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Abstract. We derive an asymptotic formula for the argument of a Blaschke
product in the upper half-plane with purely imaginary zeros. We then use
this formula to find conditions for the quotient of two such Blaschke products
to be continuous on the real line. These results are applied to certain Hankel
and Toeplitz operators arising in the Cauchy problem for the Korteweg-de
Vries equation. Our main theorems include certain compactness conditions
for Hankel operators and invertibility conditions for Toeplitz operators with
oscillating symbols containing such quotients. As a by-product we obtain a
well-posedness result for the Korteweg-de Vries equation.
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1. Introduction

The theory of Toeplitz operators on Hardy spaces with symbols having discon-
tinuities of the second kind has been in focus of one of the authors (see, e.g.,
[2–5], [9], [14, 15] and the literature cited therein). The range of symbols under
consideration is quite large and varies from discontinuities with rapidly oscillating
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behavior (oscillations of power, exponential and super-exponential types) to slowly
oscillating (e.g., logarithmic). A large variety of generalizations of classical almost
periodic symbols has been considered. For example, the so-called 𝛼-almost peri-
odic and 𝛼-semi-almost periodic symbols have been studied in great detail [3] (see
also [4, 6, 7] for matrix-valued analogs). We note that those generalizations are
highly non trivial. The main problem is that, as opposed to traditional symbols
(continuous or with at most jump discontinuities), the Toeplitz operators with
those more general symbols need not be Fredholm, i.e., the kernels and co-kernels
may be infinitely dimensional. This raises serious problems: finding criteria for one-
sided and generalized invertibility, construction of bases in kernels and co-kernels,
to name just two. Addressing these issues has required developing new methods
(see monographs [7, 9]). We mention here only the method of the so-called “𝑢-
periodic factorizations of symbols”. Further development of the theory of Toeplitz
and Hankel operators with such symbols would therefore be interesting in its own
right due to the nontriviality of its methods.

What is perhaps even more important is that, while the symbols above may
look a bit artificially complicated, there are some problems of mathematical physics
and partial differential equations where such symbols naturally appear. In particu-
lar, a symbol with a cubic oscillation of its argument is a main player in the study
of the Cauchy problem for the Korteweg-de Vries (KdV) equation [18–20].

In the present paper we consider Toeplitz and Hankel operators with symbols
which besides the cubic oscillation contain quotients of Blaschke products with
zeros on the imaginary line. We obtain asymptotics of such Blaschke products and
then use them to find some sufficient conditions for continuity of their quotients.
We then apply these results to study one-sided invertibility of the corresponding
Toeplitz operator and compactness of the Hankel operator. We emphasize that our
interest to this circle of problems was stimulated by certain well-posedness issues
more related to the Cauchy problem for the KdV equation.

Let us describe our main objects in detail. Consider the Blaschke product in
the upper half-plane ℂ+ := {𝑧 ∈ ℂ∣Im 𝑧 > 0}

𝐵(𝑧) =

∞∏
𝑛=1

𝑧 − 𝑖𝜅𝑛

𝑧 + 𝑖𝜅𝑛
, (1.1)

with purely imaginary simple zeros such that

𝜅𝑛 > 𝜅𝑛+1 > 0 and lim𝜅𝑛 = 0, 𝑛 → ∞. (1.2)

Such Blaschke products are of course very specific but they do arise in the spectral
and scattering theories for Schrödinger operators (see, e.g., [17]). Typically, 𝑖𝜅𝑛 =√

𝐸𝑛 where 𝐸𝑛 is the (negative) 𝑛th bound state of a Schrödinger operator.
It is well known (see [10, 16]) that 𝐵(𝑧) is convergent for any

𝑧 ∈ ℂ+ ∖ {0} if and only if
∞∑
𝑛=1

𝜅𝑛 < ∞. (1.3)
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Of course 𝐵(𝑧) is analytic in any neighborhood of a real point 𝑥 not containing
0. We are specifically concerned with the asymptotic behavior of suitably defined
arg𝐵(𝑥) as 𝑥 → 0 and conditions providing continuity at 𝑥 = 0 of

𝑄 (𝑥) :=
𝐵1(𝑥)

𝐵2(𝑥)
, (1.4)

where 𝐵1,2(𝑥) are two Blaschke products given by (1.1). The results obtained are
then applied to the study of Toeplitz and Hankel operators with symbols

𝑎(𝑥) = 𝐷 (𝑥)𝑄 (𝑥) , (1.5)

where either 𝐷 ∈ 𝐻∞
+ + 𝐶(ℝ̇) or 𝐷 ∈ 𝐻∞

+ + 𝐶(ℝ̇). We recall that 𝐻∞
+ stands for

the Hardy space of analytic and bounded functions in the upper half-plane ℂ+

and 𝐶(ℝ̇) is the space of functions continuous on the one point compactification
of the real axis ℝ. The class of operators with such symbols is quite broad (see
(4.10) below) and includes the Hankel and Toeplitz operators arising in the initial
value problem for the Korteweg-de Vries (KdV) equation. We use our results on
Hankel and Toeplitz operators to describe some subtle properties of solutions to
the KdV equation which we believe cannot be achieved by usual PDE methods. We
emphasize that although Hankel operators naturally appear in many other (if not
every) so-called completely integrable systems of nonlinear PDEs (see, e.g., [1]),
not much from the theory of Hankel and Toeplitz operators have been actually
used there so far. We believe that the language of Hankel and Toeplitz operators
is quite adequate in the setting of completely integrable systems and the theory
of those operators will find more useful applications in integrable systems.

This work is organized as follows. In Section 2 we derive an asymptotic for-
mula for the argument of the Blaschke product (1.1). The sufficient conditions of
continuity of the function 𝑄 (𝑥) (1.4) at the point 𝑥 = 0 are given in Section 3.
Applications to the theory of Toeplitz and Hankel operators with oscillating sym-
bol are considered in Section 4. In Section 5 we apply our results to the theory of
the KdV equation.

2. Argument of Blaschke products

Let 𝐵(𝑥) be of the form (1.1)–(1.3) and let the branch of arctan𝑥 be chosen such
that arctan𝑥 ∈ (−𝜋

2 , 𝜋
2

)
for 𝑥 ∈ ℝ. We define the Blaschke product (1.1) under

conditions (1.2)–(1.3) such that the function

𝐵 : ℝ̇ ∖ {0} → ℂ, 𝑥 �→ 𝐵(𝑥)

is continuous, 𝐵(∞) = 1 and ∣𝐵(𝑥)∣ = 1 for all 𝑥 ∈ ℝ̇ ∖ {0}. So we can choose a

branch of arg𝐵 such that arg𝐵(𝑥) is continuous on ℝ̇ ∖ {0} and arg𝐵(∞) = 0.
The following statement is elementary.
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Theorem 2.1. The function arg𝐵(𝑥) is continuously increasing on ℝ ∖ {0},

arg𝐵(𝑥) = −2

∞∑
𝑛=1

arctan
𝜅𝑛

𝑥
, 𝑥 ∕= 0 (2.1)

and
arg𝐵(𝑥) = − arg𝐵(−𝑥), 𝑥 ∈ ℝ, (2.2)

lim
𝑥→±0

arg𝐵(𝑥) = ∓∞. (2.3)

Proof. Since for ±𝑥 > 0

arg
𝑥 − 𝑖𝜅𝑛

𝑥 + 𝑖𝜅𝑛
= 2 arg(𝑥 − 𝑖𝜅𝑛) = −2 arctan

𝜅𝑛

𝑥
,

we immediately have (2.1) and (2.2). The series is convergent due to the Blaschke
condition (1.3). It follows from

∞∑
𝑛=1

∣∣∣ arctan 𝜅𝑛

𝑥

∣∣∣ >
∑

𝜅𝑛>∣𝑥∣

∣∣∣ arctan 𝜅𝑛

𝑥

∣∣∣ >
∑

𝜅𝑛>∣𝑥∣

𝜋

4

that (2.3) holds. The function −2 arctan
𝜅𝑛

𝑥
is clearly increasing on ℝ+ := (0,+∞)

and ℝ− := (−∞, 0) respectively and so is arg𝐵(𝑥). □
With each Blaschke product 𝐵 of the type (1.1) we associate a function 𝑓

constructed as follows. Fix a point 𝜅1/2 > 𝜅1 and define 𝑓

𝑓 : [1/2,∞) → (0, 𝜅1/2], 𝑥 �→ 𝑓(𝑥)

as a continuous strictly decreasing function that interpolates the points{(
1/2, 𝜅1/2

)
, (1, 𝜅1) , (2, 𝜅2,) , . . .

}
. That is

𝑓(1/2) = 𝜅1/2, 𝑓(𝑛) = 𝜅𝑛, 𝑛 = 1, 2, . . . . (2.4)

We call such 𝑓 a function associated with a Blaschke product 𝐵 of the type (1.1).
Similarly, given a continuous suitably decreasing function 𝑓 , we call a Blaschke
product 𝐵 of the type (1.1) satisfying (2.4) a Blaschke product associated with 𝑓 .

