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Abstract The paper is a survey of some applications of Blaschke prod-
ucts to the spectral theory of Toeplitz operators. Topics discussed include
Toeplitz operators with bounded measurable symbols, factorisation with an
infinite index, compositions with Blaschke products, representation of func-
tions with a given asymptotic behaviour of the argument in a neighbourhood
of a discontinuity in the form of a composition of a continuous function with
a Blaschke product, and applications to the KdV equation.
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1 Introduction

Let T = {ζ ∈ C : |ζ| = 1} be the unit circle and let Hp(T), 1 ≤ p ≤ ∞
denote the Hardy space, that is Hp(T) := {f ∈ Lp(T) : fn = 0 for n < 0},
where fn is the nth Fourier coefficient of f . Let T (a) : Hp(T) → Hp(T),
1 < p <∞ denote the Toeplitz operator generated by a function a ∈ L∞(T),
i.e. T (a)f = P (af), f ∈ Hp(T), where P is the Riesz projection:

Pg(ζ) =
1

2
g(ζ) +

1

2πi

∫

T

g(w)

w − ζ
dw, ζ ∈ T. (1)
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P : Lp(T) → Hp(T), 1 < p <∞ is a bounded projection and

P

(
+∞∑

n=−∞

gnζ
n

)
=

+∞∑

n=0

gnζ
n.

Toeplitz operators on the real line are defined similarly: let

Pf(x) =
1

2
f(x) +

1

2πi

∫

R

f(τ )

τ − x
dτ, x ∈ R. (2)

Then P : Lp(R) → Lp(R), 1 < p <∞ is a bounded projection and its range
Hp(R) := PLp(R) is the Hardy space corresponding to the upper half plane.
The Toeplitz operator generated by a function (symbol) a ∈ L∞(R) is defined
as follows

T (a)f := P (af), T (a) : Hp(R) → Hp(R).

Linear fractional transformations usually allow one to switch between Toeplitz
operators on R and those on T without difficulty. Most of the present paper
deals with the case of T, although we pass to Toeplitz operators on R when
discussing symbols with discontinuities of the (semi-)almost periodic type.

Toeplitz operators are closely related to the Riemann-Hilbert problem.
They represent a universal and a most powerful tool that has been applied
to a wide variety of problems in elasticity theory, fluid dynamics, physics,
geometry, combinatorics, integrable systems, orthogonal polynomials, ran-
dom matrices, probability and stochastic processes, information and control
theory, and in many other fields. Toeplitz operators constitute one of the
most important classes of non-self-adjoint operators with a very rich spectral
theory, which utilizes methods of operator theory, function theory and the
theory of Banach algebras. Their spectral properties are well understood in
the case of piece-wise continuous, almost periodic or semi-almost periodic
symbols (see the next section for more information and references). Unfortu-
nately much less is known about properties of Toeplitz operators with general
bounded measurable symbols.

The aim of the present survey is to describe an approach to the study
of spectral properties of Toeplitz operators with symbols having “bad” dis-
continuities. This approach is based on a generalisation of the Wiener-Hopf
factorisation that involves inner functions (Section 4) and on results on rep-
resentation of functions with a given asymptotic behaviour of the argument
in a neighbourhood of the discontinuity in the form of a Blaschke product or,
more generally, in the form of a composition of a continuous function with
a Blaschke product (Section 5). When dealing with compositions involving
Blaschke products in the context of Toeplitz operators, one needs to study
compositions of Muckenhoupt weights with Blaschke products. The corre-
sponding results are described in Section 3. Section 2 is a brief introduction
to the spectral theory of Toeplitz operators. Section 6 is devoted to applica-
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tions of Blaschke products to the KdV equation. The final Section 7 contains
a list of some open problems.

In order to keep the presentation simple, we do not consider Toeplitz op-
erators on weighted Hardy spaces and block Toeplitz operators, i.e. Toeplitz
operators with matrix symbols (a ∈ L∞

N×N ).

2 Spectra of Toeplitz Operators

A bounded linear operator A on a Banach space X is said to be normally
solvable if its range RanA is closed. We put KerA = {f ∈ X : Af = 0}
and CokerA := X/RanA. If A is normally solvable and dimKerA < ∞,
then A is called a Φ+-operator. If dimCokerA < ∞, then A is normally
solvable and is called a Φ−-operator. A Fredholm operator is an operator
that is both Φ− and Φ+. The index of a Fredholm operator A is the integer
IndA := dimKerA − dimCokerA. The operator A is right (left) invertible
if there is a bounded linear operator B on X such that AB = I (BA = I),
where I is identity operator on X, and the operator A is invertible if there is
a bounded operator B on X such that AB = BA = I. It is easy to see that
if A is left (right) invertible, then A is a Φ+(Φ−)-operator.

The spectrum and the essential spectrum of A are defined as follows:

Spec (A) := {λ ∈ C : A − λI is not invertible},

Spece(A) := {λ ∈ C : A − λI is not Fredholm}.

For any algebra A, we denote by GA the group of invertible elements of
A.

Theorem 1. ([46]) The spectrum of T (a) : Hp(T) → Hp(T) is connected.

Theorem 2. ([9], [42], see also [17, Ch. 7, Theorem 5.1] or [5, Theorem 2.38])
Let a ∈ L∞(T), a 6= 0. Then T (a) : Hp(T) → Hp(T) has a trivial kernel or
a dense range.

This theorem implies that a nonzero Toeplitz operator T (a) : Hp(T) →
Hp(T) is normally solvable if and only if it is Φ− or Φ+.

Theorem 3. ([22], [42], see also [17, Ch. 7, Theorem 4.1] or [5, Theorem
2.30]) Let a ∈ L∞(T), a 6= 0. If T (a) : Hp(T) → Hp(T) is normally solvable
then a ∈ GL∞(T), i.e.

ess inf
t∈T

|a(t)| > 0.

Theorem 4. ([10], [44], see also [5, Proposition 2.32]) Let a ∈ L∞(T). Then
T (a) : Hp(T) → Hp(T) is invertible (Fredholm, Φ− or Φ+) if and only if
a ∈ GL∞(T) and T (a/|a|) : Hp(T) → Hp(T) is invertible (Fredholm, Φ− or
Φ+ respectively). Moreover, if a ∈ GL∞(T), then
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dimKer T (a) = dimKer T (a/|a|), dimCokerT (a) = dimCokerT (a/|a|).

Let C(T) be the space of all continuous functions on the unit circle T.
Suppose b ∈ C(T) and b(t) 6= 0, ∀t ∈ T. Then the winding number of b is
defined as follows

wind b :=
1

2π
[arg b]

T
,

where [arg b]
T

denotes the total increment of arg b(t) as the variable t travels
around T in the counterclockwise direction.

Theorem 5. ([15], see also [17, Ch. 3, Theorem 7.1] or [5, Theorem 2.42])
Let a ∈ C(T). Then Spece(T (a)) = a(T) and

Ind (T (a) − λI) = −wind (a− λ), ∀λ ∈ C \ a(T).

Theorem 6. ([16], see also [17, Ch. 9, Theorem 3.1] or [5, Proposition 5.39])
Let a ∈ L∞(T) be piecewise continuous and let

Arcp(a; t) :=

{
ζ ∈ C

∣∣∣ arg
a(t− 0) − ζ

a(t+ 0) − ζ
=

2π

p

}

if a(t− 0) 6= a(t+ 0). Then

Spece(T (a)) =

(
⋃

t∈T

{a(t± 0)}

)
⋃



⋃

a(t−0) 6=a(t+0)

Arcp(a; t)



 .

Let H∞(T) + C(T) be the Banach algebra of all functions of the form
h+f with h ∈ H∞(T) and f ∈ C(T) (see [34, 35]). An element a is invertible
in H∞(T) + C(T) if and only if its harmonic extension to the unit disk is
bounded away from zero in some annulus 1− δ < |z| < 1 ([11], [12, 7.36], see
also [5, Theorem 2.62]).

Theorem 7. ([11], [12, 7.36], see also [5, Theorem 2.65] and [13, Theorem
2.7]) Suppose a ∈ H∞(T) + C(T) and ess inft∈T |a(t)| > 0.

