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Abstract

In the paper we deal with Toeplitz operators acting on the Bergman space A>(B”) of
square integrable analytic functions on the unit ball B” in C". A bounded linear opera-
tor acting on the space A*(B") is called radial if it commutes with unitary changes of
variables. Zhou, Chen, and Dong [9] showed that every radial operator S is diagonal
with respect to the standard orthonormal monomial basis (e4)qen. Extending their
result we prove that the corresponding eigenvalues depend only on the length of multi-
index a, i.e. there exists a bounded sequence (4x);2, of complex numbers such that
Seqy = Ajgéa-

Toeplitz operator is known to be radial if and only if its generating symbol g is a
radial function, i.e., there exists a function a, defined on [0, 1], such that g(z) = a(|z|)
for almost all z € B". In this case Tge, = yna(l@l)eq, where the eigenvalue sequence

(Yna(k))Zo is given by

1 1
Yna(k) =2(k+n) f a(r) 2V dr = (k +n) f a(\P)
0 0

Denote by I, the set {y,,: a € L*([0,1])}. By a result of Suarez [8], the C*-algebra
generated by I'y coincides with the closure of I'; in £~ and is equal to the closure of
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dy in £, where d; consists of all bounded sequences x = (x¢),~, such that
sup((k+ 1) X1 — xk|) < 400,
k>0

We show that the C*-algebra generated by I';, does not actually depend on #, and co-
incides with the set of all bounded sequences (xx);2, that are slowly oscillating in

the following sense: |x; — x4| tends to O uniformly as % — 1 or, in other words,

the function x: {0,1,2,...} — C is uniformly continuous with respect to the distance
p(k) =|In(j+1)—In(k+ 1)|. At the same time we give an example of a complex-
valued function a € L'([0,1],7dr) such that its eigenvalue sequence ¥, is bounded
but is not slowly oscillating in the indicated sense. This, in particular, implies that
a bounded Toeplitz operator having unbounded defining symbol does not necessar-
ily belong to the C*-algebra generated by Toeplitz operators with bounded defining
symbols.

AMS Subject Classification: Primary 47B35; Secondary 32A36, 44A60.
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1 Introduction and Main Results

1.1 Bergman space on the unit ball

We shall use some notation and well-known facts from Rudin [3] and Zhu [10]. Denote by
(-,-) the usual inner product in C": (z,w) = Z'}:l z;jw;. Let|-| be the Euclidean norm in C"
induced by this inner product, and let B” be the unit ball in C". Denote by dv the Lebesgue
measure on C” = R?" normalized so that v(B") = 1, and denote by do the surface measure
on the unit sphere S*"~! = 9B” normalized so that o(S*"!) = 1. Let N = {0, 1,2,...}. Given
a multi-index @ € N” and a vector z € C”, we understand the symbols |a|, a! and z% in the

usual sense:
n n n
_ _ @ _ @
Ial—Zaj, a!—l_[aj!, z —l_[zj’.
J=1 Jj=1 Jj=1

Consider the Bergman space A> = A*(B",v) of all square integrable analytic functions on
B”. Denote by (e, )qenn the standard orthonormal monomial basis in A

eq(2) = 4/ %ZQ.

The reproducing kernel K of the space A> at a point z € B” satisfies (f,K.) = f(z) for all
f € A?, and is given by the following formula:

- 1
K.(w) = Z ea(2)eq = A=myy

aeN"

The Berezin transform of a bounded linear operator S : A> — A2 is a function B” — C

defined by
SKZ’KZ n+
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It is well known that the Berezin transform B is injective: if B(S) is identically zero, then
S = 0. A proof of this fact for the one-dimensional case is given by Stroethoff [7].

Given a function g € L!(B"), the Toeplitz operator T, ¢ is defined on a dense subset of A?
by

1= [ Kefas

If g€ L*(B"), then T, is bounded and ||| < [|g]|w-

1.2 Radial operators on the unit ball

Following Zhou, Chen and Dong [9] we recall the concept of a radial function on B" and
of a radial operator acting on A>. The radialization of a measurable function f: B"” — C
is given by

rad()(z) = L AU2)dH(U),

where dH is the normalized Haar measure on the compact group U, consisting of the
unitary matrices of order n.