Hypothesis 2.2. Let 𝐵 (𝑧) be a Blaschke product of the form (1.1)–(1.3) such that:

i) its zeros {𝑖𝜅𝑛} satisfy

lim
𝑛→∞

𝜅𝑛 − 𝜅𝑛+1

𝜅𝑛
= 0; (2.5)

ii) there exists a continuously differentiable associated function 𝑓(𝑥) such that

lim
𝑛→∞ sup

−1/2≤𝑠≤1/2

∣𝑓(𝑛 + 𝑠)− 𝑓(𝑛) + 𝑠(𝜅𝑛 − 𝜅𝑛+1)∣
Δ𝑛

= 0. (2.6)

Theorem 2.3. Under Hypothesis 2.2

arg𝐵(𝑥) = −2

∞∫
1/2

arctan
𝑓(𝑢)

𝑥
𝑑𝑢 + 𝑜(1), 𝑥 → 0. (2.7)
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Proof. Since the function arg𝐵(𝑥) is odd, it is enough to consider the case 𝑥 > 0.
Let 𝜖𝑛(𝑥) be the difference

𝜖𝑛(𝑥) := arctan
𝜅𝑛

𝑥
−

𝑛+1/2∫
𝑛−1/2

arctan
𝑓(𝑢)

𝑥
𝑑𝑢.

It is easy to see that

𝜖𝑛(𝑥) =

1/2∫
0

[(
arctan

𝑓(𝑛)

𝑥
− arctan

𝑓(𝑛 + 𝑠)

𝑥

)

+

(
arctan

𝑓(𝑛)

𝑥
− arctan

𝑓(𝑛 − 𝑠)

𝑥

)]
𝑑𝑠

=

1/2∫
0

[
arctan

𝑥(𝑓(𝑛)− 𝑓(𝑛 + 𝑠))

𝑥2 + 𝑓(𝑛)𝑓(𝑛 + 𝑠)
+ arctan

𝑥(𝑓(𝑛)− 𝑓(𝑛 − 𝑠))

𝑥2 + 𝑓(𝑛)𝑓(𝑛 − 𝑠)

]
𝑑𝑠

=

1/2∫
0

[arctan 𝛿𝑛(𝑠, 𝑥) + arctan 𝛿𝑛(−𝑠, 𝑥)] 𝑑𝑠,

where

𝛿𝑛(𝑠, 𝑥) :=
𝑥(𝑓(𝑛)− 𝑓(𝑛 + 𝑠))

𝑥2 + 𝑓(𝑛)𝑓(𝑛 + 𝑠)
, 𝑠 ∈ [−1/2, 1/2].

By a direct computation

𝜖𝑛(𝑥) =

1/2∫
0

arctan
𝛿𝑛(𝑠, 𝑥) + 𝛿𝑛(−𝑠, 𝑥)

1− 𝛿𝑛(𝑠, 𝑥)𝛿𝑛(−𝑠, 𝑥)
𝑑𝑠.

Since −𝛿𝑛(𝑠, 𝑥)𝛿𝑛(−𝑠, 𝑥) > 0, we have

∣𝜖𝑛(𝑥)∣ ≤
1/2∫
0

∣𝛿𝑛(𝑠, 𝑥) + 𝛿𝑛(−𝑠, 𝑥)∣𝑑𝑠.

For 𝑠 ∈ [−1/2, 1/2], we set

Δ𝑛 := 𝜅𝑛 − 𝜅𝑛+1,

Δ(1)
𝑛 (𝑠) := 𝑓(𝑛 + 𝑠)− 𝑓(𝑛),

Δ(2)
𝑛 (𝑠) := Δ(1)

𝑛 (𝑠)− 𝑠Δ(1)
𝑛 (1).

Note that Δ
(1)
𝑛 (1) = −Δ𝑛, Δ

(2)
𝑛 (1) = 0 and

Δ(2)
𝑛 (𝑠) = 𝑓(𝑛 + 𝑠)− 𝑓(𝑛) + 𝑠(𝜅𝑛 − 𝜅𝑛+1). (2.8)
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Let us evaluate now

𝛿𝑛(𝑠, 𝑥) + 𝛿𝑛(−𝑠, 𝑥) = − 𝑥

{
Δ

(2)
𝑛 (𝑠)

𝑥2 + 𝑓(𝑛)𝑓(𝑛 + 𝑠)
+

Δ
(2)
𝑛 (−𝑠)

𝑥2 + 𝑓(𝑛)𝑓(𝑛 − 𝑠)

+
𝑠Δ𝑛(𝑓(𝑛 + 𝑠)− 𝑓(𝑛 − 𝑠))𝑓(𝑛)

(𝑥2 + 𝑓(𝑛)𝑓(𝑛 + 𝑠))(𝑥2 + 𝑓(𝑛)𝑓(𝑛 − 𝑠))

}
= − 𝑥

{
Δ

(2)
𝑛 (𝑠)

𝑥2 + 𝑓(𝑛)𝑓(𝑛 + 𝑠)
+

Δ
(2)
𝑛 (−𝑠)

𝑥2 + 𝑓(𝑛)𝑓(𝑛 − 𝑠)

+
𝑠Δ𝑛(Δ

(1)
𝑛 (𝑠)−Δ

(1)
𝑛 (−𝑠))𝑓(𝑛)

(𝑥2 + 𝑓(𝑛)𝑓(𝑛 + 𝑠))(𝑥2 + 𝑓(𝑛)𝑓(𝑛 − 𝑠))

}
.

Consider two cases: 𝑓(𝑛) ≥ 𝑥 and 𝑓(𝑛) < 𝑥. If 𝑓(𝑛) ≥ 𝑥, then

∣𝛿𝑛(𝑠, 𝑥) + 𝛿𝑛(−𝑠, 𝑥)∣ ≤
𝑥
∣∣∣Δ(2)

𝑛 (𝑠)
∣∣∣

𝑓(𝑛)𝑓(𝑛 + 𝑠)
+

𝑥
∣∣∣Δ(2)

𝑛 (−𝑠)
∣∣∣

𝑓(𝑛)𝑓(𝑛 − 𝑠)

+
𝑥 ∣𝑠∣ Δ𝑛(∣Δ(1)

𝑛 (𝑠)∣+ ∣Δ(1)
𝑛 (−𝑠)∣)

𝑓(𝑛)𝑓(𝑛 + 𝑠)𝑓(𝑛 − 𝑠)
.

Since for 𝑠 ∈ [−1/2, 1/2]

𝑓(𝑛 + 𝑠) > 𝑓(𝑛 + 1)

and

∣Δ(1)
𝑛 (∣𝑠∣)∣ < Δ𝑛, Δ(1)

𝑛 (−∣𝑠∣) < Δ𝑛−1,

one has

∣𝛿𝑛(𝑠, 𝑥) + 𝛿𝑛(−𝑠, 𝑥)∣ <

{
∣Δ(2)

𝑛 (𝑠)∣+ ∣Δ(2)
𝑛 (−𝑠)∣

Δ𝑛
+

Δ𝑛 +Δ𝑛−1

2𝑓(𝑛)

}
𝑥Δ𝑛

𝑓(𝑛)𝑓(𝑛 + 1)
.

Recalling (2.8), it follows from (2.6) and (2.5) that1

∣𝛿𝑛(𝑠, 𝑥) + 𝛿𝑛(−𝑠, 𝑥)∣ ≲ 𝛼𝑛
𝑥Δ𝑛

𝑓(𝑛)𝑓(𝑛 + 1)
,

where 𝛼𝑛 is independent of 𝑠, and lim
𝑛→∞ 𝛼𝑛 = 0.

If 𝑓(𝑛) < 𝑥 then

∣𝛿𝑛(𝑠, 𝑥) + 𝛿𝑛(−𝑠, 𝑥)∣

≲ ∣Δ(2)
𝑛 (𝑠)∣
𝑥

+
∣Δ(2)

𝑛 (−𝑠)∣
𝑥

+
𝑠Δ𝑛

{
∣Δ(1)

𝑛 (𝑠)∣+ ∣Δ(1)
𝑛 (−𝑠)∣

}
𝑓(𝑛)

𝑥3
.

It follows from (2.6) that

sup
−1/2≤𝑠≤1/2

∣Δ(1)
𝑛 (𝑠)∣
Δ𝑛

= sup
−1/2≤𝑠≤1/2

∣Δ(2)
𝑛 (𝑠)− 𝑠Δ𝑛∣

Δ𝑛

1We write 𝑓 ≲ 𝑔 if 𝑓 ≤ 𝐶𝑔 with some 𝐶 > 0 independent of arguments of the functions 𝑓 and 𝑔.
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is bounded with respect to 𝑛 and hence{
∣Δ(1)

𝑛 (𝑠)∣+ ∣Δ(1)
𝑛 (−𝑠)∣

} 𝑠𝑓(𝑛)Δ𝑛

𝑥3

≲ ∣Δ(1)
𝑛 (𝑠)∣+ ∣Δ(1)

𝑛 (−𝑠)∣
Δ𝑛

(
Δ𝑛

𝑥

)2

≲
(
Δ𝑛

𝑥

)2

.

