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discontinuities of the second kind.
well as explicit formulas for solutions.

not necessarily rectifiable.

We consider the Dirichlet, Neumann and Zaremba problems for harmonic functions in a bounded plane domain with
Purpose: We wish to construct explicit formulas for solutions of these problems when the boundary curve belongs

to one of the following three classes: sectorial curves, logarithmic spirals and spirals of power type.

Methods: To study the problem, we apply the familiar Vekua-Muskhelishvili method which consists in the use of
conformal mapping of the unit disk onto the domain to pull back the problem to a boundary problem for harmonic
functions in the disk. This in turn later reduces to a Toeplitz operator equation on the unit circle with symbol-bearing

Results: We develop a constructive invertibility theory for Toeplitz operators and thus derive solvability conditions as

Conclusions: Our results raise Fredholm theory for boundary value problems in domains with singularities which are
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Introduction

Elliptic partial differential equations are known to appear
in many applied areas of mathematical physics, to name a
few, mechanics of solid media, diffraction theory, hydro-
dynamics, gravity theory and quantum field theory.

In this paper, we focus on boundary value problems for
the Laplace equation in plane domains bounded by non-
smooth curves C. We are primarily interested in domains
in which boundaries have a finite number of singular
points of the oscillating type. By this, we mean that the
curve may be parametrised in a neighbourhood of a sin-
gular point zg by z(r) = zo + r exp(t¢(r)) for r € (0, ro],
where r is the distance between z and zg and where ¢(r)
is a real-valued function which tends to infinity as r — 0
or is bounded while its derivative is unbounded at » = 0.
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Furthermore, ¢(r) and ¢’ (r) are allowed to tend to infinity
rather quickly, and our study encompasses domains with
a non-rectifiable boundary as well.

There is a huge literature devoted to boundary value
problems for elliptic equations in domains with non-
smooth boundary (¢f [1-3] and the references given
there). In most papers, one treats piecewise smooth
curves with corner points or cusps (cf [4-9]). One paper
[10] is of particular importance for it gives a characteri-
sation of Fredholm boundary value problems in domains
with weakly oscillating cuspidal edges on the boundary.

There have been essentially fewer works dealing with
more complicated curves C. They mostly focus on qualita-
tive properties, such as existence, uniqueness and stability
of solutions, with respect to small perturbations (see for
instance [11]). The present paper deals not only with
qualitative investigations of boundary value problems in
domains whose boundaries strongly oscillate at singular
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points, but also with constructive solutions of such prob-
lems. Hence, it sheds some new light on the operator
calculus which lies behind the problems.

Our results gain in interest if we realize that the gen-
eral theory of elliptic boundary value problems in domains
with singular points on the boundary has made no essen-
tial progress since Kondratiev wrote his seminal paper
[12]. The Fredholm property is proven to be equivalent to
the invertibility of certain operator-valued symbols, where
the problem is as immense as the original one. In order
to get rid of operator-valued symbols, one has to carefully
analyse the classical problems of potential theory.

Background on Toeplitz operators

Statement of the problem

We restrict ourselves to the Dirichlet and Neumann prob-
lems for the following Laplace equation:

Au = (3/3x)%u + (9/3y)*u = 0, (1)

in a simply connected domain D with boundary C in the
plane of variables (x,y) € R2. The boundary data are as
follows:

u=up (2)

3/3v)u = u, (3)

on C, respectively, where (d/dv)u means the derivative of
u in the unit outward the normal vector to C.

We also treat the so-called Zaremba problem (see [13])
where the solution to (1) is required to satisfy the mixed
conditions on C, which contain both (2) and (3). More pre-
cisely, let S be a non-empty arc on C, and then the mixed
condition in question reads as follows:

u = ug on S,

(@/0v)u = uj on C\ S, (4)

where up and u; are given functions on S and C\S, respec-
tively. Although being model for us, problem (4) proves to
be of great importance in mathematical physics.