A function f: B" — C is called radial if rad(f) coincides with f almost everywhere.
For a continuous function f this means that f(z) = f(|z|) for all z € B".

Given a unitary matrix U € U, denote by Wy the corresponding “change of a variable
operator” acting on A%

YuN@) = f(U2).

Here U™ is the conjugated transpose of U. Note that Wy is a unitary operator on the space
A?, its inverse is ¥y -, and the formula Yu,u, =Yy, Yy, holds for all Uy, U; € U,,.
Given a bounded linear operator S : A> — A2, its radialization Rad(S) is defined by

Rad(S) := f ¥y, Sy dH(U),
U,

where the integration is understood in the weak sense.

A bounded linear operator § is called radial it SWy = Wy S for all U € U, or, equiva-
lently, if Rad(S) = S.

Zhou, Chen, and Dong [9] proved that the Berezin transform “commutes with the radi-
alization” in the following sense: for every bounded linear operator S acting in A>

B(Rad(S)) = rad B(S).

It follows that S is radial if and only if B(S) is radial. In the one-dimensional case (i.e., for
n = 1) these facts were proved by Zorboska [11].

For each o e N” denote by P, the orthogonal projection onto the one-dimensional space
generated by e,:
Py(x) :=(x,eq) €q.
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Given a bounded sequence A = (4,,);_, of complex numbers, denote by R, the following
operator (radial operator with eigenvalue sequence A):

R,{ = Z /1|Q|Pa,

aeN"

where the convergence of the series is understood in the strong operator topology. The
Berezin transform of R was computed in [1, 9]:

(1 o2+l L 2(m+n)! 2m
(BR))E) = (1~ I2F) ;m!(n_l)!am|z| . (1.1)

Since the function B(R,) is radial, the operator R, is radial.

Theorem 1.1. Let S be a bounded linear radial operator in A>. Then there exists a bounded
complex sequence A such that S = R,.

Zhou, Chen, and Dong [9] proved one part of this theorem, namely, that S is diag-
onal with respect to the monomial basis. In Section 2 we prove the remaining part: the
eigenvalues of S depend only on the length of the multi-index.

1.3 Radial Toeplitz operators on the unit ball

Zhou, Chen, and Dong [9] proved that a Toeplitz operator T is radial if and only if its
generating symbol g is radial, i.e., if there exists a function a defined on [0, 1] such that
g(z) = a(lz|) for almost all z € B". Then T, is diagonal with respect to the orthonormal
monomial basis, and the corresponding eigenvalues depend only on the length of multi-
indices. Denote the eigenvalue sequence of such operator by vy, ;:

Tgear = Yna(lal)eq.

An explicit expression of the eigenvalues vy, ,(m) in terms of a was found by Grudsky,
Karapetyants and Vasilevski [1] (see also [9]):

1
Ynaim) = (m+n) fo (NP dr, (12)

or, changing a variable,

1
Yna(k) = 2(m +n) fo a(r)r*" =1 gy, (1.3)

Denote by I',(L*([0, 1])), or I';, in short, the set of all these eigenvalue sequences, which
are generated by the radial Toeplitz operators with bounded generating functions:

T, =T ([0,1]) = {yna: a € L™([0,1])}. (14)
Define y1 , and I'y by (1.3) and (1.4) with n = 1:

1
Y1.a(k) = 2(k+1) fo a(r)r’*' ar, (1.5)
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[ =T ([0,1D) = {r1a: a € L7([0,1])}. (1.6)

Denote by d;(N) the set of all bounded sequences x = (x;) jen satisfying the condition

sup((k+ 1)(Ax)) < +ov,
keN
where (Ax)k = Xj+1 — Xk
Then the C*-algebra generated by radial Toeplitz operators with bounded generated
symbols is isometrically isomorphic to the C*-algebra generated by T',.

Theorem 1.2 (Suarez [8]). The C*-algebra generated by I'y coincides with the topological
closure of T'y in £ (N), being the topological closure of d\(N) in £*°(N).