Therefore

∣𝛿𝑛(𝑠, 𝑥) + 𝛿𝑛(−𝑠, 𝑥)∣ ≲ ∣Δ(2)
𝑛 (𝑠)∣+ ∣Δ(2)

𝑛 (−𝑠)∣
Δ𝑛

⋅ Δ𝑛

𝑥
+

(
Δ𝑛

𝑥

)2

≲ 𝛽𝑛
Δ𝑛

𝑥
,

where 𝛽𝑛 is independent of 𝑠 and lim
𝑛→∞ 𝛽𝑛 = 0 , and we finally have

∣𝜖𝑛(𝑥)∣ ≲

⎧⎨⎩
𝛼𝑛

𝑥Δ𝑛

𝑓(𝑛)𝑓(𝑛 + 1)
, 𝑓(𝑛) ≥ 𝑥

𝛽𝑛
Δ𝑛

𝑥
, 𝑓(𝑛) < 𝑥.

We now estimate the remainder 𝛿(𝑥) := arg𝐵(𝑥) + 2

∞∫
1/2

arctan
𝑓(𝑢)

𝑥
𝑑𝑢

for 𝑥 > 0 small enough. We have

∣𝛿(𝑥)∣ ≲
∞∑

𝑛=1

∣𝜖𝑛(𝑥)∣ ≤
⎧⎨⎩ ∑

𝑓(𝑛)≥√
𝑥

+
∑

𝑥≤𝑓(𝑛)<
√
𝑥

+
∑

𝑓(𝑛)<𝑥

⎫⎬⎭ ∣𝜖𝑛(𝑥)∣

≲
∑

𝑓(𝑛)≥√
𝑥

𝑥

{
1

𝑓(𝑛 + 1)
− 1

𝑓(𝑛)

}
+

∑
𝑥≤𝑓(𝑛)<

√
𝑥

𝜎1(𝑥)𝑥

{
1

𝑓(𝑛 + 1)
− 1

𝑓(𝑛)

}

+
∑

𝑓(𝑛)<𝑥

𝜎2(𝑥)

𝑥
{𝑓(𝑛)− 𝑓(𝑛 + 1)} ,

where

𝜎1(𝑥) := sup
{
𝛼𝑛 : 𝑥 ≤ 𝑓(𝑛) <

√
𝑥
}

, 𝜎2(𝑥) := sup {𝛽𝑛 : 𝑓(𝑛) < 𝑥} .

Thus, we have

∣𝛿(𝑥)∣ ≲ 𝑥

(
1

𝑓(𝑛1 + 1)
− 1

𝑓(1)

)
+ 𝑥𝜎1(𝑥)

(
1

𝑓(𝑛2 + 1)
− 1

𝑓(𝑛1 + 1)

)
+

𝜎2(𝑥)

𝑥
𝑓(𝑛2 + 1),

where

𝑛1 = max
{
𝑛 : 𝑓(𝑛) ≥ √

𝑥
}

, 𝑛2 = max {𝑛 : 𝑓(𝑛) ≥ 𝑥} .

It is easy to see that

lim
𝑥→0

𝜎1(𝑥) = lim
𝑥→0

𝜎2(𝑥) = lim
𝑥→0

𝑥

𝑓(𝑛1 + 1)
= 0
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and

lim
𝑥→0

𝑥

𝑓(𝑛2 + 1)
= 1.

Hence lim𝑥→0 𝛿(𝑥) = 0, and the theorem is proved. □

Theorem 2.4. Under Hypothesis 2.2

arg𝐵(𝑥) =
𝜋

2
sgn (𝑥) − 2𝑥

1∫
0

𝑓−1(𝑣)

𝑥2 + 𝑣2
𝑑𝑣 + 𝑜(1), 𝑥 → 0, (2.9)

where 𝑓−1 : (0, 𝜅1/2] → [1/2,∞) is the inverse function of 𝑓 .

Proof. As above we may assume 𝑥 > 0. By Theorem 2.3 for 𝑥 → 0 one has

arg𝐵(𝑥) = −2

∞∫
1/2

arctan
𝑓(𝑢)

𝑥
𝑑𝑢 + 𝑜(1)

= −2𝑢 arctan
𝑓(𝑢)

𝑥

∣∣∣∣∞
1/2

+ 2𝑥

∞∫
1/2

𝑢𝑓 ′(𝑢)𝑑𝑢

𝑥2 + 𝑓2(𝑢)
+ 𝑜(1)

= arctan
𝜅1/2

𝑥
+ 2𝑥

∞∫
1/2

𝑢𝑑 𝑓(𝑢)

𝑥2 + 𝑓2(𝑢)
+ 𝑜(1).

Here we have used

lim
𝑢→∞ 𝑢 arctan

(
𝑓(𝑢)

𝑥

)
= 0, (2.10)

that can be easily shown by contradiction. If (2.10) does not hold, then there exists
a sequence of positive numbers {𝑢𝑛}∞𝑛=1 such that

lim
𝑛→∞ 𝑢𝑛 = ∞ (2.11)

and

𝑢𝑛𝑓(𝑢𝑛) ≥ 𝛿 > 0. (2.12)

By the definition of the function 𝑓(𝑢), the integral

𝐼 :=

∞∫
𝑢1

𝑓(𝑢) 𝑑𝑢
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is finite. Since 𝑓(𝑢) is a continuous strictly decreasing function it follows from
(2.12) that

𝐼 =

∞∑
𝑛=1

𝑢𝑛+1∫
𝑢𝑛

𝑓(𝑢) 𝑑𝑢 ≥ 𝛿

∞∑
𝑛=1

𝑢𝑛+1 − 𝑢𝑛

𝑢𝑛+1

≳ 𝛿

∞∑
𝑛=1

∣∣∣∣ln(1− 𝑢𝑛+1 − 𝑢𝑛

𝑢𝑛+1

)∣∣∣∣
= 𝛿 ln

∞∏
𝑛=1

𝑢𝑛+1

𝑢𝑛
.

Thus the last infinite product is convergent, and hence

lim
𝑁→∞

𝑁∏
𝑛=1

𝑢𝑛+1

𝑢𝑛
= lim

𝑁→∞
𝑢𝑁+1

𝑢1

must be finite, which contradicts (2.11). Thus (2.10) holds true.
Changing the variable 𝑣 = 𝑓(𝑢) we continue

arg𝐵(𝑥) = arctan
𝜅1/2

𝑥
− 2𝑥

𝜅1/2∫
0

𝑓−1(𝑣)𝑑𝑣

𝑥2 + 𝑣2
+ 𝑜(1)

= −2𝑥

1∫
0

𝑓−1(𝑣)𝑑𝑣

𝑥2 + 𝑣2
+ 2𝑥

1∫
𝜅1/2

𝑓−1(𝑣)𝑑𝑣

𝑥2 + 𝑣2
+ arctan

(𝜅1/2

𝑥

)
+ 𝑜(1).

Due to lim
𝑥→0

arctan
𝜅1/2

𝑥
=

𝜋

2
and sup

{
𝑓−1(𝑣) : 𝑣 ∈ [𝜅1/2, 1]

}
< ∞ we have

2𝑥

∣∣∣∣∣∣∣
1∫

𝜅1/2

𝑓−1(𝑣)𝑑𝑣

𝑥2 + 𝑣2

∣∣∣∣∣∣∣ ≲ 𝑥

∣∣∣∣∣∣∣
1∫

𝜅1/2

𝑑𝑣

𝑥2 + 𝑣2

∣∣∣∣∣∣∣ =
∣∣∣∣arctan 1

𝑥
− arctan

𝜅1/2

𝑥

∣∣∣∣ .
That is

lim
𝑥→0

2𝑥

1∫
𝜅1/2

𝑓−1(𝑣)

𝑥2 + 𝑣2
𝑑𝑣 = 0

and (2.9) follows. □

In place of Hypothesis 2.2 we can state somewhat stronger.

Hypothesis 2.5. Let 𝐵 (𝑧) be a Blaschke product of the form (1.1)–(1.3) that has
an associated function 𝑓(𝑥) such that ∣𝑓 ′(𝑥)∣ is decreasing and

lim
𝑛→∞

𝑓 (𝑙)(𝑛)− 𝑓 (𝑙)(𝑛 + 1)

𝑓 (𝑙)(𝑛)
= 0, 𝑙 = 0, 1. (2.13)
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Hypothesis 2.5 implies Hypothesis 2.2. For 𝑙 = 0 condition (2.13) is the same
as i) of Hypothesis 2.2 and one only needs to show that (2.13) for 𝑙 = 1 implies
(2.6). Indeed, it is easy to see that

Δ(2)
𝑛 (𝑠) = 𝑓 ′(𝑛0)𝑠 − 𝑓 ′(𝑛1)𝑠 = (𝑓 ′(𝑛0)− 𝑓 ′(𝑛1))𝑠,

with some 𝑛0 and 𝑛1 from [𝑛, 𝑛 + 1] and [𝑛, 𝑛 + 𝑠] respectively. One has∣∣∣∣∣Δ(2)
𝑛 (𝑠)

Δ𝑛

∣∣∣∣∣ =
∣∣∣∣𝑓 ′(𝑛0)− 𝑓 ′(𝑛1)

𝑓 ′(𝑛1)

∣∣∣∣ 𝑠 ≤
∣∣∣∣𝑓 ′(𝑛 − 1)− 𝑓 ′(𝑛 + 1)

𝑓 ′(𝑛 + 1)

∣∣∣∣
≤
∣∣∣∣𝑓 ′(𝑛 − 1)− 𝑓 ′(𝑛)

𝑓 ′(𝑛 − 1)

∣∣∣∣ ∣∣∣∣𝑓 ′(𝑛 − 1)

𝑓 ′(𝑛 + 1)

∣∣∣∣+ ∣∣∣∣𝑓 ′(𝑛)− 𝑓 ′(𝑛 + 1)

𝑓 ′(𝑛)

∣∣∣∣ ∣∣∣∣ 𝑓 ′(𝑛)
𝑓 ′(𝑛 + 1)

∣∣∣∣ .
Since 𝑓 ′(𝑥) satisfies (2.13) we immediately conclude that (2.6) holds.