Instead of the normal derivative on C \ &, one can
consider an oblique derivative, which can be tangent to
the boundary of S. This gives rise to the Sturm-Liouville
problems with boundary conditions having discontinu-
ities of the first or second kind. Moreover, the boundary
curve C itself is allowed to bear singularities at the points
of 3S. One question that is still unanswered is whether the
eigen- and root functions of such problems are complete
in the space L? in the domain (cf [14,15] and references
therein). The Sturm-Liouville problems in domains with
piecewise smooth boundary are also of great interest in
multidimensional case.
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General description of the method

Our approach to the study of elliptic problems in domains
with non-smooth boundary goes back to at least as far
as the study of Khuskivadze and Paatashvili [16,17]. It
consists in reducing the problem in D to a singular inte-
gral equation on the unit circle by means of a conformal
mapping of the unit disk onto D. The coefficients of the
singular integral equation obtained in this way fail in gen-
eral to be continuous for they are intimately connected
with the derivative of boundary values of the conformal
mapping. This method was successfully used for solving
problems in domains with piecewise smooth boundary,
where the singular points are corner points or cusps (see
[4-7,18]). In this case, the coefficients of the mentioned
singular integral equation have discontinuities of the first
kind. Since the theory of such equations is well elabo-
rated, one has succeeded in constructing a sufficiently
complete theory of boundary value problems for a number
of elliptic equations in domains with piecewise smooth
boundary. Note that by now, the theory of singular integral
equations (or, in other terms, the theory of Toeplitz oper-
ators) with oscillating coefficients is well elaborated, too.
In particular, in a previous study [19-21], a constructive
theory of normal solvability (left and right invertibility) is
elaborated in the case of coeflicients with rather strong
discontinuities (see also the monograph [22]).

The present paper deals with main boundary value
problems for the Laplace equation for three classes of
boundary curves C, namely sectorial curves, logarithmic
and power spirals. A sectorial curve is a plane curve C,
such that the angle at which the tangent of C intersects
the real axis is a bounded function in a punctured neigh-
bourhood of any vorticity point of C (see Definition 3 for
more details). As distinct from corner or cuspidal points,
the angle need not possess finite one-sided limits at a
singular point and may, in general, undergo discontinu-
ities of the second kind. For example, the arc z(t) = t +
12 sin(1/t), where |t| < ¢ is a part of the sectorial curve
with singular point z(0) = 0. The main result for sec-
torial curves is Theorem 8 which reduces the Dirichlet
problem with data at a sectorial curve to a Toeplitz oper-
ator with sectorial symbol. The theory of such operators
is well understood. A logarithmic spiral is a curve of the
form z(r) = rexp(idlnr), where r € (0,r9) and § are
fixed real number. Note that in [23], Fredholm theory was
developed for potential-type operators on slowly oscillat-
ing curves, a typical example being a logarithmic spiral.
In the present paper, we not only elaborate the theory
of Fredholm boundary value problems with data on log-
arithmic spirals, but also construct explicit formulas for
solution. Finally, by a power spiral, we mean a curve of
the form z(r) = rexpGer—'/%), where § > 0. Notice
that for § < 1, the curve is not rectifiable. However, our
method allows one not only to develop a Fredholm theory
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for the corresponding boundary value problems, but also
to obtain formulas for solutions in a closed form.

Reduction of the Dirichlet problem

The Dirichlet problem is the most frequently encountered
elliptic boundary value problem. This is not only because
the Dirichlet problem is of great interest in applications
in electrostatics, gravity theory, incompressible fluid the-
ory, etc., but also since it is a good model where one tests
approaches to other, more complicated, problems.

Let D be a simply connected, bounded domain in the
plane of real variables (x, y). The boundary of D is a closed
Jordan curve which we denote by C. Consider the Dirichlet
problems (1) and (2) in D with data up on C. As usual,
we introduce a complex structure in R? by z = x + 1y
and pick a conformal mapping z = ¢(¢) of the unit disk
D = { € C: |¢| < 1} onto the domain D, cf.
Riemann mapping theorem. Throught the paper, we make
a standing assumption on the mappings z = ¢(¢) under
consideration, namely

¢(0) > 0. (5)

Problems (1) and (2) can then be reformulated as
follows:

1
WAU:O for|§|<1,
Uu==ufor [¢| =1,

where U(¢) := u(c(¢)) and Up(¢) = up(c(2)).