1.4 Slowly oscillating sequences

Denote by SO(N) the set of all bounded sequences that slowly oscillate in the sense of
Schmidt [5] (see also Landau [2] and Stanojevi¢ and Stanojevic [6]):

SOM) :={xe ™ lim |x;—xi =0).
pial

k+1

In other words, SO(N) consists of all bounded functions N — C that are uniformly continu-
ous with respect to the “logarithmic metric” p(j, k) := |In(j+ 1) — In(k + 1)|. In Section 3 we
give some properties and equivalent definitions of the C*-algebra SO(N).

In Section 4 we prove that the C*-algebra generated by I';, does not actually depend on #.
Applying Theorem 1.2 and some standard approximation techniques (de la Vallée-Poussin
means) we obtain the main result of the paper.

Theorem 1.3. For each n the C*-algebra generated by T, coincides with the topological
closure of T, in £ and is equal to SO(N).

As shown by Grudsky, Karapetyants and Vasilevski [1], if a € L'([0, 1],72"~'dr) and the
sequence vy, 4 is bounded, then vy, ,(m + 1) —y, 4(m) — 0. At the same time, in this situation
Yn.a does not necessarily belong to SO(N). The next result is proved in Section 5.

Theorem 1.4. There exists a function a € L'([0,1],7dr) such that y, , € £°(N)\ SON).

That is, a bounded Toeplitz operator having unbounded defining symbol does not nec-
essarily belong to the C*-algebra generated by Toeplitz operators with bounded defining
symbols.

2 Diagonalization of Radial Operators in the Monomial Basis

Lemma 2.1 (Zhou, Chen, and Dong [9]). Let S : A> — A’ be a bounded radial operator
and a be a multi-index. Then e, is an eigenfunction of S, i.e., (Se,,eg) = 0 for every multi-
index B different from «.
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Proof. For a reader convenience we give here a proof, slightly different from [9]. Choose
anindex j € {l,...,n} such that ; # §; and a complex number ¢ such that |¢| = 1 and %/ # .
For example, put
t=e where o= " .
lovj — )
Denote by U the diagonal matrix with (j, j)st entry equal to #~! and all other diagonal entries
equal to 1:

U =diag(1,...,1, ' ,1,....1).

——
Jst position

Then U is a unitary matrix, Yye, = t* ¢4, and
1S eq,ep) = (SYyeq,ep) = (YuSeq,ep) = (Seq, Yy-ep) = tﬁf(Sea,e/g>.
Since 1% # 17, it follows that (S e,, eg) = 0. o
Lemma 2.2 (Berezin transform of basic projections). Let « e N” and z € B. Then
B(Pa)(2) = (1= 1) ga(2).
where qo: B — C is the square of the absolute value of e, :

4@ = lea@ = L o,
n'a!

Proof. We calculate P, K, for an arbitrary z € B:
P.K. = P(,[ Z es2) eﬁ] = eo(2) ea.
BeN"

The reproducing property of K. implies that {e,, K-) = e,(z). Therefore

B(Pa)(?) = 7 ()<P WK KoY = (1= 22" ea@) ea, Ko) = (1= 127 ea ). O

Lemma 2.3. For each m € N, the function z > |z]*" is —i— times the arithmetic mean of the
functions q, with |a| =

om . min! _n ml(n-
g _(m+n)! z:;'qa(z) m+n (m+n- 1)' an(z)

lal=m

Proof. Apply the multinomial theorem and the definition of ¢,:

F”’[le,lz] P I_IIZJ'Z“’=Z =

|a|=m |a|=m

D e o

|a|=m

Lemma 2.4. Let « € N". Then for all z € B,

radigo)(e) = L el
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Proof. Express the integration over U, through the integration over S*~!:

rad(g)(2) = f

The value of the latter integral is well known (e.g., see [3, Proposition 1.4.9]):

- a!
f P do(g) = Dt o
S2n—l (n_

1+]al)!

—
la!