Hypothesis 2.5 is of course much easier to verify and a simple example is in
order.

Example. Take
𝑓(𝑥) = 𝑥−𝛼 ln𝛽 𝑥, (2.14)

where 𝛽 is any real number if 𝛼 > 1 and 𝛽 < −1 if 𝛼 = 1. It follows from

𝑓 ′(𝑥) = −𝑓(𝑥)

𝑥

(
𝛼 − 𝛽

ln𝑥

)
,

that 𝑓(𝑥) is continuous and decreasing for 𝑥 large enough. Moreover for some
𝑛0 ∈ [𝑛, 𝑛 + 1] ∣∣∣∣𝑓(𝑛)− 𝑓(𝑛 + 1)

𝑓(𝑛)

∣∣∣∣ = ∣∣∣∣𝑓 ′(𝑛0)

𝑓(𝑛)

∣∣∣∣→ 0

and condition (2.13) for 𝑙 = 0 holds. Similarly using the second derivative of
𝑓(𝑥) one verifies that (2.13) holds also for 𝑙 = 1. Therefore any Blaschke product
associated with the function (2.14) satisfies Hypothesis 2.5.

Let us demonstrate now how Theorem 2.4 applies in the case of (2.14) with
𝛼 > 1 and 𝛽 = 0.

Example. Take
𝑓(𝑥) = 𝑥−𝛼, 𝛼 > 1,

then 𝑓−1(𝑣) = 𝑣−1/𝛼 and by (2.9) for 𝑥 > 0 we have

arg𝐵(𝑥) =
𝜋

2
− 2𝑥

1∫
0

𝑣−1/𝛼

𝑥2 + 𝑣2
𝑑𝑣 + 𝑜(1) =

𝜋

2
− 2𝑥−1/𝛼

1/𝑥∫
0

𝑢−1/𝛼 𝑑𝑢

1 + 𝑢2
+ 𝑜(1), 𝑥 → 0.

Due to the symmetry of arg𝐵(𝑥) we finally obtain

arg𝐵(𝑥) =
(𝜋

2
− 𝑐∣𝑥∣− 1

𝛼

)
sgn (𝑥) + 𝑜(1), 𝑥 → 0,

where 𝑐 := 2

∞∫
0

𝑢−1/𝛼

1 + 𝑢2
𝑑𝑢.
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3. Quotient of Blaschke products

In this section we consider the continuity of the quotient 𝑄 (𝑥) = 𝐵1(𝑥)/𝐵2(𝑥) of
Blaschke products 𝐵1,2(𝑥) subject to Hypothesis 2.2. More specifically, we study
conditions on 𝐵1,2 providing continuity of arg𝑄 (𝑥) as 𝑥 = 0. The following state-
ment is the main result of this section.

Theorem 3.1. Let 𝐵1,2 be subject to Hypothesis 2.2 and 𝑓1,2 be associated with 𝐵1,2

functions. Set

𝑟 (𝑣) := 𝑓−1
1 (𝑣)− 𝑓−1

2 (𝑣) .

The function arg𝑄 (𝑥) is continuos at 𝑥 = 0 if at least one of the following holds:

i) lim
𝑣→0

𝑟(𝑣) exists;

ii) there exists 𝑐1 ∈ ℂ, such that
𝑣∫
0

𝑟(𝑠)𝑑𝑠 − 𝑐1𝑣 = 𝑜(𝑣).

Proof. Let 𝑥 > 0 and assume condition i). Then by Theorem 2.4 we have

arg𝑄 (𝑥) = −2𝑥

1∫
0

𝑟(𝑣)

𝑥2 + 𝑣2
𝑑𝑣 + 𝑜(1), 𝑥 → 0.

Introduce a function 𝑂1(𝑣) := 𝑟(𝑣) − 𝑟0 where 𝑟0 = lim
𝑣→0

𝑟(𝑣). Then, by i), we get

arg𝑄 (𝑥) = −2𝑟0

1∫
0

𝑥 𝑑𝑣

𝑥2 + 𝑣2
− 2𝑥

1∫
0

𝑂1(𝑣)𝑑𝑣

𝑥2 + 𝑣2
+ 𝑜(1)

= −2𝑟0 arctan
1

𝑥
− 2𝑥

1∫
0

𝑂1(𝑣)𝑑𝑣

𝑥2 + 𝑣2
+ 𝑜(1).

Estimate the integral in the last equation:∣∣∣∣∣∣𝑥
1∫

0

𝑂1(𝑣)

𝑥2 + 𝑣2
𝑑𝑣

∣∣∣∣∣∣ ≲ 𝛼(𝑥)

√
𝑥∫

0

𝑥 𝑑𝑣

𝑥2 + 𝑣2
+

1∫
√
𝑥

𝑥 𝑑𝑣

𝑥2 + 𝑣2

= 𝛼(𝑥) arctan𝑥−1/2 + (arctan𝑥−1 − arctan𝑥−1/2),

where 𝛼(𝑥) = sup {∣𝑂1(𝑣)∣ : 𝑣 ∈ [0,
√

𝑥]}. Thus we obtain

lim
𝑥→0

𝑥

1∫
0

𝑂1(𝑣)𝑑𝑣

𝑥2 + 𝑣2
= 0

and the theorem is proven under condition i).
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Assume that ii) is satisfied. Denoting 𝐹 (𝑣) :=
𝑣∫
0

𝑟(𝑠)𝑑𝑠 we have

arg𝑄 (𝑥) = −2𝑥

1∫
0

𝑑 𝐹 (𝑣)

𝑥2 + 𝑣2
+ 𝑜(1)

= −2𝑥
𝐹 (𝑣)

𝑥2 + 𝑣2

∣∣∣∣1
𝜈=0

− 4𝑥

1∫
0

𝑣 𝐹 (𝑣)𝑑𝑣

(𝑥2 + 𝑣2)2
+ 𝑜(1)

= −2𝑥 𝐹 (1)

𝑥2 + 1
− 4𝑥𝑟1

1∫
0

𝑣2 𝑑𝑣

(𝑥2 + 𝑣2)2
− 4𝑥

1∫
0

𝑣 𝑂2(𝑣) 𝑑𝑣

(𝑥2 + 𝑣2)2
+ 𝑜(1),

where 𝑂2(𝑣) := 𝐹 (𝑣)− 𝑟1𝑣 and 𝑟1 = lim
𝑣→0

𝑣∫
0

𝑟(𝑠)𝑑𝑠. Consider the last integrals:

𝑥

1∫
0

𝑣2 𝑑𝑣

(𝑥2 + 𝑣2)2
=

1/𝑥∫
0

𝑠2𝑑𝑠

(1 + 𝑠2)2
=

∞∫
0

𝑠2𝑑𝑠

(1 + 𝑠2)2
+ 𝑜(1), (3.1)

and ∣∣∣∣∣∣𝑥
1∫

0

𝑣𝑂2(𝑣) 𝑑𝑣

(𝑥2 + 𝑣2)2

∣∣∣∣∣∣ ≲ ∣𝑥∣

⎧⎨⎩𝛽(𝑥)

√
𝑥∫

0

𝑣2𝑑𝑣

(𝑥2 + 𝑣2)2
+

1∫
√
𝑥

𝑣2𝑑𝑣

(𝑥2 + 𝑣2)2

⎫⎬⎭
≲ 𝛽(𝑥)

1/
√
𝑥∫

0

𝑠2 𝑑𝑠

(1 + 𝑠2)2
+

1/𝑥∫
1/

√
𝑥

𝑠2 𝑑𝑠

(1 + 𝑠2)2
,

where 𝛽(𝑥) = sup

{ ∣𝑂2(𝑣)∣
𝑣

: 𝑣 ∈ (0,
√

𝑥)

}
. Hence we have

lim
𝑥→0

𝑥

1∫
0

𝑣𝑂2(𝑣)𝑑𝑣

(𝑥2 + 𝑣)2
= 0. (3.2)

Taking into account (3.1) and (3.2), the assertion is proven under condition ii). □
Example. Consider a Blaschke product 𝐵1 satisfying Hypothesis 2.2. Let 𝑓1 be a
function associated with 𝐵1 set 𝑓1 =: 𝑓 . Next let 𝛼(𝑥) be a continuous function
such that lim

𝑥→∞ 𝛼(𝑥) = 0 and 𝛽(𝑥) := 𝑥+𝛼(𝑥) is monotonically increasing. Define

𝑓2(𝑥) := 𝑓(𝛽(𝑥)+𝑐), where 𝑐 is a real constant. Then 𝑓−1
2 (𝑣) = 𝑓−1(𝑣)−𝑐−𝛼1(𝑣),

where lim
𝑣→0

𝛼1(𝑣) = 0, and hence

𝑟(𝑣) = 𝑓−1 (𝑣)− 𝑓−1
2 (𝑣) = 𝑐 + 𝛼1(𝑣) → 𝑐, 𝑣 → 0.