For 1 < p < 0o, we denote by H?(D) the Hardy space
on the unit disk (for the properties of Hardy spaces and
conformal mappings, we refer the reader to the classical
book [24]). By conformal mapping z = ¢(¢), the space is
transported to the so-called Hardy-Smirnov space E? (D)
of functions on D. A holomorphic function f on D is said
to belong to EP (D) if

(6)

sup [ @I ldzl < oo,
re(0,1) J¢,
where C, is the push-forward of the circle || = rby z =
¢(¢). Itis easy to see that f € EP(D) if and only if

V(@) f(e(©)) € HP (D). (7)

It is then a familiar property of the functions of Hardy
class H? (D) that the function &/¢/(¢)f(c(¢)) has finite
non-tangential limit values almost everywhere on the unit
circleT={¢eC: |¢|=1}.

If C is a rectifiable curve, then the function z = ¢(¢) is
continuous on the closed unit disk D, absolutely continu-
ous on the unit circle T and (c(e'’))’ = 1e'’¢/(e'*) almost
everywhere on T. It follows from (7) that f(z) has finite
non-tangential limit values almost everywhere on C, and

; 14 — 14
Jim /C r [f @)1 |dz| /C [f @I |dz|. (®)
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If C fails to be rectifiable and there is a function f €
EP(D) with nonzero non-tangential limit values almost
everywhere on C, then relation (7) yields that the deriva-
tive ¢/(¢) also possesses finite non-tangential limit values
almost everywhere on T. Moreover, for f € EP(D), the
limit on the left-hand side of (8) exists; hence, we are able
to interpret integrals over the boundary curve C like that
on the right-hand side.

We will also study boundary value problems in Hardy-
Smirnov spaces with weights E? (D, w).

Set

n C\ T
w@) =] (1 - —) ©)
k=1 Sk

for ¢ € D, where {¢1,...,¢,} are pairwise different points
on the unit circle. Here, i1, . . ., it are real numbers in the
interval (—1/g,1/p), p and g being conjugate exponents,
ie 1/p + 1/q = 1. The weight functions of form (9) are
called power weights. The advantage of using such weight
functions lies certainly in the fact that they are holomor-
phic in . A holomorphic function f in D is said to lie in
EP(D,w) if

sup / [f@P w(e™ @) |dz| < oo.
re(0,1) Jc,

It is well known that for each harmonic function u(x, y)
in D, there is an analytic function f (z) in D whose real part
is u. We therefore look for a solution u for problems (1)
and (2), which have the form u = %f with f € EP(D, w).
The boundary condition # = ug is understood in the sense
of non-tangential limit values of # almost everywhere
onC.

Definition 1. Given any Dirichlet data uo on C of class
LP(C,w) in the sense that

fT o) W) 1)) 1z | < oo,

we shall say that problems (1) and (2) possess a solution in
REP (D, w) ifthere is a harmonic function u in D, such that
u = Nf for somef € EP(D,w) and u = up on C.

If w =1 (i.e. all g vanish), then we recover the Hardy-
Smirnov spaces EP (D) and RE? (D), respectively.

We proceed to reduce the Dirichlet problem. By the pre-
viously mentioned data, we can look for f of the following
form:

h (@)
w(§){/¢(¢)
for £ € D, where k™ is an analytic function of Hardy class
HP (D).
By Theorem 4 in[24], the conformal mapping z = ¢(¢)
is bijective and continuous on the closed unit disk. Hence,
the function U(¢) = u(c(¢)) has finite non-tangential

fe@) =
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limit values almost everywhere on T, and in this way,
U(¢) = Uy(¢) is understood on the unit circle T. This
enables us to rewrite problem (6) in the following form:

w0
w(E) ' (5)
for ¢ € T, where & is an analytic function of Hardy class

HP (D). The latter problem can in turn be reformulated as
follows:

>=Uo(§)

1 r@ O ) = e
2\wOYIQ)  w)¥d @)
for ¢ € T, where
O =FO

can be specified within analytic functions of Hardy class
H? in the complement of the closed unit disk.
More precisely,

@

belongs to the Hardy class H? in the complement of D up
to an additive complex constant if the functions of Hardy
class H? in C\ D are assumed to vanish at infinity.