P dHU) =P [ e doto),

Lemma 2.5 (radialization of basic projections). Let « € N”. Then the radialization of P, is
the arithmetic mean of all Pg with |B| = |al:

_ (n=D!la|!
Rad(P,) = =T +lall ,;EZN“n Ps. 2.1)
1Bl=lel

Proof. We shall prove that both sides of (2.1) have the same Berezin transform, then (2.1)
will follow from the injectivity of the Berezin transform. We use the fact the Berezin trans-
form “commutes with the radialization” [9], and apply then Lemmas 2.2 and 2.4:

B(Rad(P,))(2) = rad(B(Po))(2) = (1 - 12" rad(¢a)(2) = 0 . |2'f“'(1 %)

On the other hand, by Lemmas 2.4 and 2.3,

(n—1!al! _ ae1 (m=D!al! _ntlal o pntl
= DHOL SY g pyy(z) = (1 = eyt m DU S oy = 240l ey,
(I’l -1+ |a’|)' 1BI=lal (Pﬁ)(Z) ( | | ) ( -1+ |CY|)' B=lol Qﬁ(Z) n |Z| ( IZI )

O

Lemma 2.6 (radialization of a diagonal operator). Let (cy)qene be a bounded family of
complex numbers. Consider the operator S : A*> — A given by

S = Z coPy.

aeN"
Then
Rad(S) = Z itz DY S|l D P
(m+n-1)! £4P af
|Bl=m lal=m
Proof. Follows from Lemma 2.5 and the fact that the sum of a converging serie of mutually
orthogonal vectors does not depend on the order of summands. O

Proof of Theorem 1.1. Let S be a bounded linear radial operator in A%. By Lemma 2.1,
S = Z co Py
aeN”"

Since Rad(S) =5, it follows from Lemma 2.6 that the coefficients ¢, depend only on |a|.
Defining A,, equal to ¢, for some @ with || = m, we obtain

S:iﬂm[ZPa]:R,i. o

m=0 |a|=m
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3 Slowly Oscillating Sequences
Definition 3.1 (logarithmic metric on N). Define p: NXN — [0, +o0) by

p(j.k) := [In(j + 1) = In(k + 1)|.

The function p is a metric on N because it is obtained from the usual metric d: RxXR —
[0, +00), d(t,u) := |t —ul, via the injective function N — R, j — In(j+1).

Definition 3.2 (modulus of continuity of a sequence with respect to the logarithmic metric).
Given a complex sequence x = (x;) jen, define w, . : [0, +00) — [0, +00] by

wp(6) :=supf{lx; —xxl: jkeN, p(j,k) <6}

Definition 3.3 (slowly oscillating sequences). Denote by SO(N) the set of the bounded
sequences that are uniformly continuous with respect to the logarithmic metric:

SOM) = (1€ £°aD): lim w,.a(6) = 0},

Note that the class SO(N) plays an important role in Tauberian theory, see Landau [2],
Schmidt [5, § 9], Stanojevic¢ and Stanojevic [6].

For every sequence x the function wj, . : [0,+00) — [0, +o0] is increasing (in the non-
strict sense). Therefore the condition lim;_,¢+ w, x(6) = 0 is equivalent to the following one:
for all & > 0 there exists a ¢ > 0 such that w, (0) < &.

The same class SO(N) can be defined using another special metric p; on N:

Definition 3.4. Define p;: NXN — [0, +o0) by

|j— K - min(j+1,k+1)

= — 78y .
PUR = T Lk D) max(j + Lk+1)
Proposition 3.5. p; is a metric on N.

Proof. Clearly p; is non-negative, symmetric, and p;(j,k) = 0 only if j = k. We have to
prove that for all j,k,p e N

p1(js p) +p1(p. k) — p1(j. k) = 0. (3.1

Denote the left-hand side of (3.1) by A(J, &, p). Since A(j, k, p) is symmetric with respect to
j and k, assume without loss of generality that j < k. If j < p <k, then

A VY U U B W -l A -l O V- ) el DN
p+1 k+1 k+1) p+1 k+1 (k+D)(p+1)

Ak, p) = (1

If j < k< p, then A(j,k, p) = LEREED > 0. 1 p < j <k, then A(j k. p) = LD > 0. o

Proposition 3.6 (relations between p and py).