By Theorem 3.1 lim
𝑥→0

arg𝐵1(𝑥)/𝐵2(𝑥) exists.
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Example. Consider a more delicate case of Theorem 3.1 (part ii) ). Let 𝛽(𝑥) =
𝑥+ 𝑝(𝑥), where 𝑝(𝑥) is a periodic continuous function such that 𝛽(𝑥) is increasing
on [1/2,∞). Then the inverse function has the form

𝛽−1(𝑣) = 𝑣 − 𝑞(𝑣),

where 𝑞(𝑣) is a periodic continuous function. As in the previous example, let us
construct two Blaschke products 𝐵1 and 𝐵2 with the associated functions 𝑓1 and
𝑓2. Let 𝑓1(𝑥) = 𝑓 (𝑥), where 𝑓 satisfies Hypothesis 2.2 and such that 𝑓 ′(𝑥) is
monotonic function and 𝑓 ′′(𝑥) is bounded. Set 𝑓2(𝑥) = 𝑓(𝛽(𝑥)). Then 𝑓−1

2 (𝑣) =
𝛽−1(𝑓−1(𝑣)) = 𝑓−1(𝑣)− 𝑞(𝑓−1(𝑣)) and 𝑟(𝑣) = 𝑞(𝑓−1(𝑣)). Consider

𝐹 (𝑣) =

𝑣∫
0

𝑞(𝑓−1(𝑢))𝑑𝑢 =

𝑣∫
0

𝑞0𝑑𝑢 +

𝑣∫
0

𝑞1(𝑓
−1(𝑢))𝑑𝑢,

where 𝑞0 is the zero Fourier coefficient of 𝑞(𝑣) and 𝑞1(𝑣) = 𝑞(𝑣) − 𝑞0. Then

𝐹 (𝑣) = 𝑞0𝑣 −
∞∫

𝑓−1(𝑣)

𝑞0(𝑢)𝑓
′(𝑢)𝑑𝑢.

Let 𝐹1(𝑣) be an antiderivative of 𝑞1(𝑣). That is 𝐹 ′
1(𝑣) = 𝑞1(𝑣). Then

𝐹 (𝑣) = 𝑞0𝑣 − 𝐹1(𝑢)𝑓
′(𝑢)

∣∣∣∣∣
∞

𝑓−1(𝑣)

+

∞∫
𝑓−1(𝑣)

𝐹1(𝑢)𝑓
′′(𝑢)𝑑𝑢

= 𝑞0𝑣 +
𝐹1(𝑓

−1(𝑣))

(𝑓−1(𝑣))
′ +

∞∫
𝑓−1(𝑣)

𝐹1(𝑢)𝑓
′′(𝑢)𝑑𝑢.

Since 𝑓 ′(𝑓−1(𝑣)) =
1

(𝑓−1(𝑣))′
and 𝐹1(𝑓

−1(𝑣)) is bounded, one has

∣𝐹 (𝑣) − 𝑞0𝑣∣ ≲

⎛⎜⎝∣∣∣∣ 𝑣

𝑣 (𝑓−1(𝑣))′

∣∣∣∣+
∣∣∣∣∣

∞∫
𝑓−1(𝑣)

𝑓 ′′(𝑢)𝑑𝑢

∣∣∣∣∣
⎞⎟⎠ .

Let 𝑣 = 𝑓(𝑥), then

∣𝐹 (𝑣) − 𝑞0𝑣∣ ≲
(

𝑣

∣∣∣∣𝑓 ′(𝑥)
𝑓(𝑥)

∣∣∣∣+ ∣∣∣𝑓 ′(𝑥)
∣∣∣) ≲ 𝑣

∣∣∣∣𝑓 ′(𝑥)
𝑓(𝑥)

∣∣∣∣ .
Condition (2.5) and the monotonicity of the function 𝑓 ′(𝑥) imply the condition ii)
of Theorem 3.1 and arg𝑄 (𝑥) approaches a finite limit as 𝑥 → 0.

Theorem 3.1 has a consequence which will be crucial in the last section.
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Corollary 3.2. Let

𝐵1(𝑧) =

∞∏
𝑛=1

𝑧 − 𝑖𝜈𝑛
𝑧 + 𝑖𝜈𝑛

and 𝐵2(𝑧) =

∞∏
𝑛=1

𝑧 − 𝑖𝜅𝑛

𝑧 + 𝑖𝜅𝑛

be two Blaschke products subject to Hypothesis 2.2 with interlacing zeros (i.e.,
𝜅𝑛 > 𝜈𝑛 > 𝜅𝑛+1 for any 𝑛 ∈ ℕ) and associated functions 𝑓1 and 𝑓2. If there exists
a real continuously differentiable function 𝑓 such that

𝑓 (2𝑥 − 1) = 𝑓1 (𝑥) , 𝑓 (2𝑥) = 𝑓2 (𝑥) ,

and

𝑓 (𝑛) =

⎧⎨⎩𝜅
(1)
𝑛+1
2

, 𝑛 is odd

𝜈
(2)
𝑛
2

, 𝑛 is even
,

then arg𝐵1(𝑥)/𝐵2(𝑥) is continuous on the real line.

Proof. Indeed

𝑓−1
1 (𝑣)− 𝑓−1

2 (𝑣) =
𝑓−1(𝑣) + 1

2
− 𝑓−1(𝑣)

2
=

1

2

and Theorem 3.1 now applies. □

4. Toeplitz and Hankel operators

Let 𝐻2± be the usual Hardy space of the upper and lower half-planes. By the
Paley-Wiener theorem

𝐻2
± =

⎧⎨⎩𝑓 : 𝑓(𝑥) =

∞∫
0

𝑔(𝑡)𝑒±𝑖𝑡𝑥𝑑𝑡, 𝑥 ∈ ℝ, 𝑔 ∈ 𝐿2(ℝ+)

⎫⎬⎭ .

Let 𝑃± be the orthogonal projector of 𝐿2(ℝ) onto 𝐻2
±(ℝ). The operators 𝑃± can

be written as follows

𝑃± =
1

2
(𝐼 ± 𝑆),

where

(𝑆𝑓)(𝑥) :=
1

𝜋𝑖

∫
ℝ

𝑓(𝜏)

𝜏 − 𝑥
𝑑𝜏 : 𝐿2(ℝ) → 𝐿2(ℝ),

with the singular integral understood in the sense of the Cauchy principal value.
The Toeplitz operator with a symbol2 𝑎 (𝑥) ∈ 𝐿∞(ℝ) is defined by

𝑇 (𝑎)𝑓 := 𝑃+ 𝑎𝑓 : 𝐻2
+ → 𝐻2

+. (4.1)

Let

(𝐽𝑓)(𝑥) = 𝑓(−𝑥) : 𝐿2(ℝ) → 𝐿2(ℝ) (4.2)

2𝐿∞(ℝ) is the usual space of functions essentially bounded on ℝ.
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be the reflection operator. The Hankel operator with the symbol 𝑎 is given by the
formula

(ℍ(𝑎)𝑓)(𝑥) := (𝐽𝑃−𝑎𝑓)(𝑥) : 𝐻2
+ → 𝐻2

+. (4.3)

The theory of Toeplitz and Hankel operators is given, e.g., in [8, 12, 13]. Recall a
few more definitions.

Definition 4.1. A bounded linear operator 𝐴 acting in a Banach space 𝐵 is called
left (right) invertible if there exists a bounded in 𝐵 operator 𝐴−1

ℓ (𝐴−1
𝑟 ) such that

𝐴−1
ℓ 𝐴 = 𝐼 (𝐴𝐴−1

𝑟 = 𝐼),

where 𝐼 is the identity operator on 𝐵.

Definition 4.2. A bounded linear operator 𝐴 is called Fredholm if

Im𝐴 = Im𝐴, dimker𝐴 < ∞, and dim(𝐵/Im𝐴) < ∞.

The number
ind(𝐴) := dimker𝐴 − dim(𝐵/Im𝐴)

is called the index of the operator 𝐴.

Define the distance between a function 𝑎 ∈ 𝐿∞(ℝ) and a subset 𝑀 ⊂ 𝐿∞(ℝ)
as

dist(𝑎, 𝑀) := inf
𝑚∈𝑀

ess sup
𝑥∈ℝ

∣𝑎(𝑥)− 𝑚(𝑥)∣.
Introduce

𝐻∞
+ + 𝐶(ℝ̇) := {𝑓 + 𝑔 : 𝑓 ∈ 𝐻∞

+ , 𝑔 ∈ 𝐶(ℝ̇)}.

This space is a closed subspace (and even a closed subalgebra) of 𝐿∞(ℝ) and is
particularly important in the theory of Toeplitz and Hankel operators. We will use
the following well-known results.