(1) T (a) : Hp(T) → Hp(T) is Fredholm if and only if 1/a ∈ H∞(T)+C(T), in
which case Ind (T (a)) = −wind (ar), where r ∈ (0, 1) is sufficiently close
to 1, ar

(
eiθ
)

:= â
(
reiθ

)
and â is the harmonic extension of a to the unit

disk.
(2) If 1/a 6∈ H∞(T)+C(T), then T (a) is left invertible and T (1/a) : Hp(T) →

Hp(T) is its left inverse.

A number c ∈ C is called a (left, right) cluster value of a measurable func-
tion a : T → C at a point t ∈ T if 1/(a−c) 6∈ L∞(W ) for every neighbourhood
(left semi-neighbourhood or right semi-neighbourhood respectively) W ⊂ T

of t. Cluster values are invariant under changes of the function on measure
zero sets. We denote the set of all left (right) cluster values of a at t by a(t−0)
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(by a(t + 0)), and use also the following notation a(t) = a(t − 0) ∪ a(t + 0),
a(T) = ∪t∈T a(t). It is easy to see that a(t− 0), a(t+ 0), a(t) and a(T) are
closed sets. Hence they are all compact if a ∈ L∞(T).

It follows from Theorem 3 that

a(T) ⊆ Spece(T (a)). (3)

Suppose that for each t ∈ T the set a(t) consists of two points

a1(t), a2(t) ∈ C

(which may coincide). We say that t ∈ TI if a1(t) 6= a2(t) and each of the
sets a(t− 0) and a(t+ 0) consists of one point, i.e. if a has a left and a right
limits at t and they do not coincide. We say that t ∈ TII if at least one of the
sets a(t− 0), a(t+ 0) consists of two points, i.e. if a does not have a left or a
right limit at t.

Let

Rp(a; t) :=

{
ζ ∈ C

∣∣∣
2π

max{p, p′}
≤ arg

a1(t) − ζ

a2(t) − ζ
≤

2π

min{p, p′}

}
, (4)

where p′ = p/(p− 1).

Theorem 8. ([7, 8, 43], see also [5, 5.50–5.58]) Suppose a ∈ L∞(T) and for
each t ∈ T the set a(t) consists of at most two points. Then

Spece(T (a)) = a(T)
⋃
(
⋃

t∈TI

Arcp(a; t)

)
⋃
(
⋃

t∈TII

Rp(a; t)

)
.

A complete description of the (essential) spectrum of T (a) in terms of
a(t ± 0), t ∈ T is no longer possible if a(t) is allowed to contain more than
two points (see [5, 4.71–4.78] and [38]). We return to this topic in Section 4.
Here, we continue with a general result on factorisation.

Definition 1. Let 1 < p < ∞. We say that a function a ∈ GL∞(T) admits
a p-factorisation if it can be represented in the form

a(t) = a−(t)tκa+(t), t ∈ T, (5)

where κ is an integer, called the index of factorisation, and the functions a±

satisfy the following conditions:

(1) a− ∈ Hp(T), a−1
− ∈ Hp′

(T), a+ ∈ Hp′

(T), a−1
+ ∈ Hp(T), p′ = p/(p−1);

(2) the operator (1/a+)Pa+I is bounded on Lp(T).

It is not difficult to see that a p-factorisation is unique up to a constant
factor. The set of all functions a ∈ GL∞(T) that admit a p-factorisation will
be denoted by fact(p).
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Theorem 9. ([42, 44, 45], see also [17, Ch. 8, Theorems 4.1 and 4.2] or [5,
Theorem 5.5]) Let a ∈ GL∞(T). The Toeplitz operator T (a) : Hp(T) →
Hp(T), 1 < p < ∞ is Fredholm if and only if a ∈ fact(p). If representation
(5) holds, then IndT (a) = −κ, and for κ = 0 (κ > 0 or κ < 0) the operator
T (a) is invertible (left invertible or right invertible respectively); moreover,

[T (a)]−1 = P
1

tκa+
P

1

a−
I (6)

is the corresponding inverse operator. Further, for κ < 0 we have

dimKer T (a) = |κ| and Ker T (a) = span

{
tj−1

a+
, j = 1, 2, . . . , |κ|

}
, (7)

while for κ > 0 we have dimCokerT (a) = κ, and f ∈ RanT (a) if and only
if the following orthogonality conditions are satisfied:

∫

T

f(t)
1

tja−(t)
dt = 0, j = 1, 2, . . . , κ. (8)

It is not always easy to check whether or not a ∈ fact(p). The following
result describes a rather broad subclass of fact(p). A function a ∈ GL∞(T)
is called locally p-sectorial if for every t ∈ T there exist an open arc `(t) ⊂ T

containing t and functions g
(t)
± ∈ GH∞(T) such that

⋃

τ∈`(t)

(
g
(t)
− ag

(t)
+

)
(τ ) ⊂

{
z = reiθ ∈ C : r > 0, |θ| <

π

max{p, p′}

}
.

It is easy to see that a ∈ GL∞(T) is locally p-sectorial if a(t) lies in an open
sector with the vertex at the origin and an angular opening not exceeding
2π/max{p, p′} for every t ∈ T.

Theorem 10. ([41, 42], see also [17, Ch. 12] or [5, 5.12–5.21]) Let a ∈
GL∞(T) be locally p-sectorial. Then T (a) : Hp(T) → Hp(T), 1 < p < ∞
is Fredholm.

In the case of the space Lp(R) the notion of a p-factorisation takes the
following form. We say that a function a ∈ GL∞(R) admits a p-factorisation
with respect to the real line R if it can be represented in the form

a(x) = a−(x)

(
x− i

x+ i

)κ

a+(x), x ∈ R, (9)

where κ is an integer, called the index of factorisation, and the functions a±
satisfy the following conditions:
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(1)
a−(x)

x− i
∈ Hp(R) ,

1

a−(x)(x− i)
∈ Hp′(R) ,

a+(x)

x+ i
∈ Hp′

(R),
1

a+(x)(x+ i)
∈ Hp(R), p′ = p/(p− 1);

(2) the operator (1/a+)Pa+I is bounded in Lp(R).

The algebra AP (R) of almost periodic functions is defined as the small-
est closed subalgebra of L∞(R) that contains the set {eλ : λ ∈ R}, where
eλ(x) = eiλx. We denote by C(R) the set of all continuous functions f on
R that have finite limits f(−∞) and f(+∞) at ±∞, and by C(Ṙ) the sub-
space of C(R) consisting of functions continuous at infinity, i.e. such that
f(−∞) = f(+∞). Finally, the smallest closed subalgebra of L∞(R) that
contains AP (R) ∪ C(R) is denoted by SAP (R) and is called the algebra of
semi-almost periodic functions. Every function b ∈ SAP (R) can be repre-
sented in the form

b(x) = (1 − w(x))bl(x) +w(x)br(x) + c0(x), (10)

where bl, br ∈ AP (R), c0 ∈ C(Ṙ) with c0(∞) = 0, and w is a function from
C(R) such that

w(−∞) = 0 and w(+∞) = 1 (11)

(see [36]). The functions bl and br are uniquely determined and independent
of the choice of w. They are called the left and the right almost periodic
representatives of b.

According to H. Bohr’s theorem, every function b ∈ GAP (R) can be writ-
ten in the form

b(x) = eiµ(b)x+c(x), x ∈ R (12)

with µ(b) ∈ R and c ∈ AP (R). The number µ(b) is called the mean motion
of b and it is given by the formula

µ(b) = lim
T→∞

1

2T
arg b(x)

∣∣∣
T

x=−T
,

where arg b is any continuous branch of the argument of b. If µ(b) = 0, the
geometric mean λ(b) is defined by

λ(b) = eM(c), (13)

where M(c) is the mean value of c,

M(c) = lim
T→∞

1

2T

∫ T

−T

c(x)dx.
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Note that the function c ∈ AP (R) in (12) is unique up to an additive constant
in 2πiZ. Hence definition (13) does not depend on a particular choice of c.