1. Forall jkeN,
p10j:k) < p(j. k). 3.2)
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2. For all j,k e N satisfying p1(j, k) < %
p(Jsk) < 2In(2)p1(j, k). (3.3)

Proof. Since the functions p and p; are symmetric and vanish on the diagonal (o(j, j) =
p1(J, j) = 0), consider only the case j < k. Denote k” —1 by ¢, then

1
k) =In(1 h=1-—=—,
p(j. k) =In(1 +7), p1(j,k) " "

Define f: (0, +00) — (0, +00) by

Then
t— ln(l +1)

UE >0,

and thus f is strictly increasing on (0, +00). Since lim,_,¢+ f(f) = 1 and f(1) = 2In(2), we
see that f(¢) > 1 for all > 0 and f(¢) < 2In(2) for all ¢ € (0, 1]. Substituting ¢ by k+1 -1 we
obtain (3.2) and (3.3). O

Corollary 3.7. The set SO(N) can be defined using the metric p instead of p:

SOM) ={de*(N):  lim sup [d;-Al=0}
0=0% 5, (k)<

Let us mention some simple properties of SO(I).
Proposition 3.8. SO(N) is a closed subalgebra of the C*-algebra {>°(N).

Proof. 1t is a general fact that the set of the uniformly continuous functions on some metric
space M is a closed subalgebra of the C*-algebra of the bounded continuous functions on
M. In our case M = (N, p). Since

Wp,f+g S Wp f+HWpg, Wpif= lep,f, Wp,fg < (Up,f”g”oo + wp,g”_f”oo’ wp,7 = wp,f’

the set SO(N) is closed with respect to the algebraic operations. The topological closeness
of SO(NN) in £*°(N) follows from the inequality

wp,1(6) < 2| f = glloo +wpg(9). O

Proposition 3.9 (comparison of SO(N) to ¢(N)). The set of the converging sequences c(N)
is a proper subset of SO(N).

Proof. 1. Denote by N := NU {oo} the one-point compactification (Alexandroff compactifi-
cation) of N. The topology on N can be induced by the metric

0= )
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If o € ¢(N), then o is uniformly continuous with respect to the metric di, but di7 is less or
equal than p:

|j— &l < lj— Al

d5(j. k) = G+D(k+1) " max(j+1,k+1)

=p1(j,k) < p(J, k).

2. The sequence x = (x;) jen With x; = cos(In(j+ 1)) does not converge but belongs to SO(IN)
since

| = x| = |cos(In(j + 1)) — cos(In(k + 1))| < |In(j + 1) — In(k + 1)| = p(j, k). O

We define now the left and right shifts of a sequence. Given a complex sequence x =
(x/) jen, define the sequences 7, (x) and 7z(x) as follows:

TL(X) = (X1, %2, X35...),  TR(X) 1= (0,x0,x1,...).
More formally,
0, Jj=0;
T(X); := X415 TR\X)j =
( )] i+l R( )] {Xj—la jel{l,2,3,...}.

Note that 77 (Tr(x)) = x for every sequence x.
Both 7, and 7 are bounded linear operators on £*(N). In the following two proposi-
tions we show that SO(N) is an invariant subspace of each one of these operators.

Proposition 3.10. For every x € SO(N), 7.(x) € SO(N).

Proof. The image of 77(x) is a subset of the image of x, therefore ||7z(x)|| < ||x||. Ifé > 0,
JokeN, j<kand p(j,k) <9, then

p(j+1,k+1)= lnM =In E+ln(
J

1 1 k+1
l+ —|-In[l+— 1—_ <
") IS + ) n( + l)<n p(j, k) <.

k+1 j+ +1
It follows that w), 7, (x)(0) < w,,x(6) and 611%1 Wp,7,(x)(0) = 0. O
Proposition 3.11. For every x € SO(N), Tz(x) € SO(N).
Proof. The sequences x and 7z(x) have the same image up to one element zero:
{tr(x);: jeN}={x;: jeN}uU{0}.
Therefore [[7g(X)llec = [IX]loo-
2. Letée( ) jokeN, j<kand p(j,k)<d. Then j>1,k>2, and

k=j _k+1 (k+D-G+D 3

pr=1k=1) = = = == T < Sy (k)

Applying Proposition 3.6 we see that

| W

pr-Lk=-1)< —p(J,k) =

I\JI'—‘

2
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and
o(j—-1Lk-1)<2InQ)o1(j-1,k-1) < 21n(2)%6 =31n(2)é.

Thus for every ¢ € (O, %),
Wp,1p(x)(0) £ Wy x(3In(2)0).