Theorem 4.3 (Widom-Devinatz, see [8], p. 59). Let 𝑎(𝑥) be a unimodular function
(that is ∣𝑎(𝑥)∣ = 1 for almost all 𝑥 ∈ ℝ). Then the operator 𝑇 (𝑎) defined by (4.1)

i) is left invertible if and only if dist(𝑎, 𝐻∞
+ ) < 1;

ii) is right invertible if and only if dist(𝑎, 𝐻∞
+ ) < 1;

iii) is invertible if and only if dist(𝑎, 𝐺𝐻∞
+ ) < 1,

where 𝐺𝐻∞
+ ⊂ 𝐻∞

+ is the set of all invertible in 𝐻∞
+ elements.

Theorem 4.4 (I. Gohberg, see [8], [12, 13]). Let 𝑎(𝑥) ∈ 𝐶(ℝ̇), then the operator
𝑇 (𝑎) is Fredholm if and only if 𝑎(𝑥) ∕= 0 for all 𝑥 ∈ ℝ. Moreover

ind(𝑇 (𝑎)) = −wind𝑎,

where wind 𝑎 is the number of rotations which the point 𝑧 = 𝑎(𝑥) makes around
the origin in the complex plane (when 𝑥 moves along ℝ from −∞ to +∞).

Theorem 4.5 ([8], Ch.2, [9], Theorem 2.7). Let 𝑎(𝑥) ∈ 𝐿∞(ℝ) and
ess inf {∣𝑎(𝑥)∣ : 𝑥 ∈ ℝ} > 0. Then

i) if 𝑎(𝑥) ∈ 𝐻∞
+ + 𝐶(ℝ̇) but 1/𝑎(𝑥) /∈ 𝐻∞

+ + 𝐶(ℝ̇) then 𝑇 (𝑎) is left invertible;
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ii) if 𝑎(𝑥) ∈ 𝐻∞
+ +𝐶(ℝ̇) but 1/𝑎(𝑥) /∈ 𝐻∞

+ +𝐶(ℝ̇) then 𝑇 (𝑎) is right invertible;

iii) if 𝑎(𝑥) ∈ (𝐻∞
+ + 𝐶(ℝ̇)) ∩ (𝐻∞

+ + 𝐶(ℝ̇)) then 𝑇 (𝑎) is Fredholm.

Theorem 4.6 ([8], [12, 13]). Let 𝑎(𝑥) ∈ 𝐿∞(ℝ). Then

∥ ℍ(𝑎) ∥≤∥ 𝑎 ∥𝐿∞

and the Hankel operator (4.3) is compact if and only if

𝑎(𝑥) ∈ 𝐻∞
+ + 𝐶(ℝ̇).

Note that if ℎ(𝑥) ∈ 𝐻∞
+ then ℍ(ℎ) = 0 and consequently

ℍ(𝑎) = ℍ(𝑎 − ℎ). (4.4)

Consider now

𝑎(𝑥) = 𝐷 (𝑥)𝐵1(𝑥)/𝐵2(𝑥), (4.5)

where 𝐷 (𝑥) is a unimodular function and 𝐵1,2(𝑥) are Blaschke products satisfying
the conditions of Theorem 3.1. Then Theorems 3.1, 4.4 and 4.5 imply the following
result.

Theorem 4.7. Let 𝑎 have the form (4.5).

i) If 𝐷 ∈ 𝐻∞
+ + 𝐶(ℝ̇) (𝐷 ∈ 𝐻∞

+ + 𝐶(ℝ̇)) and 1/𝐷 /∈ 𝐻∞
+ + 𝐶(ℝ̇) (1/𝐷 /∈

𝐻∞
+ + 𝐶(ℝ̇)) then 𝑇 (𝑎) is left (right) invertible.

ii) If 𝐷 ∈ (𝐻∞
+ + 𝐶(ℝ̇)) ∩ (𝐻∞

+ + 𝐶(ℝ̇)) then 𝑇 (𝑎) is Fredholm.

iii) If 𝐷 ∈ 𝐶(ℝ̇) then 𝑎 ∈ 𝐶(ℝ̇) and 𝑇 (𝑎) is Fredholm and

ind(𝑇 (𝑎)) = −wind𝑎(𝑥).

We will also need

Theorem 4.8. Let a function 𝑎 have the form (4.5) with some 𝐷 ∈ 𝐻∞
+ +𝐶(ℝ̇) and

1/𝐷 /∈ 𝐻∞
+ (ℝ) + 𝐶(ℝ̇). Then the Hankel operator ℍ(𝑎) is compact, ∥ ℍ(𝑎) ∥< 1

and hence the operator 𝐼 + ℍ(𝑎) is invertible.

Proof. The compactness of the operator ℍ(𝑎) is a direct consequence of Theorem
4.6. Turn to the invertibility of 𝐼 + ℍ(𝑎). By Theorem 4.7, the operator 𝑇 (𝑎) is
left invertible and thus by Theorem 4.3 (i) there exists a function ℎ(𝑥) from 𝐻∞

+

such that ∥ 𝑎 − ℎ ∥𝐿∞< 1. By (4.4), ℍ(𝑎) = ℍ(𝑎 − ℎ) and hence by Theorem 4.6

∥ ℍ(𝑎) ∥≤∥ 𝑎 − ℎ ∥𝐿∞< 1 (4.6)

and operator 𝐼 +ℍ(𝑎) is invertible. □

The symbol

𝜙(𝑥) = 𝑒𝑖(𝑡𝑥
3+𝑐𝑥)𝐷 (𝑥) , 𝑡 > 0, 𝑐 ∈ ℝ (4.7)

arises in the inverse scattering transform method for the Korteweg-de Vries (KdV)
equation (see [18, 19]). The form of the unimodular function 𝐷 (𝑥) depends on the
properties of the initial data in the Cauchy problem for the KdV equation. In
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certain particular cases discussed in the next section the function 𝐷 (𝑥) is of the
form

𝐷 (𝑥) =
𝐵1(𝑥)

𝐵2(𝑥)
𝐼(𝑥), (4.8)

where 𝐵1,2(𝑥) are Blaschke products with zeros converging to 0 along the imagi-
nary axis and 𝐼(𝑥) is an inner function (𝐼(𝑥) ∈ 𝐻∞

+ and ∣𝐼(𝑥)∣ = 1 a.e. on ℝ). To
apply Theorem 4.8 to the case of (4.7)–(4.8) we need one result from [3, 9].

Definition 4.9. Let Δ be a real-valued function defined for all sufficiently large
𝑥 > 0. The function Δ is called regular if it is strictly monotonically increasing,
twice continuously differentiable and satisfies

lim
𝑥→∞ inf

𝑥Δ′′(𝑥)
Δ′(𝑥)

> −2,

lim
𝑥→∞

𝑥Δ′′(𝑥)

Δ′ (𝑥)2
= 0,

lim
𝑥→∞

√
𝑥Δ′′(𝑥)

Δ′ (𝑥)3/2
= 0.

Theorem 4.10 ([3], [9], Ch. 5). If the homeomorphism 𝛿(𝑥) : ℝ → ℝ is a regular
function and 𝛿(−𝑥) = −𝛿(𝑥) for sufficiently large 𝑥 > 0, then

exp{𝑖𝜉𝛿(𝑥)} ∈ 𝐻∞
+ + 𝐶(ℝ̇)

for all 𝜉 > 0. Moreover the following representation holds

exp{𝑖𝜉𝛿(𝑥)} = 𝐵𝜉(𝑥)𝐶𝜉(𝑥), (4.9)

where 𝐵𝜉(𝑥) is a Blaschke product with an infinite number of zeros with no ac-
cumulation points at a finite distance and 𝐶𝜉(𝑥) is a unimodular function from

𝐶(ℝ̇).

The following theorem is one of the main results of this paper.

Theorem 4.11. Let 𝐵1,2(𝑥) be Blaschke products of the form (1.1) with zeros sat-
isfying the conditions of Theorem 2.4 and Theorem 3.1 and let 𝐼 (𝑥) be an inner
function. Consider

𝜙(𝑥) = 𝑒𝑖(𝑡𝑥
3+𝑐𝑥)𝐵1(𝑥)

𝐵2(𝑥)
𝐼(𝑥), 𝑡 > 0, 𝑐 ∈ ℝ. (4.10)

Then the Toeplitz operator 𝑇 (𝜙) : 𝐻2
+ → 𝐻2

+ is left invertible, the Hankel operator
ℍ(𝜙) : 𝐻2

+ → 𝐻2
+ is compact and the operator 𝐼 +ℍ(𝜙) : 𝐻2

+ → 𝐻2
+ is invertible.

Proof. By Theorem 3.1

𝑄 (𝑥) =
𝐵1(𝑥)

𝐵2(𝑥)
∈ 𝐶(ℝ̇).