Recall the definition of Hardy spaces H”* on the unit
circle. Let i € LP(T), where 1 < p < 0o. We parametrise
the points of T by ¢ = exp(1£) with ¢ €[0,27]. Let

W@y~ >

j=—00

be the Fourier series of /1, the coefficients being

1 dat

Then, h € HPY, if ¢j(h) = 0 for all integers j < 0, and
h € HP~, if cj(h) = O for all integers j > 0.

The functions of H? T are non-tangential limit values on
T of functions of Hardy class H” (ID). The functions of H? ~
are non-tangential limit values on T of functions of Hardy
class H? in C \ D, which vanish at the point at infinity.
Moreover, for 1 < p < o0, the space L?(T) splits into the
topological direct sum HPT @ HP~, as is well known.

Finally, we transform the Dirichlet problem to the
following:

a(Q)h (@) +h (&) =g(0) (10)
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for ¢ € T, where

W) ) w©) 2
“O="oV oo~ wo exP( oS (c))

and g(¢) = 2Uo(5) w(O) Y/ (£).
It is well known from the theory of conformal mappings
that

arg ¢ (¢) = a(c(¢)) — arg¢ — %

for ¢ € T, where «(c(¢)) is the angle at which the tangent
of C at the point z = ¢(¢) intersects the real axis. Note that

g e LP(T).
Now, let
1 ls
(S19) () == — g,@ ) ', ¢eT,
wJr ' —1¢

stand for the singular Cauchy integral. If 1 < p < oo, then
St is a bounded operator in L”(T), and the operators

:l: 1
Pf =5 (L£Sy)

prove to be continuous projections in LP(T) called analytic

projections. They are intimately related with the classical

decomposition of LP(T) into the direct sum of traces on T

of Hardy class H” functions in D and C\D, respectively.
More precisely, we get

PEIP(T) = HP#,

whence P% HP* = HP* and P% HPF =0.

On applying P;{ to both sides of equality (10) and tak-
ing into account that (P:fh_)({) = h~(00) and i~ (00) =
h+—(0), we get

(T@h)(©) + 1 (0) =g ()

for ¢ € T, where T(a) := PfaPj is a Toeplitz operator

with symbol a on Z#(T) and g*(¢) = (Pfg) (¢) for ¢ € T.
We thus arrived at the following result.

Theorem 1.

(11)

(1) If u=Nf withf € EP(D,w) is a solution of the
Dirichlet problem in D, then
Wt () = w(g) & (2) f(c(¢)) is a solution of
Equation 11.

(2) If ht e HPT is a solution of (11) and the kernel of
T (a) is zero, then the function

u(c(0)) =R T (&)/w(@) & (0)) is a solution of the
Dirichlet problem in D.
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Proof. (1) has already been proven; it remains to show
(2). Let k't € HP™ satisfy (11). This equality transforms to
the following:

a@QO (@) +h™ () =g(©)

where 1™ (¢) = — (P (ah™))(§) + (P1g)(£) + hT(0).
Since

(12)

20 = —
a)

a(¢)g@) = g(©),

as is easy to check, we deduce from (12) that a(¢) h=(¢) +
ht () = g().

Applying P to both sides of this equality yields the
following:

(T@ ) @) +17©0) =g* ).

Comparing this with (11), we get T'(a)(h——hT)(¢) =0
whence h=(¢) = ht(¢) for all ¢ € T, for the kernel of
T (a) is zero.

Equality (12) can then be rewritten as follows:

A0 G ) e
2\wOVIE)  we)JSTQ)

for ¢ € T. Since the function Up(¢) = up(c(¢)) is
real-valued, the last equality just amounts to saying that
NE(Z) = Up(¢) for ¢ € T, where

F(¢) = &
w(Z)V ()

The function RF(¢) is harmonic in I, and it has non-
tangential limit values almost everywhere on T, which
coincide with Uy(¢). Moreover, f(z) = F(c"Y(2)) is of
weighted Hardy-Smirnov class E?(D,w), and u(x,y) =
Nf(z) is a solution of the Dirichlet problem in D, as
desired. O

Corollary 1. Ifthe operator T (a) is invertible on the space
HPY and

(T(@) 1) (©) = w(§) I ()/¢(0),

for ¢ € T, then the Dirichlet problem in D has a unique
solution of the following form:

(13)

1
u(z) = % ( (T@ghH©) - §<T<a>‘1g+><0>

1
w(©) YT () (
x (T(arll)(/:)))

with z = ¢(¢), where g™ = P}, <2uo(c(§))m{’/c’(§)) .
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Proof Applying the operator T'(a)~! to (11) yields the
following:

@)+ (T@ ™7 0) ©) = (T@™¢") ©

for all ¢ € T. Since both sides of the equality extend to
holomorphic functions in the disk, we can set { = 0. By
(13), we get (T(a)_ll) (0) = 1; hence,

2% 411 (0) = (T@'¢g") (0).

We thus conclude that the general solution of (11) has
the following form:

1
@) =(T@™'¢") () = 5 (T@7'¢") 0)
X (T(@)™')(@) +1¢(T@™1) ),

where c is an arbitrary real constant. From (13), it follows
that

(T@)™'1) (©) _ 1
w(Z) () A/ ¢(0)

; — 0 @ ) .
is a real number. Therefore, u(z) N (W({) VoD is

actually independent of ¢, establishing the corollary. O

Remark 1. Condition (13) is actually fulfilled in all cases
to be treated in this work (see Remark 3 below).

If Equation 11 has many solutions, then we must specify
among them those solutions which give rise to solutions of
the Dirichlet problem in weighted Hardy-Smirnov spaces.

Factorisation of symbols

The results of this section with detailed explanations,
proofs and corresponding references can be found else-
where [25-27].

Let L°°(T) be the space of all essentially bounded func-
tions on the unit circle T, H** the Hardy spaces on T
which consist of the restrictions to T of bounded analytic
functions in D and C \ D, respectively, and C(T) the space
of all continuous functions on T.

A bounded linear operator A on a Hilbert space H is
said to be normally solvable if its range im A is closed. A
normally solvable operator is called Fredholm if its kernel
and cokernel are finite dimensional. In this case, the index
of A is introduced as follows:

indA = a(A) — B(A),

where a(A) = dimker A and B(A) = dim coker A.

The symbol a(¢) of a Toeplitz operator T'(a) is said to
admit a p -factorisation, with 1 < p < oo, if it can be
represented in the following form:

a) =at(O)*a= (), (14)
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where « is an integer number,

at e HIT,
1/a* e HPT,

a~ € HP~ @ {c},

1/a= € H1~ & {c}, (15)

p and g are conjugate exponents (i.e. 1/p +1/q = 1), and
(1/a*)St(1/a™) is a bounded operator on L7 (T).

The functions 4™ and 4~ in (14) are determined
uniquely up to a constant factor. On putting the additional
condition 2~ (c0) = 1, one determines the factorisation
uniquely.

Remark 2. As proven in [27], the factorisation of the
symbol a with property (15) only is also unique up to a
multiplicative constant.

Theorem 2. An operator T(a) is Fredholm in the
space HP™" if and only if the symbol a(¢) admits a p-
factorisation. If T (a) is Fredholm, then ind T (a) = —«.
Theorem 3. Let a € L*(T) and a(¢) # 0 almost every-
where on T; then at least one of the numbers a (T (a)) and
B(T(a)) is equal to zero.

Combining Theorems 2 and 3, we get a criterion of
invertibility for Toeplitz operators.

Corollary 2. An operator T(a) is invertible on HPT if and
only if the symbol a(¢) admits a p -factorisation with k =
0. In this case,

(T(a)™' = (1/a"HPE(1/a™).