Therefore 51i%l+ Wp,rr(x)(0) = 0. |

4 T, is a Dense Subset of SO(N)

First we prove that I';; is contained in SO(N).
Proposition 4.1. Let a € L*([0,1]). Then vy, , € SO(N). More precisely,

||7’zz,a||oo < lallco, 4.1)

and for all j,k €N,
[Yna(7) = Yna®)| < 2llallocp (. k). (4.2)

Proof. The inequality (4.1) follows directly from (1.3):

1
Wna()I < 2(n + ) f P22 gl dr = |l
0

The proof of (4.2) is based on an idea communicated to us by K. M. Esmeral Garcia.
Since both sides of (4.2) are symmetric with respect to the indices j and k, without loss of
generality we consider the case j < k. First factorize a(7) and bound it by ||a|«:

1
[Yina() = Yna(k)| = ‘ fo ((n+ )2 = (n+ k)P Na(r)dr 4.3)
1
< llalle f |n+ p)r? 27 = (n+ by (4.4)
0

Denote by 7 the unique solution of the equation (n + 7)r?"*>~1 — (n + k)r*"**~1 = 0 on the
interval (0, 1):

_(n+] W

=)

The function r — (1 + j)r?"*2/~1 — (n+ k)r¥"*?~1 takes positive values on the interval (0,r()

and negative values on the interval (rg,1). Dividing the integral (4.4) on two parts by the
point 9, we obtain:

Pna() = Yna®)] < 2Nalle ("™ = r5"*) = 2llalleory" o1 (. ).
Since rg < 1 and p1(j, k) < p(J, k), the inequality (4.2) follows. O

Definition 4.2. Denote by d(N) the set of the bounded sequences x such that

sup((j+ Dlxjs1 = x;1) < +ov.
JeN



88 S. M. Grudsky, E. A. Maximenko, and N. L. Vasilevski

Proposition 4.3. d|(N) is a proper subset of SO(N).
Proof. 1. Let x € d{(N) and

M = sup((j + Dlxje1 = x).
JEN

Then for all j,k € N with j < k we have

k-1 k-1

+1 k k+

|Xk x,|<2|xq+1—xq|<MZ—<MZlan:Mln—.<Mlnm
q=J 9=

J

Therefore d;(N) is contained in SO(N).
2. Consider the sequence
X, 1= sin nllog,(j+2)]
T emG
For every j and k with k > j,
rllog,(k+2)] B rllog,(j+2)]

Viogy(k+2)  y/logy(j+2)
_ mlogy(k+2) _ allogy(j+2)-1)

— log, (k+2) Vlog,(j+2)

= n(Vlogy(k+2)~ +log,(j+2)) +

o= )] <

T

k+2
rlog, =5 s P

\/logz(k+2) + flog,(j +2) \/1og2(j+2)'
Thus x € SO(N). On the other hand, if j = pL 3, then

n(k*-1)

Ixjr1 = x| = |x;[ = |sin = |sin| kmr—

ylog,(j+2)

n(k*-1)

\Jlog,(2¥ 1) Jlog,(2¥ = 1)

1

= Mp(j. k).

Appying the inequality |sin(?)| > %, which holds for all # with [¢| < §, we obtain:

(-1

v 10g2(2k2 -1)

X1 — x5l = 2| k- zZ(k— k2—1)2

Therefore x ¢ d,(N).

Lemma 4.4. Let x € t{*(N) and 6 € (0,1). Denote by y the sequence of the de la Vallée-

Poussin means of x:
1 J+Ljol

1+[jo] =

Yi=

Then y € di(N) and
”y_x”oo < wp,x(d)'

(4.5)

(4.6)
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Proof. Note that for all j € N, the sum in the right-hand side of (4.5) contains 1 +| jé] terms.

Therefore
1 J*Ljsl

| < , [IXlloo = lIXlloo-
b 1+1/6] ];

For j € N, let us estimate the difference [y —y;l:

1 JHLG+1)d] 1 Jj+Ljol
1 —yjl= TG+ 3] X — T+ 170] ; Xje

JHLU+D]

L(j+1)o]—Ljo] el + 1
TG Do +Le) & T TG+ De]
< lIx[loo (Lj6] + 1) N IR
TGH+DS+LS])  (j+1)6
Xl
T
Thus y € di(N). Let us prove (4.6). If j <k < j+|jd], then

X j Do

I
o= i Cmar) <o
J+1 J

Therefore
J+Ljo]
Z Xk = X1 < wp x(5). O

k=j

vj—x;l <

1+|jo]
Proposition 4.5. d|(N) is a dense subset of SO(N).