It follows from Theorem 4.10 that

𝑒𝑖(𝑡𝑥
3+𝑐𝑥) ∈ 𝐻∞

+ + 𝐶(ℝ̇)
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(it is easy to check that function 𝛿(𝑥) := 𝑡𝑥3 + 𝑐𝑥 is regular). Since the set 𝐻∞
+ +

𝐶(ℝ̇) is an algebra we have

𝜙(𝑥) ∈ 𝐻∞
+ + 𝐶(ℝ̇). (4.11)

It remains to demonstrate that

1/𝜙(𝑥) /∈ 𝐻∞
+ (ℝ) + 𝐶(ℝ̇). (4.12)

To this end consider

1/𝜙(𝑥) = 𝐵𝜉(𝑥) 𝑑(𝑥),

where 𝐵𝜉(𝑥) is as in (4.9) 𝑑(𝑥) ∈ 𝐶(ℝ̇) and ∣𝑑(𝑥)∣ = 1 for all 𝑥 ∈ ℝ. Since
the Blaschke product 𝐵𝜉(𝑥) has an infinite number of zeros, we conclude that
dimker𝑇 (1/𝜙) = ∞ (see, e.g., [9], p. 24) and hence the operator 𝑇 (1/𝜙) cannot

be Fredholm. On the other hand if (4.12) doesn’t hold, i.e., 1/𝜙 ∈ 𝐻∞
+ +𝐶(ℝ̇) (and

(4.11) also holds), then ([8, 12, 13]) 𝑇 (1/𝜙) must be Fredholm. This contradiction
proves (4.12). □

5. Applications to the Korteweg-de Vries equation

In this section we apply the results obtained in the previous sections to soliton
theory (see, e.g., the book [1] by Ablowitz-Clarkson). We do not assume that
the reader is familiar with this theory and therefore present here some background
information. Consider the initial value (Cauchy) problem for the Korteweg-de Vries
(KdV) equation

∂𝑢 (𝑥, 𝑡)

∂𝑡
− 6𝑢 (𝑥, 𝑡)

∂𝑢 (𝑥, 𝑡)

∂𝑥
+

∂3𝑢 (𝑥, 𝑡)

∂𝑥3
= 0, 𝑡 ≥ 0, 𝑥 ∈ ℝ. (5.1)

𝑢 (𝑥, 0) = 𝑞 (𝑥) . (5.2)

This equation is arguably the most celebrated nonlinear partial differential equa-
tions. It was derived by Korteweg and de Vries in 1895 as a model for describing
shallow water but remained essentially unused until the 50s when it was found
to be particularly important in plasma physics. In 1955, Fermi, Pasta, and Ulam
took a chain of harmonic oscillators coupled with a quadratic nonlinearity and in-
vestigated how the energy in one mode would spread to the rest. (One of the first
dynamics calculations carried out on a computer.) They found that the system cy-
cled periodically and never came to the rest. This was a striking phenomenon which
back then had no explanation. Although Fermi, Pasta, and Ulam never published
their observation, the equation drew attention of mathematicians and theoreti-
cal physicists. The breakthrough occurred in the mid 60s when Gardner, Greene,
Kruskal, and Miura found a truly ingenious way to linearize it. Their method,
now called the inverse scattering transform (IST), is a major achievement of the
20th century mathematics and with its help we have learned an incredible amount



Blaschke Products and KdV Equation 145

about the KdV equation and physical systems described by it3. We have given here
only a small part of the fascinating story behind the KdV equation. The interested
reader can learn more about the history in [1] or any other book on soliton theory.

Conceptually, the IST is similar to the Fourier transform and consists, as the
standard Fourier transform method, of the following three steps:

1. the direct transform mapping the (real) initial data 𝑞(𝑥) to a new set of
variables 𝑆0 in which (5.1) turns into a very simple first-order linear ordinary
equation for 𝑆(𝑡) with the initial condition 𝑆(0) = 𝑆0;

2. solve then this linear ordinary differential equation for 𝑆(𝑡);
3. apply the inverse transform to find 𝑢(𝑥, 𝑡) from 𝑆(𝑡).

In its original edition due to Gardner-Greene-Kruskal-Miura (see, e.g., [1]), 𝑆0

was the set of the so-called scattering data associated with the pair of Schrödinger
operators 𝐻0 = −𝑑2/𝑑𝑥2 and 𝐻𝑞 = −𝑑2/𝑑𝑥2 + 𝑞 (𝑥) on 𝐿2 (ℝ). Moreover, this
procedure comes with a beautiful formula

𝑢 (𝑥, 𝑡) = −2
∂2

∂𝑥2
log det (𝐼 +𝕄𝑥,𝑡) , (5.3)

where𝕄𝑥,𝑡 : 𝐿2 (0,∞) → 𝐿2 (0,∞) is a two parametric family of integral operators

(𝕄𝑥,𝑡𝑓) (𝑦) =

∫ ∞

0

𝑀𝑥,𝑡 (𝑦 + 𝑠) 𝑓 (𝑠) 𝑑𝑠, 𝑓 ∈ 𝐿2 (0,∞) , (5.4)

explicitly constructed in terms of 𝑆(𝑡).

One immediately sees that the operator defined by (5.4) is Hankel. We de-
scribe this operator following [18, 19]. The operator (5.4) is unitary equivalent to

ℍ𝑥,𝑡 := ℍ
(1)
𝑥,𝑡 +ℍ

(2)
𝑥,𝑡. (5.5)

The first operator on the right-hand side of (5.5) is the Hankel operator defined
by (4.3) with the symbol 𝑅𝑥,𝑡 given by

𝑅𝑥,𝑡 (𝜆) = 𝑒2𝑖𝜆(4𝜆
2𝑡−𝑥)𝑅 (𝜆) ,

where 𝑅 (𝜆) is the so-called reflection coefficient corresponding to the pair of
Schrödinger operators 𝐻0, 𝐻𝑞. We can easily do without presenting its formal
definition by stating its properties. For a.e. real 𝜆

𝑅 (−𝜆) = 𝑅 (𝜆), ∣𝑅 (𝜆)∣ ≤ 1. (5.6)

Note that (5.6) implies that ℍ (𝑅(𝑥, 𝑡)) is self-adjoint.

The other operator ℍ
(2)
𝑥,𝑡 on the right-hand side of (5.5) is also a Hankel

operator corresponding to the measure

𝑑𝜌𝑥,𝑡(𝛼) := 𝑒2𝛼(4𝛼
3𝑡−𝑥)𝑑𝜌(𝛼),

3Similar methods have also been developed for many other physically important evolution nonlin-
ear partial differential equations (PDE), which are typically referred to as completely integrable.
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where 𝜌(𝛼) is a measure subject to

Supp 𝜌 ⊆ [0, 𝑎], 𝑑𝜌 ≥ 0,

∫ 𝑎

0

𝑑𝜌 < ∞. (5.7)

The measure 𝜌 is related to the negative spectrum of 𝐻𝑞 but its explicit expression
in terms of 𝐻𝑞 is not essential in our consideration. What we need is the following
relation between the support of 𝜌 and the negative spectrum of 𝐻𝑞:

𝛼 ∈ Supp 𝜌 ⇐⇒ −𝛼2 ∈ Spec (𝐻𝑞) ∩ ℝ−.

More specifically, the operator ℍ
(2)
𝑥,𝑡 is unitarily equivalent to 𝜒ℝ+𝜌𝑥,𝑡ℱ , where

𝜒ℝ+ is the Heaviside function of ℝ+, ℱ is the Fourier operator

(ℱ𝑓) (𝜆) =
1√
2𝜋

∫ ∞

−∞
𝑒𝑖𝜆𝑥𝑓(𝑥)𝑑𝑥,

and 𝜌𝑥,𝑡 is the Fourier transform of the measure4 𝜌𝑥,𝑡.

The pair of functions (𝑅𝑥,𝑡, 𝜌𝑥,𝑡) is called the scattering data and we view
ℍ𝑥,𝑡 as the Hankel operator associated with (𝑅𝑥,𝑡, 𝜌𝑥,𝑡).

It is quite easy to see that the Hankel operator 𝜒ℝ+𝜌𝑥,𝑡ℱ is (self-adjoint) non-

negative. The operator ℍ
(2)
𝑥,𝑡 then is also non-negative for any real 𝑥 and 𝑡 ≥ 0.

That is

ℍ
(2)
𝑥,𝑡 ≥ 0 (5.8)

and it is all we can say so far about ℍ𝑥,𝑡 based upon (5.6) and (5.7). Besides
the full line Schrödinger operator 𝐻𝑞, introduce 𝐻𝐷

𝑞 = −𝑑2/𝑑𝑥2 + 𝑞 (𝑥) defined
on 𝐿2 (ℝ−) with the Dirichlet boundary condition 𝑢 (0) = 0. We label quantities
related to 𝐻𝐷

𝑞 with a superscript 𝐷. We are now able to state the main result of
this section.

Theorem 5.1. Assume that the initial profile 𝑞 (𝑥) in (5.2) is real, locally integrable,
supported on (−∞, 0) and such that

inf Spec (𝐻𝑞) = −𝑎2 > −∞. (5.9)

Then the Cauchy problem for the KdV equation (5.1)–(5.2) has a unique solution
𝑢 (𝑥, 𝑡) which is a meromorphic function in 𝑥 on the whole complex plane with no
real poles for any 𝑡 > 0 if at least one of the following conditions holds:

1. The operator 𝐻𝐷
𝑞 has a non-empty absolutely continuous spectrum;

2. The set 𝑖 Supp 𝜌 is a set of uniqueness of 𝐻∞
+ functions;

3. The sets Supp 𝜌𝐷 = {𝜈𝑛}𝑛≥1 and Supp 𝜌 = {𝜅𝑛}𝑛≥1 satisfy the Blaschke
condition and the corresponding Blaschke products are subject to the condi-
tions of Corollary 3.2.