For a b ∈ SAP (R), set

µ−(b) := µ(bl), µ+(b) := µ(br)

(see (10)). If µ±(b) = 0, set

λ−(b) := λ(bl), λ+(b) := λ(br).

Theorem 11. ([36, 31, 32, 33], see also [13, Theorem 4.24]) Let a ∈ SAP (R).
If T (a) : Hp(R) → Hp(R), 1 < p <∞ is normally solvable, then

inf
x∈R

|a(x)| > 0.

Suppose this condition is satisfied.

(1) If µ±(a) = 0, then T (a) is Fredholm if and only if

1

2π
arg

λ+(a)

λ−(a)
−

1

p
6∈ Z.

If this condition is not satisfied, then the T (a) : Hp(R) → Hp(R) is not
normally solvable.

(2) If µ±(a) ≥ 0 and µ2
+(a) + µ2

−(a) 6= 0, then T (a) is left invertible and
dimCoker T (a) = ∞.

(3) If µ±(a) ≤ 0 and µ2
+(a) + µ2

−(a) 6= 0, then T (a) is right invertible and
dimKer T (a) = ∞.

(4) If µ+(a)µ−(a) < 0, then T (a) is not normally solvable in any of the spaces
Hp(R), 1 < p <∞ and dimKer T (a) = dimCokerT (a) = 0.

3 Compositions with Blaschke Products and the Ap

Condition

The results in Section 2 give an explicit description of the (essential) spectrum
of T (a) if a(t) consists of at most two points for every t or if a is semi-
almost periodic. Both cases include piecewise continuous symbols treated in
Theorem 6. Suppose now a ∈ L∞(T) has a “bad” discontinuity at t = 1 or
at any other point of T. Then one cannot, in general, tell whether or not
T (a) : Hp(T) → Hp(T) is Fredholm. A possible way of approaching this
problem is to try representing a in the form a = a0 ◦ v, where a0 is a simple,
e.g., piecewise continuous function and v : T → T is a suitable measurable
transformation. If v(1) = T, then a = a0 ◦ v ∈ L∞(T) has a bad discontinuity
at t = 1, namely a(1) = a0(T).
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Suppose T (a0) : Hp(T) → Hp(T) is Fredholm. Then a0 admits a factori-
sation of the form (5)

a0(t) = a−(t)tκa+(t), t ∈ T (κ ∈ Z)

(see Theorem 9). Hence

a(t) = a−(v(t))vκ(t)a+(v(t)), t ∈ T. (14)

Since we would like to have

a− ◦ v ∈ Hp(T), (a− ◦ v)−1 ∈ Hp′

(T),

a+ ◦ v ∈ Hp′

(T), (a+ ◦ v)−1 ∈ Hp(T), (15)

we need v to have an analytic extension to the unit disk. Given that |v| = 1
on T, it is natural to assume that v is a nonconstant inner function. Since
v(1) = T, natural choices for v are the singular inner function

v(ζ) = exp

(
σ
ζ + 1

ζ − 1

)
, σ = const > 0 (16)

and infinite Blaschke products with zeroes converging to t = 1.
Suppose v is an inner function. Then the following variant of Littlewood’s

subordination principle shows that (15) does indeed hold.

Theorem 12. ([28], [37, Section 1.3] and [13, Theorem 5.5]) Let v be a non-
constant inner function and let γv be defined by

(γvf)(t) = f(v(t)), t ∈ T.

(1) The mapping γv is a bounded linear operator on the space Lp(T), 1 ≤ p <
∞. The subspace Hp(T) is invariant under γv .

(2) The mapping γv is an automorphism of the algebra L∞(T). The subalgebra
H∞(T) is invariant under γv.

(3) For any f ∈ Lp(T), 1 ≤ p ≤ ∞,

(
1 − |v(0)|

1 + |v(0)|

)1/p

‖f‖p ≤ ‖γvf‖p ≤

(
1 + |v(0)|

1 − |v(0)|

)1/p

‖f‖p. (17)

The middle factor in the factorisation (5) is the finite Blaschke product
tκ and the index of the corresponding Toeplitz operator is −κ. If κ 6= 0 in
(14) and if v is an inner function which is not a finite Blaschke product,
then one would expect T (a) : Hp(T) → Hp(T) to be semi-Fredholm with
an infinite index. This is indeed the case under natural conditions on the
first and the third factors, and the corresponding representation is called a
generalised factorisation with an infinite index. The function a = a0 ◦ v is



10 Sergei Grudsky and Eugene Shargorodsky

called v-periodic. These notions are discussed in Section 4 (see Theorems 16
and 17).

Finally, we need to find out whether or not the factorisation (14) satisfies
condition (2) of Definition 1, i.e. whether or not the operator

1

a+ ◦ v
P (a+ ◦ v)I : Lp(T) → Lp(T)

is bounded.
Let ρ : T → [0,+∞] be a measurable function. According to the Hunt–

Muckenhoupt–Wheeden theorem ([24]), the operator (1/ρ)PρI is bounded
on Lp(T), 1 < p <∞ if and only if ρ satisfies the Ap condition:

sup
I

(
1

|I|

∫

I

ρp(t)|dt|

) 1
p
(

1

|I|

∫

I

ρ−p′

(t)|dt|

) 1

p′

= Cp <∞, (18)

where I ⊂ T is an arbitrary arc, |I| denotes its length, and p′ = p/(p− 1).
Hence we arrive at the following question:

does ρ ∈ Ap imply ρ ◦ v ∈ Ap for an arbitrary inner function v? (19)

Note by the way that if v(0) = 0, then v : T → T is measure preserving, i.e.∣∣v−1(E)
∣∣ = |E| for any measurable E ⊂ T (see, e.g., [28] or take f equal to

the indicator function of E in (17) with p = 1).
Using Theorem 9 one can easily show (see [2, Section 1]) that (19) is

equivalent to the following question: does the invertibility of T (b) : Hp(T) →
Hp(T) imply that of T (b ◦ v) : Hp(T) → Hp(T)?

The answer is positive in the case p = 2 (see, e.g., [2, Theorem 3]). This
follows, e.g., from the Helson–Szegö theorem ([23], see also [14, Ch. IV, The-
orem 3.4]):

ρ ∈ A2 ⇐⇒ ρ = exp(f + g̃), f, g ∈ L∞(T,R), ‖g‖∞ < π/4,

where g̃ is the harmonic conjugate of g.
Similarly, a theorem by N.Ya. Krupnik ([25, 26], see also [17, Section 12.5])

says that

ρ ∈ Ap ∩Ap′ ⇐⇒ ρ = exp(f + g̃), f, g ∈ L∞(T,R),

‖g‖∞ <
π

2 max{p, p′}
, p′ =

p

p− 1
,

and it is not difficult to show that

ρ ∈ Ap ∩Ap′ =⇒ ρ ◦ v ∈ Ap ∩Ap′

(see [2, Theorem 4]).
One can also prove that the reverse of the implication in (19) is true.



Applications of Blaschke Products to Toeplitz Operators 11

Theorem 13. ([2]) Let 1 < p < ∞, p′ = p/(p − 1) and let v be an inner
function.

(1) Suppose ρ is a weight such that ρ ∈ Lp and ρ−1 ∈ Lp′

. If ρ ◦ v ∈ Ap then
ρ ∈ Ap.

(2) Suppose a ∈ L∞(T). If T (a ◦ v) : Hp(T) → Hp(T) is invertible then
T (a) : Hp(T) → Hp(T) is invertible.