Proof. Lete > 0. Using the fact that w), (6) — 0 as 6 — 0, choose a § > 0 such that w,, () <
&. Define y by (4.5). Then y € d(N) and ||x - y||oo < & by Lemma 4.4. o

Theorem 1.3 follows from Proposition 4.5 and Theorem 1.2:
Proposition 4.6. I'y is a dense subset of SO(N).

Proof. Proposition 4.1 implies that I'; is contained in SO(N). Let x € SO(N) and & > 0.
Applying Proposition 4.5 find a sequence y € d;(N) such that

&
”y_x”oo < E

Using Theorem 1.2 we find a function a € L*([0, 1]) such that [ly1 4 — yll < §. Then
1.0 = Xlloo < l1Y1.a =Moo +1ly = ¥lloo <&. o

Lemma 4.7. Let a € L¥([0,1]). Then yyq =73 (y1.0).

Proof. Follows directly from the definitions of y, , and y 4, see (1.3) and (1.5). O

Proposition 4.8. T';, is a dense subset of SO(N).
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Proof. By Proposition 4.1, T, is a subset of SO(N).

Let x e SO(N) and & > 0. Denote Tﬁ'{l(x) by y. By Proposition 3.11, y € SO(N). Using
Proposition 4.6 find a function a € L*([0, 1]) such that ||y —y1 4|l < &. Then apply Lemma
4.7:

n—1

||x_711,a||oo = ||Tz_l(y)_TL (yl,a)”oo = ”TZ_I(V_')/La)”oo < |b/_71,a||oo <eé. O

We finish this section with an important observation. The results stated up to this mo-
ment do not take into account the multiplicities of the eigenvalues. In this connection we
recall that for each bounded radial operator R, on A%*(B") with the eigenvalue sequence
A € {*(N), the equality

Raeq = Ape,

holds for all multi-indices & € N” satisfying |a| = p, and there are ("Zf Il) such multi-indices.
As was mentioned, for each natural number n the C*-algebra generated by Toeplitz oper-
ators on A%(B") with bounded radial symbols is isomorphic and isometric to the C*-algebra
of multiplication operators R, on ¢>(N) whose eigenvalue sequences belong to SO(N), and
thus its C* structure does not depend on n. At the same time these algebras, when # is var-
ied, are quite different if we count multiplicities of eigenvalues, that is when the operators
forming the algebra are considered by their action on the basis elements of the correspond-
ing Hilbert space A%(B").
Let us consider in more detail sequences of eigenvalues with multiplicities. Formula
for the rising sum of binomial coefficients states that
Zp:(n+m—1)_(n+p—l)
I\ n- 1 n

Now, for every j € N there exists a unique p in N such that

n+p-1 << n+p
n - n |

Denote this p by m,,(j), and say that the index ;j is located on the p-st “level”.
Given a sequence A € £, define ®,(1) as the sequence obtained from A by repeating
each 1, according to its multiplicity. That is,

(”*5_1) elements

Q) :=("do . & . D . A3 ... A )
e e e ——

-1 n +1 +2 —

6D I ) B () I (e

times times times times times

Since the isometric homomorphism @, of £~(N) is injective, the C*-algebra generated by
the set {®,(y,q): a € L[0,1]} coincides with ®,(SO(N)), that is, with the C*-algebra
obtained from SO(N) by applying the mapping ®©,,.

Note that for all p,q with p < ¢ the following estimates hold:

+1 + + +1
lnq—sln T (TP Snlnq—,
p+1 n n p+1
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which implies that ®,(SO(N)) coincides with the C*-algebra SO, ,(N), a subalgebra SO(N),
which consists of all sequences having the same elements on each “level”:

SOrepa(M) = {1 € SOMD: if m4(j) = mu(h), then w; = .