4We recall 𝜇 (𝜆) := 1√
2𝜋

∫∞
−∞ 𝑒𝑖𝜆𝑥𝑑𝜇(𝑥).
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Proof. Under conditions 1 and/or 2, the theorem is already proven in [18, 19] and
it remains to show that the conclusion of theorem also holds under condition 3.
Moreover, the arguments of [18, 19] (see also [20]) based upon (5.3) can be easily
adjusted to handle condition 3 if we prove that the operator 𝐼 +ℍ𝑥,𝑡 is invertible
under this condition.

Without loss of generality, we may assume that the operator 𝐻𝐷
𝑞 has an

empty absolutely continuous spectrum (otherwise we are under condition 1). The
structure of the reflection coefficient 𝑅 (𝜆) is studied in [17] where it is shown that
𝑅 (𝜆) admits the following factorization

𝑅 (𝜆) = lim
𝑚→∞

⎧⎨⎩
(

𝑚∏
𝑛=1

𝜆 − 𝑖𝜈𝑛
𝜆 + 𝑖𝜈𝑛

)(
𝑚∏

𝑛=1

𝜆 − 𝑖𝜅𝑛

𝜆 + 𝑖𝜅𝑛

)−1
⎫⎬⎭𝑆 (𝜆) , 𝜆 ∈ ℂ+, (5.10)

where 𝑆 ∈ 𝐻∞
+ and 𝑆 is contractive on ℂ+ (i.e., ∣𝑆 (𝜆)∣ ≤ 1, 𝜆 ∈ ℂ+) and the

sequence {𝜈𝑛}𝑛≥1 is such that

{−𝜈2
𝑛}𝑛≥1 = Spec

(
𝐻𝐷

𝑞

) ∩ℝ−,

(the negative spectrum of the half-line Dirichlet Schrödinger operator), and the
sequence {𝜅𝑛}𝑛≥1 is such that

{−𝜅2
𝑛}𝑛≥1 = Spec (𝐻𝑞) ∩ ℝ−,

(the negative spectrum of the full-line Schrödinger operator). Moreover these se-
quences are interlacing, i.e.,

𝜅𝑛 > 𝜈𝑛 > 𝜅𝑛+1 for any 𝑛 ∈ ℕ. (5.11)

Since we have assumed that the operator 𝐻𝐷
𝑞 has no absolutely continuous spec-

trum, ∣𝑆 (𝜆)∣ = 1 for a.e. real 𝜆 (see, e.g., [17]) and hence 𝑆 (𝜆) = 𝐼 (𝜆) where
𝐼 (𝜆) is an inner function of ℂ+.

Note next that

lim
𝑚→∞

⎧⎨⎩
(

𝑚∏
𝑛=1

𝜆 − 𝑖𝜈𝑛
𝜆 + 𝑖𝜈𝑛

)(
𝑚∏

𝑛=1

𝜆 − 𝑖𝜅𝑛

𝜆 + 𝑖𝜅𝑛

)−1
⎫⎬⎭ =

( ∞∏
𝑛=1

𝜆 − 𝑖𝜈𝑛
𝜆 + 𝑖𝜈𝑛

)( ∞∏
𝑛=1

𝜆 − 𝑖𝜅𝑛

𝜆 + 𝑖𝜅𝑛

)−1

=: 𝐵1 (𝜆)𝐵2 (𝜆)
−1

,

where

𝐵1 (𝜆) =

∞∏
𝑛=1

𝜆 − 𝑖𝜈𝑛
𝜆 + 𝑖𝜈𝑛

and 𝐵2 (𝜆) =

∞∏
𝑛=1

𝜆 − 𝑖𝜅𝑛

𝜆 + 𝑖𝜅𝑛
.

We have thus arrived at the factorization

𝑅 (𝜆) =
𝐵1 (𝜆)

𝐵2 (𝜆)
𝐼 (𝜆) , 𝜆 ∈ ℂ+,

and hence for every 𝑥 ∈ ℝ and 𝑡 > 0 the function

𝑅𝑥,𝑡 (𝜆) = 𝑒2𝑖𝜆(4𝜆
2𝑡−𝑥)𝑅 (𝜆) ,
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by Corollary 3.2, satisfies the conditions of Theorem 4.11 and hence

∥ℍ (𝑅𝑥,𝑡)∥ < 1.

This immediately implies that∥∥∥ℍ(1)
𝑥,𝑡

∥∥∥ = ∥ℍ (𝑅𝑥,𝑡)∥ < 1.

Therefore 𝐼 +ℍ
(1)
𝑥,𝑡 ≥ 0 and is boundedly invertible. Due to (5.8)

𝐼 +ℍ
(1)
𝑥,𝑡 +ℍ

(2)
𝑥,𝑡 = 𝐼 +ℍ

(1)
𝑥,𝑡 ≥ 0

is also boundedly invertible and the theorem is proven. □

Note that Theorem 5.1 represents an existence and uniqueness result for the
KdV equation in a very strong sense. We refer the interested reader to [18, 19]
for detailed discussions of statements like Theorem 5.1 and the extensive recent
literature on the subject cited therein.

Let us discuss what the conditions of Theorem 5.1 actually mean in terms of
the initial profile 𝑞 (𝑥) in (5.2). Condition (5.9) means that the spectrum of 𝐻𝑞 is
bounded from below, which (see, e.g., [11]) is satisfied if

sup
𝑥

∫ 𝑥

𝑥−1

max (−𝑞, 0) < ∞. (5.12)

The condition (5.12) becomes also necessary for (5.9) if 𝑞 is negative. Note that
(5.9) imposes no restriction on the positive part max (𝑞, 0) of 𝑞 (𝑥) (e.g., it can grow
arbitrarily fast at −∞ or look like the stock market) but 𝐻𝑞 still satisfies (5.9).

Condition 1 means that 𝑞 (𝑥) has a certain pattern of behavior at −∞. The
precise statement is rather complicated but particular examples are easy. Condition
1 is satisfied if, for example, 𝑞 is quasi-periodic on (−∞, 0) or approaches a constant
as 𝑥 → −∞ sufficiently fast.

Condition 2 means that the negative spectrum of 𝐻𝑞 is, in a way, rich enough.
Condition 2 holds if, loosely speaking, max (−𝑞, 0) (the negative part of 𝑞) is large.
A typical example would be 𝑞 (𝑥) → −𝑐2 as 𝑥 → −∞ for some real 𝑐 (so-called
step like initial profiles).

Condition 3 is much trickier as the problem of the negative spectrum dis-
tribution for the Schrödinger operator is notoriously difficult. In fact, besides the
Lieb-Thirring estimate [21] ∑

𝑛≥1

𝜅𝑛 ≲
∫
ℝ

max (−𝑞, 0) , (5.13)

nothing is known about the distribution of {𝜅𝑛} in general. The reason for that
is a poor understanding of how individual eigenvalues −𝜅2

𝑛 of 𝐻𝑞 depend on 𝑞
and even (5.13) was a good open problem for quite some time. By the same token
constructing a nontrivial explicit example of 𝑞 (𝑥) subject to condition 3 but not
condition 1 appears to be a real challenge. Note that one can always start with a
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desired spectrum and then work backwards to an essentially non-computable (and
quite pathological) 𝑞 (𝑥) via the Gelfand-Levitan-Marchenko inverse method.

The following statement is important.

Corollary 5.2. The conclusions of Theorem 5.1 hold if 𝑞 (𝑥) in (5.2) is real, locally
integrable, supported on ℝ− and such that∫ 0

−∞
∣𝑥∣max (−𝑞 (𝑥) , 0)𝑑𝑥 < ∞. (5.14)

Proof. The condition (5.14) clearly implies (5.12). Furthermore, it is well known
that the negative spectra of 𝐻𝑞 and 𝐻𝐷

𝑞 are finite under the condition (5.14).
Hence {𝜅𝑛} and {𝜈𝑛} are also finite and Corollary 3.2 clearly applies. We are then
under Condition 3. □

We emphasize that even Corollary 5.2 is new and nontrivial as it cannot be
achieved by usual PDEs techniques. We however conjecture that the condition
(5.9) alone will be sufficient for Theorem 5.1 to hold. We are not sure if condition
(5.9) implies that 𝐼 + ℍ (𝑅𝑥,𝑡) is boundedly invertible but there are some strong
reasons to believe that 𝐼 +ℍ𝑥,𝑡 has this property.
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[5] A. Böttcher and S.M. Grudsky, Toeplitz operators with discontinuous symbols: phe-
nomena beyond piecewise continuity. Singular integral operators and related topics
(Tel Aviv, 1995), Oper. Theory Adv. Appl., vol. 90, Birkhäuser, Basel, 1996, pp. 55–
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Birkhäuser Verlag, Basel, 1992.

[14] S. Grudsky and E. Shargorodsky, Spectra of Toeplitz operators and compositions of
Muckenhoupt weights with Blaschke products. Integral Equations Operator Theory
61 (2008), no. 1, 63–75.

[15] S.M. Grudsky, Toeplitz operators and the modelling of oscillating discontinuities
with the help of Blaschke products, Problems and methods in mathematical physics
(Chemnitz, 1999), Oper. Theory Adv. Appl., vol. 121, Birkhäuser, Basel, 2001,
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