In spite of all the above results, the answer to (19) turns out to be negative.
Let {zk}

∞
k=−∞ be a sequence of nonzero points in the open unit disk sat-

isfying

lim
k→±∞

zk = 1 and

∞∑

k=−∞

(1 − |zk|) <∞. (20)

The first condition in (20) guarantees that the Blaschke product

B(t) :=

∞∏

k=−∞

|zk|

zk

zk − t

1 − zk t
, t ∈ T (21)

extends to an analytic function on C \
(
∪k {z−1

k } ∪ {1}
)
. In particular, B is

continuous on T \ {1}.
Write zk = rke

iθk with 0 < rk < 1 and −π < θk ≤ π. Put

θk :=

{
(sign k)e−|k| for k 6= 0,

−1 for k = 0,

∆k :=

{
θk − θk+1 for k = 1, 2, 3, . . . ,
θk−1 − θk for k = 0,−1,−2, . . . ,

(22)

δk := min

{(
∆k

log∆k

)2

,

(
∆k−1

log∆k

)2}
,

choose a number M > 1, and define rk ∈ (0, 1) by

rk := (1 − δk/M)/(1 + δk/M). (23)

Theorem 14. ([2]) Let p ∈ (1, 2) ∪ (2,∞), 1/p+ 1/p′ = 1 and let σ be any
number in the interval (1/p′, 1/p) if 1 < p < 2 and any number in the interval
(−1/p′,−1/p) if 2 < p <∞. Then

w(t) := |t− 1|−σ (24)

is a weight in Ap, but if M > 1 is sufficiently large and BM = B is the
Blaschke product (21) with the zeroes given by (22)–(23), then

w(BM (t)) = |BM (t) − 1|−σ (25)

is not a weight in Ap.
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Theorem 14 shows that there exists a Blaschke product for which the im-
plication in (19) does not hold. We now describe a class of Blaschke products
for which this implication does hold.

Consider the Blaschke product

B
(
eiθ
)

=

∞∏

k=1

rk − eiθ

1 − rkeiθ
, θ ∈ [−π, π], (26)

where rk ∈ (0, 1) and
∑∞

k=1(1 − rk) <∞.

Theorem 15. ([21]) Suppose r1 ≤ r2 ≤ · · · ≤ rn ≤ · · · , and

inf
k≥1

1 − rk+1

1 − rk
> 0. (27)

If ρ satisfies the Ap condition, then ρ ◦B also satisfies the Ap condition.

Corollary. ([21]) Let 1 < p < ∞, a ∈ L∞(T), and let a Blaschke
product B satisfy the conditions of Theorem 15. Then T (a) : Hp(T) → Hp(T)
is invertible if and only if T (a ◦B) : Hp(T) → Hp(T) is invertible.

Proof. The invertibility of T (a◦B) implies that of T (a) according to Theorem
13 (see [2, Theorem 12]). The opposite implication follows from Theorem 15
(see [2, Section 1]).

Theorem 15 and its Corollary remain true if the Blaschke product (26),
(27) is substituted with the singular inner function (16) (see [19, 21]).

4 More on the Spectra of Toeplitz Operators

We start with extending Definition 1 and Theorem 9 to the case of Φ± oper-
ators. We say that a function a ∈ L∞(T) admits a generalised factorisation
with an infinite index in the space Lp(T), 1 < p <∞ if it admits a represen-
tation

a = bh or a = bh−1, (28)

where

(1) b ∈ fact(p) (see Definition 1);
(2) h ∈ H∞(T), 1/h ∈ L∞(T);
(3) q/h /∈ H∞(T) for any polynomial q.

In this case, we also say that a admits an (h, p)-factorisation.
The class of functions admitting a generalized factorisation with an infinite

index in Lp(T) will be denoted by fact(∞, p).
Let Q := I − P , where P is the projection defined by (1).
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Theorem 16. ([13, Theorem 2.6]) Assume a ∈ fact(∞, p) and ind b = 0.
If a = bh−1, then the operator T (a) : Hp(T) → Hp(T) is right invertible,
dimKer T (a) = ∞, and the operator

[T (a)]−1 =
h

b+
P

1

b−
I, (29)

where b = b+b− is the p-factorisation of the function b, is a right inverse of
T (a). For a function ϕ to belong to Ker T (a) it is necessary and sufficient
that

ϕ =
h

b+
Q
b+

h
ψ, where ψ ∈ Ker T (h−1). (30)

If a = bh, then T (a) : Hp(T) → Hp(T) is left invertible, dimCokerT (a)
= ∞, and the operator

[T (a)]−1 = P
1

b+h
P

1

b−
I (31)

is a left inverse for T (a). For a function f to belong to RanT (a) it is necessary
and sufficient that

∫

Γ

ψj(t)f(t)dt = 0, j = 1, 2, . . . , (32)

where

ψj =
1

b−
Q

(t− z0)
−j

hb+
∈ Lp′

− (T) := QLp′

(T), p′ = p/(p− 1),

and z0 ∈ C is a fixed point such that |z0| > 1.

Functions admitting a generalized factorisation with an infinite index often
arise as compositions with inner functions (cf. (14)). A function a ∈ L∞(T)
is called u-periodic if it admits a representation

a(t) = g(u(t)), (33)

where g ∈ L∞(T) and u is an inner function.

Theorem 17. ([18, Theorem 5.2]) Let g ∈ C(T) and suppose g(t) 6= 0, ∀t ∈
T and windg = κ. Then for every 1 < p < ∞ and every inner function
u ∈ H∞(T) the u-periodic function (33) admits a (u|κ|, p)-factorisation

a(t) = g−(u(t))uκ(t)g+(u(t)),

where g(t) = g−(t)tκg+(t) is a factorisation of the type (5). Moreover, if g is
a rational function, then

(g+ ◦ u)±1 ∈ H∞(T), (g− ◦ u)±1 ∈ H∞(T).
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Remark 1. Theorem 17 cannot be extended to arbitrary symbols g ∈ fact(p)
due to the difficulty described by Theorem 14. However, it can be extended
to all locally p-sectorial symbols g (see [13, Theorem 5.8]). It also holds for
all g ∈ fact(p) if one restricts the class of inner functions u to those for which
the conclusions of Theorem 15 and its Corollary hold.

Similarly to the situation with Theorem 9, it is not always easy to check
whether or not a ∈ fact(∞, p). A broad subclass of fact(∞, p) is desribed in
Section 5 in terms of the asymptotic behaviour of the argument in a neigh-
bourhood of a discontinuity.

Let us now consider compositions with homeomorphisms α : R → R in
the context of Toeplitz operators with (semi-)almost periodic symbols on R.
We will confine ourselves to the H2(R) setting to avoid difficulties related to
Theorem 14. We start with a negative result.

Theorem 18. ([3]) There exist b ∈ GAP (R) and an orientation preserving
homeomorphism α : R → R such that T (b) : H2(R) → H2(R) is Fredholm
while T (a) with a(x) = b(α(x)) is not.

In order to obtain positive results, one needs to restrict the class of home-
omorphisms α : R → R. Let, similarly to the case of T considered in Section
2, H∞(R) + C(Ṙ) be the Banach algebra of all functions of the form h + f
with h ∈ H∞(R) and f ∈ C(Ṙ) (see [34, 35]).

Theorem 19. ([3]) Let b ∈ AP (R) and suppose

eiλα ∈ H∞(R) + C(Ṙ), ∀λ > 0. (34)

Put a(x) = b(α(x)). We then have the following.

(i) If T (b) : H2(R) → H2(R) is invertible, then T (a) is a Φ-operator.
(ii) If T (b) : H2(R) → H2(R) is left invertible, then T (a) is a Φ+-operator.
(iii) If T (b) : H2(R) → H2(R) is right invertible, then T (a) is a Φ−-operator.

Theorem 36 provides sufficient conditions for (34) to hold (see also Theo-
rem 37).

The following result extends Theorem 19 to semi-almost periodic symbols
and it is natural to substitute condition (34) with the following one

(1 − w)eiλα, weiλα ∈ H∞(R) + C(Ṙ) for all λ > 0, (35)

where w ∈ C(R) is a fixed function subject to (11).