Proof If k = 0, then «(T'(a)) = B(T(a)); thus, both
«(T(a)) and B(T (a)) vanish. Hence, it follows that T'(a) is
invertible on HP ™,

We now establish the formula for the inverse operator

(T(a))~'. Let f € HP™, and then
((1/a*)PF(1/a7)) T(@)f = ((1/a*)P;(1/a7)) P} (af)
= ((1/a")Pf1/a"))af
= (1/a")Piatf
= (1/a)a*f
=f,
and similarly
T(a) ((1/at)PE(1/a7))f = Pla((1/aD)PE1/a7))f
= Pta Pi(1/a")f
= Pta~(1/a™)f
== f‘
Here, we have used the familiar equalities P{h~Pf =
P%'h‘ and P%'h"’P%’ = h+P141I which are valid for all i~ €
Hi~ @ {c}and h™ € HI™T. O

Given a non-vanishing function a € C(T), we denote
by ind,T)(0) the winding number of the curve a(T) about
the origin or the index of the origin with respect to a(T).
Theorem 4. Suppose a € C(T), then the operator T (a) is
Fredholm in the space HP ™ if and only if a(t) # 0 for all
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¢ € T. Under this condition, the index of T (a) is given by
the following:

ind T'(a) = —indg () (0).

We now introduce the concept of sectoriality which is of
crucial importance in this paper.
Definition 2. A function a € L*(T) is called p -sectorial
if essinfla(¢)| > 0 and if there is a real number ¢ such
that

sup |arg (exp(tgo)a({)) | < (16)

el

b4
max{p, q}

forall¢ € T.

A function a € L*(T) is said to be locally p -sectorial
if essinfla(¢)| > 0, and for any ¢ € T, there is an open
arc containing o, such that (16) is satisfied for all ¢ in the
arc with some ¢y € R depending on &y. Each p -sectorial
curve is obviously locally p -sectorial.

Theorem 5.

(1) Ifa(¢) is a p -sectorial symbol, then the operator
T(a) is invertible in the space HP .

(2) Ifa(t) is a locally p -sectorial symbol, then T (a) is a
Fredholm operator in HP+,

Suppose i € GH™™, thatis, h € H*" and 1/h €
H%*, then the operator T'(h) is invertible in HT. Indeed,
it is easy to check that (T(h)™t = T /h). Analogously,
if # € GH®~, then the operator T (/) is invertible in H?+
and (T'(h)~' = T(1/h).

Theorem 6.

(1) Leta(¢) = h(¢)ao(¢), where h € GH®* and
ag € L*°(T), and then the operator T (a) is Fredholm
in the space HPT if and only if the operator T (ay) is
Fredholm, in which case ind T'(a) = ind T (ay).

(2) Leta(¢) = c(¢)ap(¢), wherec € C(T) and
ap € L°(T), and then T (a) is Fredholm in HP T if
and only if ¢(¢) vanishes at no point of T and T (ap)
is Fredholm, in which case
ind T'(a) = ind T(ao) — ind,() (0).

Proof. This is a straightforward consequence of
Theorems 2 and 4 and Corollary 2. O

In conclusion, we give a brief summary on Toeplitz
operators with symbols having discontinuities of the first
kind (the reader is referred to Chapter 5 of[26]). Let PC
stand for the space of all piecewise continuous functions
on T which have at most finitely many jumps. Suppose
a(¢) €e PCand ¢y, ..., ¢, are the points of discontinuity of
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a. Given any f € C and ¢y € T, we introduce a function
aj;, € PC by the following:

as g (§) == exp (lfarg (—%)) s

for ¢ € T, where argz € (—n, ]. It is easily seen that a;
has at most one point of discontinuity at { = ¢o, with jump

at (€07 L0) = exp (1fm),
a4, (e°T00) = exp (—ifm).

If a(e%%¢) # 0 for all k = 1,...,n, then there are
complex numbers §; with the property that

a(e "~ ¢

2@ ) exp (2tfxm),
S0

a(@) = @) [ [ a0 (0, (17)

k=1
where ¢ € C(T).
Theorem 7. Let a(¢) € PC, and then the operator T (a) is
Fredholm in H?* if and only if the following are met:

(1) a(@*¢) #£0forallc €T,
(2) There are integer numbers kj such that
/ck—% <5ka<l(k+}7.

