigenfunctions are wave packets.
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These questions are of course also of interest for the operator with the original

kernel function (2).

We should emphasize that, with the exception of problems (d) and (e), these

questions have all been solved numerically. Approaching the Fox–Li operator

numerically is not a triviality, since this involves working with highly oscillatory

integrals. That Cochran and Hinds [12] were able to show us the spirals as early as

1974 must in this light be appreciated as an admirable feat. Since then numerical

methods for highly oscillatory integral equations have been elaborated by many

mathematicians, and by now the apparatus is well developed to overcome nearly all

subtleties caused by high frequencies. We refer to the recent papers [9, 10] and the

references therein for more on the computational mathematics for the Fox–Li and

related operators.

Finally, we repeat that two peculiarities of the Fox–Li operator are that its kernel

is complex-symmetric and that it depends only on the difference of the arguments.

To gain deeper insight into the Fox–Li operator it seems therefore reasonable

first to attain greater command of simpler operators with such kernels. In [8], we

accordingly considered Wiener–Hopf operators with even and rational symbols.

These are given by (5) where %.t/ is a finite sum of terms of the form pn.jt j/e 
njt j

with polynomials pn and complex numbers 
n such that Re 
n > 0. The symbol

a D O% is an even and rational function in L1.R/ \ C. PR/. Hence, by what was

outlined in Sect. 5, spW� .a/ converges to the curve R.a/ formed by the range of

a in the Hausdorff metric. However, in the case at hand we can say more. There

are explicit formulae for the Fredholm determinants of Wiener–Hopf operators with

rational symbols. Given a and under additional technical assumptions, we used these

formulae to construct a certain function bW.0;1/ ! C and to prove that there is a

numbering f�ng1nD1 of the eigenvalues ofW� .a/ such that, with �n WD n�=� ,

�n D a.�n/C 1

2�
a0.�n/ arg b.�n/  i

2�
a0.�n/ log jb.�n/j CO.1=�2/:

Note that the tangent to R.a/ through a.�n/ has the parametric representation

� D a.�n/ C a0.�n/t , t 2 R, and increasing values of the parameter t provide

the tangent with an orientation. The point a.�n/ C .1=2�/a0.�n/ argb.�n/ lies on

this tangent. It follows that, up to the O.1=�2/ term, the eigenvalue �n is located

on the right of the tangent if jb.�n/j > 1, while it is on the left of the tangent if

jb.�n/j < 1. Furthermore, the eigenfunctions for an eigenvalue �n are shown to be

linear combinations of eizj x where zj 2 C ranges over the finite set of solutions of

the algebraic equation a.z/ D �n.
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