Theorem 20. ([3]) Let the homeomorphism α satisfy condition (35) and let
b ∈ SAP (R). Put a(x) = b(α(x)). If T (b) : H2(R) → H2(R) is a Φ-operator,
then T (a) is also a Φ-operator.
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Let us now return to the comment made after Theorem 8. Consider, for
example, a ∈ L∞(T) such that a(1) consists of three points, a(1±0) = a(T) =
{c1, c2, c3} ⊂ C and the closed triangle 4(c1, c2, c3) with the vertices c1, c2, c3
is non-degenerate. Then the (essential) spectrum of T (a) : H2(T) → H2(T)
is a connected set which contains {c1, c2, c3} and is contained in 4(c1, c2, c3)
([12, Theorem 7.45], [22], [6], see also Theorems 1, 3, 10 above). It turns out
however that this set is not determined solely by c1, c2, c3. A. Böttcher has
constructed examples where the spectrum of T (a) : H2(T) → H2(T)

(i) does not contain any points of the boundary of the triangle 4(c1, c2, c3)
other than c1, c2, c3;
(ii) contains a side of 4(c1, c2, c3) and no other point of the boundary apart
from c1, c2, c3;
(iii) coincides with the union of two sides of 4(c1, c2, c3);
(iv) coincides with the boundary of 4(c1, c2, c3);
(v) coincides with 4(c1, c2, c3)

(see [5, 4.71–4.78]). These striking examples and the results obtained in
[38, 39] imply that if a(t) is not required to contain at most two points for
every t ∈ T, then it is no longer possible to describe the (essential) spectrum
of T (a) in terms of the cluster values of a. In other words, it is no longer
sufficient to know the values of a, it is rather important to know “how these
values are attained” by a. This field seems to be wide open at present.

Since a complete description of the essential spectrum of T (a) in terms
of the cluster values of a ∈ L∞(T) is impossible, it is natural to try find-
ing “optimal” sufficient conditions for a point λ to belong to the essential
spectrum.

We need the following notation. Let K ⊂ C be an arbitrary compact set
and λ ∈ C \K. Then the set

σ(K; λ) =

{
w − λ

|w− λ|

∣∣∣ w ∈ K

}
⊆ T

is compact as a continuous image of a compact set. Hence the set ∆λ(K) :=
T \ σ(K; λ) is open in T. So, ∆λ(K) is the union of an at most countable
family of open arcs.

We call an open arc of T p–large if its length is greater than or equal to
2π/max{p, p′}, where p′ = p/(p− 1), 1 < p <∞.

We know that a(T) ⊆ Spece(T (a)) (see (3)). Böttcher’s examples men-
tioned above show that no point from C \ a(T) will always belong to the
(essential) spectrum of T (a) : H2(T) → H2(T), unless a(T) lies on a straight
line. The following result shows that the situation is somewhat different for
p 6= 2.

Theorem 21. ([40]) Let 1 < p <∞, a ∈ L∞(T), λ ∈ C \ a(T) and suppose
that, for some t ∈ T,
(i) ∆λ(a(t − 0)) (or ∆λ(a(t + 0)) ) contains at least two p–large arcs,



16 Sergei Grudsky and Eugene Shargorodsky

(ii) ∆λ(a(t+ 0)) (or ∆λ(a(t− 0)) respectively ) contains at least one p–large
arc.
Then λ belongs to the essential spectrum of T (a) : Hp(T) → Hp(T).

Suppose a(t) consists of two points. Then condition (ii) in the above theo-
rem is automatically satisfied, while condition (i) means that a does not have
a left limit at t (or a right limit at t respectively) and that λ belongs to the
set (4). Hence, Theorem 21 is in a sense an extension of Theorem 8.

Condition (i) is optimal in the following sense.

Theorem 22. ([39]) Let t ∈ T, K ⊂ C be a compact set, λ ∈ C\K, and sup-
pose ∆λ(K) contains at most one p–large arc. Then there exists a ∈ L∞(T)
such that

a(t ± 0) = a(t) = a(T) = K

and
T (a) − λI : Hr(T) → Hr(T)

is invertible for any r ∈ [min{p, p′},max{p, p′}].

While condition (i) is the main reason why λ belongs to Spece(T (a)), the
rôle of (ii) is to make sure that the behaviour of a(τ ) as τ approaches t from
the other side does not counterbalance the effect of (i). It turns out that
condition (ii) cannot be dropped.

Theorem 23. ([21]) There exists a ∈ L∞(T) such that a(1 − 0) = {±1},
|a| ≡ 1, T (a) : Hp(T) → Hp(T) is invertible for any p ∈ (1, 2), and T (1/a) :
Hp(T) → Hp(T) is invertible for any p ∈ (2,+∞).

The proof of this theorem relies on the Corollary of Theorem 15 and on
Theorem 34.

5 Modelling of Monotone Functions with the Help of

Blaschke Products

Suppose a ∈ GL∞(T). Then Theorem 4 allows one to reduce the study of the
operator T (a) : Hp(T) → Hp(T), 1 < p < ∞ to that of T (a/|a|) : Hp(T) →
Hp(T). We can therefore assume without loss of generality that |a| = 1, i.e.
that

a(exp(iθ)) = exp(2πif(θ)), θ ∈ (−π, π], (36)

where f is a measurable real-valued function. Suppose a has a discontinuity at
t = 1. We aim at finding conditions on the behaviour of f in a neighbourhood
of t = 1 under which a can be represented in terms of Blaschke products in
such a way that one can then apply Theorems 16 and 17. Although our
motivation comes from the theory of Toeplitz operators, we believe that the
results presented in this section may be of some interest in their own right.
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Since the discontinuity is at t = 1, it is natural to consider Blaschke
products with zeroes converging to 1. Our first result is about the argument
of such a Blaschke product. Let

B
(
eiθ
)

=

∞∏

k=1

zk

|zk|

zk − eiθ

1 − zk eiθ
, θ ∈ (−π, π], (37)

where zk = rk exp(iθk) 6= 0, θk ∈ (−π, π], rk = |zk| < 1,
∑∞

k=1(1−rk) <∞.

Theorem 24. ([13, Theorem 2.8]) Suppose B has the form (37) and

lim
k→∞

zk = 1.

Then one can choose a branch of argB
(
eiτ
)

which is continuous and increas-
ing on (0, 2π), and which satisfies the following conditions

lim
τ→0+0

argB
(
eiτ
)

=: A+ < 0, lim
τ→2π−0

argB
(
eiτ
)

=: A− > 0.

Moreover, at least one of these limits is infinite and

argB
(
eiθ
)

=





−2

(∑
θk≥θ(π + ϕk(θ)) +

∑
θk<θ ϕk(θ)

)
, θ ∈ (0, π],

2

(∑
θk≤θ(π − ϕk(θ)) −

∑
θk>θ ϕk(θ)

)
, θ ∈ [−π, 0),

(38)
where

ϕk(θ) = arctan

(
εk cot

θ − θk

2

)
, εk =

1 − rk

1 + rk
. (39)

The next result shows that the argument of a Blaschke product may grow
arbitrarily slowly or arbitrarily fast as t→ 1 and that the growth on the left
from 1 may be different from that on the right.

Theorem 25. ([13, Theorem 2.9]) Suppose that a real-valued function f is
continuous and increasing on (−π, 0) and (0, π), and that at least one of the
limits limθ→0±0 f(θ) is infinite. Then there exists a Blaschke product B of
the form (37) such that

| argB
(
eiθ
)
− f(θ)| ≤ const , θ ∈ (−π, π) \ {0}. (40)

Theorem 25 allows one to factor out a Blaschke product from the symbol
of a Toeplitz operator in such a way that the resulting Toeplitz operator
has a symbol with a bounded and continuous argument on T \ {1}. Unfortu-
nately not much is known about such operators, so the above theorem is not
sufficient for our purposes.
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Suppose a has the form (36), where the function f is continuous and
monotonically increasing on the intervals (−π, 0) and (0, π), and satisfies

lim
θ→0±0

f(θ) = ∓∞. (41)

With no loss of generality we can take f(−π + 0) = f(π − 0) = 0. Let

ϑ(x) := f−1(−x), x ∈ R \ {0}. (42)

Then ϑ is monotonically decreasing on (−∞, 0) and (0,∞), and

ϑ(±∞) = 0, ϑ(0 ± 0) = ±π.

Further, let

∆(n) =

{
ϑ(n) − ϑ(n+ 1), n = +0, 1, 2, . . . ,
ϑ(n− 1) − ϑ(n), n = −0,−1,−2, . . .

Consider the sequence of functions

ψn(s) =
ϑ(n) − ϑ(n+ s)

∆(n)
, s ∈ I := [−1/2, 1/2].