Under conditions (1) and (2), the index of the operator
T(a) in HP™ is actually given by the following:

n
ind T(a) = — (indc(qr) O+ Kk) ) (18)
k=1
which is due to (17).
Remark 3. If the operator T(a) with symbol of (10) is
invertible and a(¢) admit a p -factorisation a = aia_
with

_ 1
a+(8) = w) /@)’
a_(¢) = wOH @),

then condition (13) holds true.
Indeed, by Corollary 2, we get the following:

1
w(¢) () <P+ —_) @)
Tl
1
w() (&)

y ¢'(0)

— wie) /5%
= W) 56

(T(@™'1) (¢)

as desired.
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Conformal reduction of Dirichlet problems

Sectorial curves

In this section, we consider a simply connected domain
D € R? whose boundary C is smooth away from a finite
number of points. By this, it is meant that C is a Jordan
curve of the following form:

c=Jac
k=1

where Cy =[zx_1,2z¢] is an arc with initial point z;_; and
endpoint zx which are located after each other in the pos-
itive direction on C, and z,, = zo. Moreover, (zi_1,2zx) is
smooth for all k.

Definition 3. The curve C is called p -sectorial if, for each
k =1,...,n there is a neighbourhood (z,:,z,f) of zx on C
and a real number @y, such that

, ifp=>2,
wp-1),ifl<p<2,
(19)

sup  a(z) — il <

ze(z/:,z;')\{zk}

NIETTE

where a(z) is the angle at which the tangent of C at the
point z intersects the real axis.

If z; is a conical point of C, then the angle at which the

tangent of C at z intersects the real axis has jump jx < 7
when z passes through z. It follows that (19) is fulfilled at
zx with a suitable g, if p > 2, and is fulfilled if, moreover,
Jk < (p—1Dm,if 1 < p < 2.1f z; is a cuspidal point of C,
then the angle has jump ji = 7 when z passes through z.
Hence, condition (19) is violated, i.e. cuspidal points are
prohibited for sectorial curves.
Example 1. Let C be a curve parametrised in a neighbour-
hood of the singular point z(0) = 0 by z(¢) = t +1y(¢) with
|t| < &, where y(¢) is a continuous function on the inter-
val [ —¢, €] whose derivative is continuous away from zero
in (—e, &) and bounded in this interval. The angle at which
the tangent of C at the point z(t) then intersects the real
axisisargz (t) = arg(1+1y'(¢)). Thus, for p > 2, the curve
z = z(t) is a part of a sectorial curve. If 1 < p < 2, then
z = z(t) is a part of a sectorial curve provided that

sup |2(t)] < tan% (@ —1).

te(—e,e)

In particular, for p > 2, the curves z(t) = t +
et esin [¢]@ with 0 > 0 and z(t) = t + itsinln |z,
the parameter t varying over [ —e, €], are parts of sectorial
curves.

Example 2. Consider the curve z(t) = t+1tsint™ L, where
|t| < e. Here, we readily get

argZz' (t) =arg| 14 (sin 1 1 cos L
= l —_—— — p—
& & t t t
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whence

sup

T
|20 ==
te(=8,8) 2

forall § > 0. Hence, the discontinuity at point z(0) = 0 is
not of the sectorial type (the curve oscillates rapidly at 0).

Dirichlet data on sectorial curves

Theorem 8. Suppose C is p -sectorial for 1 < p < 0o and
w(¢) = 1, then the Toeplitz operator T (a) corresponding
to the Dirichlet problem is invertible.

Proof. Recall that the symbol of the Toeplitz operator in
question is as follows:

2
a(l) = exp <—z— arg c’(;)) ,
p

where arg ¢’(¢) = a(c(¢)) —arg¢ — 5 for¢ € T.

The idea of the proof is to represent the symbol in
the form a(¢) = c(¢)ap(¢), where ag is p -sectorial and
¢ € C(T) is such that ind,)(0) = 0. To this end, we first
choose a continuous branch of the function argc’(¢) on
T\ {¢1,...,¢n), where zx = ¢(gg) for k = 1,...,n. Con-
sider an arc ({1, §1+ ) on T and take the branch of arg ¢’ (¢)
such that (19) holds for k = 1. Hence, it follows that the
argument of a(¢) satisfies the following:

2 arg¢(0) — ¥ :%’ tp=2
sup |——argc - <18
ce(ue) 7 ifl<p<?2,
(20)
where
2 2 T
Yk = ——@k + —arg &k + —
p p p
fork=1,...,n

We then extend arg ¢/(¢) to a continuous function on the
arc ({1, ¢2). Note that the right-hand side of (20) can be

written as follows:
T

max{p, q}
foralll < p < oo.
It is easy to see that there is an integer number j, with
the property that

2
sup |——argd'(§) — (Y2 + 27jo)| < ———,
recy ) max{p, q)
(21)

where v is defined previously.