That is, the described above eigenvalue repetitions do not change in essence a slowly oscil-
lating behavior of sequences.

5 Example

In this section we construct a bounded sequence A = (4;) en such that A =y, , for a cer-
tain function a € L'([0, 1],7dr) but A ¢ SO(N). This implies that the corresponding radial
Toeplitz operator is bounded, but it does not belong to the C*-algebra generated by radial
Toeplitz operators with bounded symbols.

Proposition 5.1. Define f: {z€ C: R(z) >0} > C by
1) = Lexp(Lan(Hn)), (5.1)
z+n 3n

where In is the principal value of the natural logarithm (with imaginary part in (-n,7x]).
Then there exists a unique function A € L'\(R.,e " du) such that f is the Laplace transform
of A:

f(2) = fo A(u)e™ dz.

Proof. For every z € C with R(z) > 0 we can write In(z + n) as In|z + n| + iarg(z + n) with
-7 <arg(z+n) <%. Then

[ (2)| = ﬁ ‘exp(é(lnlz+n| +iarg(z+n))2)|

1 2arg(z+n
= ex —Llnlz+n|
|z +n| 3r
B 1
- 2arg(z °
Iz + |5
Since [z+n]> 1 and —1 < —22EC) 1
= 3 3 3>
1
el ——=

+nP3

Therefore for every x > 0,

o dy dy

2

dy< | ———om< | 555 <+,
fl;l.f(xﬂy)l ly jlé((x+n)2 VR <j1;(1+y2)2/3 < e

and f belongs to the Hardy class > on the half-plane {z€ C: R(z) > 0}. By Paley—Wiener
theorem (see, for example, Rudin [4, Theorem 19.2]), there exists a function 4 € L?(0, +c0)
such that for all x > 0

f(x)= [) A(w)e ™ du.
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The uniqueness of A follows from the injective property of the Laplace transform. Applying
Holder’s inequality we easily see that 4 € L'(R,, e du):

f T lGle du <141 ( f - e'zudu)l/z 4l ]
< 2 = )
0 0 \/E

Proposition 5.2. The sequence A = (4;) jen, where
Aj:= exp(Llnz(j+n)), (5.2)
3n

belongs to {*(N)\ SO(N). Moreover there exists a function a € L'([0,1],rdr) such that
A=Yna

Proof. Since |4, = 1 for all j € N, the sequence 4 is bounded. Let 4 be the function from
Proposition 5.1. Define a: [0,1] — C by

a(r)=A(-21Inr).
Then

1 1 1 1 1 1 +00 u
fo la(r)lrdr = 3 fo |a(\ft)|dz_5 fo A= In(0)ld = fo |A(u)l e du < +o0,
and

1 1
Doa =) [ aNP = ) [ A
0 0
—+00
= (j+n)f A@wye V™ duy = (j+n)f(j+n) = 4.
0
Let us prove that A ¢ SO(N). For every j,k € N we have

|4 — Al =

exp(% (In2(j+ ) In(k + n))) - 1‘.

Replace j by the following function of &:

k+n
ik) =k +| —m7 1.
.]( ) \‘lnl/z(k_'_n)J
Then
Jk)—k 1 . 1
k+n  In'2(k+n) .
and
In(j(k) + 1) = In(k +n) +1n(1 LI® —k)
k+n
1 1 :
=In(k+n)+ _ L0 |
n(k +n) In'2(k+n) 2In(k+n) (1H3/2(k+n))
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Denote In?(j(k) +n) — In?(k +n) by L and consider the asymptotic behavior of Ly as k — co:

Ly = I’ (k) +m) = In*(k +m) = 1 +21n”2(k+n)+0(@)'

Since L increases slowly for large k, for every K > 0 there exists an integer £ > K such that
Ly + 1 is close enough to an integer multiple of 672, say to 6mmr>:

Li+1=x 6mn>.

For such %,

~
=~

|4y = Akl =

exp(é(Lk+1—6m7r2))exp(—§)—1 exp(—é)—l|¢0.

It means that |4 ) — A«| does not converge to 0 as k goes to infinity. On the other hand,

lnj(k)+1 < (k+n) R
k+1 7 (k+DIn'"?(k +n)

pUi(k).k) =
It follows that A ¢ SO(N). O
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