We assume that this sequence converges monotonically on I and that

lim
n→+∞

ψn(s) = ψ(s),

lim
n→−∞

ψn(s) = −ψ(−s),
(43)

where the function ψ is monotonically increasing and continuous on I. Finally,
we put

ξ(n) =

{
ϑ(n+ 1)/ϑ(n), n = +0, 1, 2, . . . ,
ϑ(n− 1)/ϑ(n), n = −0,−1,−2, . . . ,

α(n) = 1 − ξ(n).

We will need the following technical result.

Theorem 26. ([13, Proposition 5.6]) Suppose the function ϑ has the form
(42) and satisfies condition (43). Then

lim
n→±∞

∆(n± 1)

∆(n)
= d, 0 ≤ d ≤ 1. (44)

Moreover,
lim

n→∞
ξ(n) = d, lim

n→∞
α(n) = 1 − d, (45)

lim
n→∞

α(n+ 1)

α(n)
= 1,
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and
ψ(1/2) − dψ(−1/2) = 1.

We will need the following two auxiliary functions

A(θ) =
∑

ϑ(j)>θ

arctan(α(j)) −
∑

ϑ(j)<−θ

arctan(α(j)), θ ∈ (0, π), (46)

and

C(n) =

n−σ∑

j=m(n)

arctan
∆(j)

ϑ(j) − ϑ(n)
−

M(n)∑

j=n+σ

arctan
∆(j)

ϑ(n) − ϑ(j)
, (47)

where σ = signn, the number m = m(n) is the j of the smallest modulus for
which |ϑ(j)| ≤ 3

2
|ϑ(n)|, while M = M(n) is the j of the largest modulus for

which |ϑ(j)| ≥ 1
2 |ϑ(n)|.

The quantity A(θ) relates the behaviour of ϑ(x) as x → +∞ to its be-
haviour as x→ −∞; in other words, it connects the behaviour of f in a right
semi-neighbourhood of zero to its behaviour in a left semi-neighbourhood
(see (42)). The quantity C(n) characterises the behaviour of ϑ(x) near the
point x = n.

Theorem 27. ([13, Theorem 5.10]) Suppose the function a ∈ GL∞(T) is
continuous on T \ {1} and has the form (36) with a function f that is mono-
tonically increasing on (−π, 0) and (0, π) and satisfies condition (41). In
addition, assume that condition (43) is satisfied, that d = 1 in (44), and that
the limits

lim
θ→0±0

A(θ) = a, a ∈ R, (48)

lim
n→±∞

C(n) = 0 (49)

exist, where A(θ) and C(n) are defined by (46) and (47).
Then a admits the representation

a(t) = B(t)g(B(t))d(t), (50)

which is a (B, p)-factorisation, with g, d ∈ C(T). Moreover, the winding num-
ber of the function g is equal to zero, the Blaschke product B is constructed
from the zeroes zj = rj exp{iϑ(j)}, where rj = (1 −∆(j)/2)/(1 + ∆(j)/2),
j = ±1,±2, . . ., and the product

b(t) := g(B(t))d(t)

admits a p-factorisation of the form (5) for any 1 < p <∞.

Theorem 28. ([13, Theorem 5.12]) Suppose the function f satisfies all the
conditions of Theorem 27 and that in condition (43)
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ψ(s) = s. (51)

Then the function a given by (36) belongs to H∞(T) +C(T) and admits the
representation

a(t) = U(t)c(t), (52)

where c is a continuous function on T and the inner function U has the form

U(t) =
r0 +B(t)

1 + r0B(t)
, r0 = e−2,

with the same Blaschke product B as in (50).

Conditions (43), (48), (49), under which Theorems 27 and 28 hold, cover a
very large class of symbols with arguments that increase in a neighbourhood
of the discontinuity. However, they are not always easy to verify. The following
theorems provide more convenient sufficient conditions. We assume as above
that f is monotonically increasing on [−π, 0) and (0, π], and satisfies (41).

Theorem 29. ([13, Proposition 5.8]) Let f be twice continuously differen-
tiable on [−π, π] \ {0} and let f ′ be monotonically decreasing (increasing) on
(0, π) (on (−π, 0) respectively) and satisfy

lim
θ→0

f ′′(θ)

(f ′(θ))2
= 0. (53)

Then (43) holds with the function ψ(s) ≡ s.

It is not difficult to see that (53) implies

lim
θ→0

1

θf ′(θ)
= 0. (54)

Theorem 30. ([13, Proposition 5.9]) Suppose that f is twice continuously
differentiable on [−π, π] \ {0} and that f ′ is monotonically nonincreasing
(nondecreasing) on (0, π) (on (−π, 0) respectively) and satisfies (54) and

lim
θ→0

f ′′(θ)|θ|1/2

(f ′(θ))3/2
= 0. (55)

Then (49) holds.

Theorem 31. ([13, Proposition 5.10]) Suppose that all the assumptions of
Theorem 29 are satisfied and that

∣∣∣∣∣
f ′(θ)

f ′
(

3
2θ
)
∣∣∣∣∣ ≤ g, (56)

where g > 1 does not depend on θ ∈ (−π, π) \ {0}. Then (49) holds.
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Theorem 32. ([13, Proposition 5.11]) Suppose the function f is odd: f(−θ) =
−f(θ). Then (48) holds.

Theorem 33. ([13, Proposition 5.12]) Suppose f is continuously differen-
tiable on (−π, π) \ {0} and the function ψ(θ) = (θf ′(θ))−1 tends monotoni-
cally to zero as θ → 0. Then (48) holds whenever one of the following three
conditions is satisfied:

∫ π

0

[
f ′(s) arctan

1

sf ′(s)
− f ′(−s) arctan

1

sf ′(−s)

]
ds <∞; (57)

∫ π

0

∣∣∣∣
1

(sf ′(s))2
−

1

(sf ′(−s))2

∣∣∣∣
ds

s
<∞; (58)

∫ π

0

1

(sf ′(s))2
ds

s
<∞ and

∫ π

0

1

(sf ′(−s))2
ds

s
<∞. (59)

Below are several examples where the conditions of Theorem 27 are satis-
fied (see [13, Section 5.6]).

Example 1. Power whirls.
Consider the function

f(θ) =

{
−c+θ

−λ+ , θ > 0,
c−|θ|

−λ− , θ < 0,

where c± > 0 and λ± ∈ (0,∞). It obviously satisfies the conditions of The-
orems 29 and 30 (and of Theorem 31), as well as condition (59), and conse-
quently all the conclusions of Theorem 27 are valid for f .

One can consider a more general case that often arises in the theory of the
Riemann-Hilbert problem with an infinite index

f(θ) =

{
−c+(θ)θ−λ+ , θ > 0,
c−(θ)|θ|−λ− , θ < 0,

(60)

where λ± > 0, and the functions c± are continuous on [0, π] and [−π, 0]
respectively. Let us assume that c±(θ) are twice continuously differentiable
on [−π, 0) and (0, π] and that

lim
θ→0±0

c′±(θ)θ = 0, lim
θ→0±0

c′′±(θ)θ2 = 0. (61)

The conditions of Theorem 27 can be verified with the help of Theorems 29,
30, and 33.

Example 2. Power-logarithmic whirls. Now let

f(θ) =

{
−c+θ

−λ+(log |θ|−1)β+ , θ > 0,
c−|θ|

−λ−(log |θ|−1)β− , θ < 0,
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where c± > 0 and λ± ∈ (0,∞), β± ∈ R. The applicability of Theorem 27 in
this case is verified in the same way as in Example 1.

Example 3. Exponential and superexponential growth of the argument. Let

f(θ) =

{
−c+ exp{d+θ

−λ+}, θ > 0,
c− exp{d−|θ|

−λ−}, θ < 0,

where c± > 0, d± > 0 and λ± ∈ (0,∞), or let

f(θ) =

{
−c+ exp{g+ exp(d+θ

−λ+)}, θ > 0,
c− exp{g− exp(d−|θ|

−λ−)}, θ < 0,
(62)

where c± > 0, d± > 0, g± > 0, and λ± ∈ (0,∞). The conditions of Theorem
27 are verified as in the preceding cases. Let us mention only that Theorem
31 does not apply here, while Theorem 30 does.

These examples show that the conditions of Theorem 27 are well suited to
rapidly growing arguments f(θ). In particular, it is easy to see that a function
f constructed via a composition of a finite number of exponentials similarly
to (62) also satisfies (53), (55) and (59).

Let us now consider the case of slowly growing arguments f(θ).

Example 4. Logarithmic whirls.
Let

f(θ) =

{
−c(log θ−1)β, θ > 0,
c(log |θ|−1)β , θ < 0,

(63)

where β > 0, c > 0. If β > 1, then f satisfies the conditions of Theorem
27, which can be verified by evaluating the limits (53), (55) and applying
Theorem 32. On the other hand, if β ∈ (0, 1], then f fails to satisfy the
condition d = 1 in Theorem 27. The critical case β = 1 is the most important
for us and we will consider it below (see Theorems 34, 35).

Similarly to Example 1, one can replace the constants c± in Examples 2–4
with continuous functions.

Example 5. Asymmetric whirls.
In Examples 1–3, condition (49) can be verified separately for left and

right semi-neighbourhoods of the point θ = 0 with the help of (59). This
allows one to construct new examples that satisfy the conditions of Theorem
27 from the ones mentioned above by combining different types of whirling
to the left and to the right. For instance, one can take

f(θ) =

{
−c+ exp(g exp(θ−λ)), θ > 0,

c− logβ(|θ|−1), θ < 0,
(64)

where c± > 0, g > 0, λ > 0, and β > 3/2. The corresponding function (36)
combines very fast oscillations to the right of the point θ = 0 with very slow
oscillations to the left of it.
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It was mentioned in Example 4 that Theorem 27 does not cover the case of
slow oscillations and that the natural boundary of its domain of applicability
is the case of pure logarithmic whirls. In this case, we have the following
result which was a key ingredient in the proof of Theorem 23.

Theorem 34. (See [13, Theorem 2.10 and the end of the proof of Theorem
5.9]) Suppose a ∈ GL∞(T) is continuous on T \ {1} and has the form (36)
with a function f satisfying the condition

lim
θ→±0

(
f(θ) ±

1

2
log |θ|−1

)
= 0.

Then a admits the representation

a(t) = B(t)g(B(t))d(t), (65)

where g, d ∈ C(T), the winding number of g is 0, and B is the infinite
Blaschke product with the zeroes

zk =
2 − exp(−k + 1/2)

2 + exp(−k + 1/2)
.

Note by the way that B in the above theorem is an interpolating Blaschke
product (see the end of Section 5.4 in [13]).

The following result is a generalisation of Theorem 34 (see [13, Section
5.7]).

Theorem 35. ([13, Theorem 5.11]) Let a function a ∈ GL∞(T) be continu-
ous on T\{1} and have the form (36) with a function f that is monotonically
increasing on (−π, 0) ∪ (0, π) and satisfies the condition (41). Assume, in
addition, that condition (43) is satisfied, that (45) holds with some number
0 < d < 1, and that

lim
n→+∞

(
−
ϑ(n)

ϑ(−n)

)
= 1.

Then the function a admits the following representation, which is a (B, p)-
factorisation simultaneously for all 1 < p <∞:

a(t) = B(t)g(B(t))d(t),

where g, d ∈ C(T). Moreover, the winding number of the function g is
equal to zero and the Blaschke product B is constructed from the zeroes
zj = rj exp{iϑ(j)}, where

rj = (1 −∆(j)/2)/(1 +∆(j)/2), j = ±1,±2, . . .

Using a linear fractional transformation, one can easily transplant the
above results from T to R. The following analogue of a special case of Theorem
28 is of a direct relevance to Theorem 19.
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Theorem 36. ([3, 4]) Let α : R → R be an orientation preserving home-
omorphism that is twice continuously differentiable for all sufficiently large
values of x > 0 and is such that

lim inf
x→+∞

xα′′(x)

α′(x)
> −2, (66)

lim
x→+∞

α′′(x)

(α′(x))2
= 0, (67)

lim
x→+∞

x1/2 α′′(x)

(α′(x))3/2
= 0, (68)

lim
x→+∞

(α(x) + α(−x)) = 0. (69)

Then
eiλα ∈ H∞(R) + C(Ṙ), ∀λ > 0.

Moreover the following representation holds

eiλα(x) = Bλ(x)Cλ(x), (70)

where Bλ is a Blaschke product with an infinite number of zeroes accumulating
at infinity and Cλ is a unimodular function belonging to C(Ṙ).

Condition (66) is equivalent to the requirement that x2α′(x) is strictly
increasing for large values of x. Conditions (66)–(68) are satisfied for large
classes of functions. Here are some examples:

α(x) = c xγ , γ > 0,

α(x) = c lnδ(x+ 1), δ > 1,

α(x) = c xγ lnδ(x + 1), γ > 0, δ ∈ (−∞,∞),

α(x) = c1 exp(c2x
γ), γ > 0

with some positive constants c, c1, c2 (cf. Examples 1–4).
On the other hand, there are plenty of orientation preserving homeomor-

phisms α : R → R for which eiα 6∈ H∞(R) + C(Ṙ). This is a consequence of
the following result.

Theorem 37. ([1], [3]) Given any orientation preserving homeomorphism
η : R → R, there exists an orientation preserving homeomorphism α : R → R

such that α− η ∈ L∞(R) and eiα 6∈ H∞(R) + C(Ṙ).

Theorem 36 implies the following sufficient condition for (35) to hold.

Theorem 38. ([3]) Suppose there exists δ > 1 such that β(x) := α(x) −
(logx)δ is strictly increasing and twice continuously differentiable for all suf-
ficiently large values of x > 0, and suppose β satisfies (66)–(68) (with β in
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place of α). Then weiλα ∈ H∞(R)+C(Ṙ) for all λ > 0, where w is the same
as in (10)–(11).

The final topic of this section is motivated by applications to the KdV
equation (see Section 6). We are interested in conditions under which the
argument of the quotient of two Blaschke products with purely imaginary
zeroes in the upper half-plane is continuous on the real line. Consider the
Blaschke product

B(z) =

∞∏

k=1

z − ixk

z + ixk
, z ∈ C+ := {z ∈ C| Im z > 0} (71)

with purely imaginary zeroes such that

x1 > · · · > xk > xk+1 > · · · > 0 and lim
k→∞

xk = 0. (72)

In this case, the standard Blaschke condition (see, e.g., [14, Ch. II, (2.3)] or
[27, (13.13)]) reads

∞∑

k=1

xk <∞. (73)

Theorem 24 takes the following simple form.

Theorem 39. Let argB denote the branch of the argument of the Blaschke
product (71)-(73) which is continuous on R\{0} and satisfies lim

x→±∞
argB(x) =

0, and let the branch of arctan be chosen so that arctanx ∈ (−π
2 ,

π
2 ). Then

argB is increasing on R \ {0},

argB(x) = − argB(−x), x ∈ R, (74)

lim
x→±0

argB(x) = ∓∞, (75)

and

argB(x) = −2

∞∑

k=1

arctan
xk

x
, x 6= 0. (76)

Let fB be a continuous and decreasing on (0,+∞) function such that

fB(k) = xk.

Let ∆k = xk − xk+1 and ∆
(2)
k (s) = fB(k + s) − fB(k) + s(xk − xk+1),

s ∈ [−1/2, 1/2].

Theorem 40. ([20]) Suppose the sequence {xk} is such that

lim
k→∞

xk − xk+1

xk
= 0 (77)
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and

lim
k→∞

sup
s∈[−1/2,1/2]

(
|∆

(2)
k (s)|

∆k

)
= 0. (78)

Then

argB(x) = −2

∞∫

1/2

arctan
fB(u)

x
du+ O(x), (79)

where lim
x→0

O(x) = 0.

Theorem 41. ([20]) Let a function fB be continuously differentiable on
(0,+∞) and satisfy all the conditions of Theorem 40. Then, for x > 0

argB(x) = −2x

1∫

0

ϕB(y)

x2 + y2
dy +

π

2
+O1(x), (80)

where ϕB(y) := f−1
B (y) is the inverse function of fB and

lim
x→0

O1(x) = 0.

Let now R(x) = B1(x)/B2(x), where B1(x) and B2(x) are Blaschke prod-
ucts with the zeroes ifBj

(k), j = 1, 2, where the functions fBj
satisfy the

conditions of Theorem 41. Introduce the function

r(y) := ϕB1
(y) − ϕB2

(y),

where ϕBj
(y) := f−1

Bj
(y), j = 1, 2.

Theorem 42. ([20]) Suppose at least one of following two conditions holds:

i)
r(y) = r0 + O2(y)

with some r0 ∈ R, lim
y→0

O2(y) = 0;

ii)
y∫

0

r(s)ds = r1y +O3(y)

with some r1 ∈ R, lim
v→0

(
O3(y)

y

)
= 0.

Then
argR(x) = r2 + O4(x),

with some r2 ∈ R, lim
x→0

O4(x) = 0.
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The following corollary of Theorem 42 together with Theorem 36 play an
important rôle in the proof of Theorem 43.

Corollary. ([20]) Let

Bj(z) =

∞∏

k=1

z − ix
(j)
k

z + ix
(j)
k

, j = 1, 2

be two Blaschke products with interlacing
(
x

(1)
k > x

(2)
k > x

(1)
k+1

)
imaginary ze-

roes accumulating at 0, and let f be a real continuously differentiable function
such that f(2x) and f(2x− 1) satisfy the conditions of Theorem 41 and

f (k) =






x
(1)
k+1

2

, k is odd,

x
(2)
k
2

, k is even.

Then argB1/B2 is continuous on the real line.

6 Applications to the KdV Equation

Let P be the projection defined by (2), Q := I − P and let

(Jf)(x) = f(−x) : L2(R) → L2(R) (81)

be the reflection operator. The Hankel operator with the symbol a ∈ L∞(R)
is defined by the formula

(H(a)f)(x) := (JQaf)(x) : H2(R) → H2(R). (82)

The symbol

φ(x) = ei(tx3+cx)d(x), t > 0, c ∈ R (83)

arises in the inverse scattering transform method for the Korteweg-de Vries
(KdV) equation (see [29], [30]). The form of the unimodular function d(x)
depends on the properties of the initial data for the KdV equation. In certain
important cases the function d has the form

d(x) =
B1(x)

B2(x)
I(x), (84)

where B1, B2 are Blaschke products with zeroes converging to 0 along the
imaginary axis and I is an inner function (I ∈ H∞(R) and |I(x)| = 1 a.e. on
the real line).

The proof of the following result relies on Theorems 7, 36 and 42.
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Theorem 43. ([20]) Let φ(x) = ei(tx3+cx) B1(x)
B2(x)I(x), t > 0, c ∈ R, where

Bj, j = 1, 2 are Blaschke products with zeroes {ifBj
(k)} and the real-valued

functions fBj
, j = 1, 2 satisfy the conditions of Theorems 40–42. Then the

Toeplitz operator
T (φ) : H2(R) → H2(R)

is left invertible, the Hankel operator

H(φ) : H2(R) → H2(R)

is compact and the operator

I + H(φ) : H2(R) → H2(R)

is invertible.

Theorem 43 plays a crucial rôle in the proof of case 3 in the following theorem.
Consider the Cauchy problem for the Korteweg-de Vries equation

∂u (x, t)

∂t
− 6u (x, t)

∂u (x, t)

∂x
+
∂3u (x, t)

∂x3
= 0, t ≥ 0, x ∈ R, (85)

u (x, 0) = q(x), (86)

and the Schrödinger operator Hq = −d2/dx2 + q (x) on L2 (R). Let HD
q

= −d2/dx2 + q (x) be the corresponding operator on L2 (−∞, 0) with the
Dirichlet boundary condition u (0) = 0.

Theorem 44. ([20]) Assume that the initial profile q (x) in (86) is real-
valued, locally integrable, supported in (−∞, 0) and such that

inf Spec (Hq) = −a2 > −∞. (87)

Then the Cauchy problem for the KdV equation (85)-(86) has a unique so-
lution u (x, t) which is a meromorphic function in x on the whole complex
plane with no real poles for any t > 0 if at least one of the following condi-
tions holds:

1. The operator HD
q has a non-empty absolutely continuous spectrum;

2. Spec
(
HD

q

)
∩ R− is a set of uniqueness of an H∞(R) function;

3.
{
Spec

(
HD

q

)
∪ Spec (Hq)

}
∩ R− is a discrete set {−x2

n}n≥1 such that the
sequence {xn}n≥1 satisfies the conditions of the Corollary of Theorem 42.
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7 Some Open Problems

There are of course many open problems in the spectral theory of Toeplitz
operators. Here we list just a few of them, mainly those that are directly
related to the topics discussed above.

1. Describe inner functions/Blaschke products v for which ρ ∈ Ap =⇒ ρ◦v ∈
Ap (cf. Theorems 14 and 15). In particular, is the condition (27) necessary
for this implication to hold in the case of Blaschke products with positive
zeroes? Perhaps one should try to describe pairs (ρ, v), where ρ ∈ Ap and
v is an inner function, such that ρ ◦ v ∈ Ap.

2. Find conditions on an orientation preserving homeomorphism α : R → R

that are necessary and sufficient for

eiλα ∈ H∞(R) + C(Ṙ), ∀λ > 0

to hold (cf. Theorem 36).
3. According to Theorem 16, a ∈ fact(∞, p) is a sufficient condition for the

the right/left invertibility of T (a) : Hp(T) → Hp(T), 1 < p < ∞. Is this
also a necessary condition for the right/left invertibility or even for the Φ±

property of T (a)? The answer is positive for p = 2 (see [13, Section 2.7]).
4. Study spectral properties of T (a) : Hp(T) → Hp(T) when a belongs to a

Douglas algebra, i.e. to a closed subalgebra of L∞(T) containing H∞(T)
(cf. Theorem 7) . According to the Chang–Marshall theorem, every such
algebra is generated by H∞(T) and the complex conjugates of some inner
functions (see, e.g., [14, Ch. IX]).

Finally, we would like to reiterate that very little is known about the
(essential) spectrum of T (a) : Hp(T) → Hp(T), 1 < p < ∞ for a general
a ∈ L∞(T).
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14. J.B. Garnett, Bounded Analytic Functions. Academic Press, New York, 1981.

15. I. Gohberg, On an application of the theory of normed rings to singular integral equa-

tions. Uspekhi Mat. Nauk 7:2 (48) (1952), 149–156 (Russian).

16. I. Gokhberg and N. Krupnik, Algebra generated by one-dimensional singular integral

operators with piecewise continuous coefficients. Funct. Anal. Appl. 4 (1970), 193–201

(translation from Funkts. Anal. Prilozh. 4, 3 (1970), 26–36).
17. I. Gohberg and N. Krupnik, One-Dimensional Linear Singular Integral Equations I
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23. H. Helson and G. Szegö, A problem in prediction theory. Ann. Mat. Pura Appl. 51, 1
(1960), 107–138.

24. R. Hunt, B. Muckenhoupt, and R. Wheeden, Weighted norm inequalities for the con-

jugate function and Hilbert transform. Trans. Amer. Math. Soc. 176 (1973), 227–251.

25. N.Ya. Krupnik, Some consequences of the Hunt–Muckenhoupt–Wheeden theorem.

Mat. Issled. 47 (1978), 64–70 (Russian).

26. N.Ya. Krupnik, Banach Algebras with Symbol and Singular Integral Operators.
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TL. Ukr. Math. J. 35 (1983), 383–388 (translation from Ukr. Mat. Zh. 35, No.4 (1983),

455–460).
44. H. Widom, Inversion of Toeplitz matrices II. Illinois J. Math. 4, 1 (1960), 88–99.

45. H. Widom, Singular integral equations in Lp. Trans. Amer. Math. Soc. 97, 1 (1960),

131–160.
46. H. Widom, Toeplitz operators on Hp. Pacific J. Math. 19, 3 (1966), 573–582.