Choose the continuous branch of arg¢’(¢) on (2, §2+ ),
such that (21) is still valid with (5,7, ¢2) replaced by
(62, 65)

We now extend arg¢/(¢) to a continuous function on
the arc (£2, £3), and so on. On proceeding in this fashion,
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we get a continuous branch of arg¢/(¢) on all of (¢,,¢1)
satisfying the following:

2 . T
sup |——argc({) — (Y1 +27)j1)| < ———
ce@ i) max{p, q}

(22)

with some integer jj.
The task is now to show that j; = 0, so the inequal-
ity (20) actually holds with (¢1, §1+ ) replaced by (¢, §1+ )\
{¢1}. For this purpose, we link any two points z;, and z,J{
together by a smooth curve Ay, such that
L C=(Ehz)U...UEhg)) U4 U...UA s
a smooth closed curve which bounds a simply
connected domain D.

2. The angle &(z) at which the tangent of C at the point
z intersects the real axis satisfies (19).

Consider a conformal mapping z = ¢(¢) of D onto D.
By the very construction, &(z) = «(z) holds for all z €
&, z;)U...U(g],2]). Suppose (22) is valid with j; # 0,
then, in particular,

2 arg? D) — (n + 2mjn)| < ——

)4 max{p, q}
where z] = E(g: 1). From this, we deduce that the function
arg ¢’ (¢) has a nonzero increment (equal to 277j;) when the
point { makes one turn along the unit circle T starting
from the point Ef with zf‘ = f). Hence, it follows, by
the argument principle, that the function ¢’ has zeros in D,
which contradicts the conformality of ¢. Thus, j; = 0 in
(22).

We have thus chosen a continuous branch of the func-
tion arg ¢'(¢) on the set T \ {¢1, .. ., {y}, satisfying

2
sup ——argd(§) — (Yx + 2mjip)| <

T
cer e\ max{p, g}

(23)

for all k = 1,...,n, where ji is integer and j; = 0. This

allows one to construct the desired factorisation of a(¢).
We first define ¢(¢) away from the arcs ({k_ , ;,j' ) which

encompass singular points i of ¢/(¢). Namely, we set

2
c(¢) :=exp (—z - arg c’(C))
V4

forc € T\ U (60
k=1

To define ¢(¢) in any arc (¢, ;,j') with k = 1,...,n,
we pick an g¢ > 0 small enough so that arg ¢~ + &x <



Grudsky and Tarkhanov Mathematical Sciences 2013, 7:14
http://www.iaumath.com/content/7/1/14

arg§x < arg¢; — . The symbol ¢(¢) is then defined by
the following:

c(¢) :=exp(—l;(afg G +ex—argl)arg Z@;H(argc—arg ék‘)ék),
k

it € (g, e g ],
2
p

if¢ e (e”k;k_,e_'sk{,j'), and

c({)::exp(— |2 (@rg b —arg)gy -+ (@rg ¢ —arg & +ep) argC’(({’)),
p Ek
if ¢ ele™®¢t, o). Here, @ = —5 (Y + 27jx).
Obviously, ¢(¢) is a non-vanishing continuous function
of¢ €.
From (23) it follows that ind.(T)(0) = 0. Put
a(¢)

ao(§) = 0

for ¢ € T, and then
argap(¢) =0

forall ¢ € T\ U (C gk ). Moreover, if the numbers

£1,...,&y are small enough then

su arg dag <—
;e(ck‘l,)zp )] max{p’ a
forall k = 1,...,n. Hence, ap(¢) is a p -sectorial symbol,
which yields the desired factorisation.

By Theorem 5(1), we conclude that the Toeplitz oper-
ator T(ap) is invertible in the space H”*. Moreover,
Theorem 6(2) shows that T'(a) is Fredholm of index zero.
Finally, Theorem 3 implies that the operator T'(a) is actu-
ally invertible, as desired. a

Corollary 1 gives the solution of the Dirichlet problem
in D via the inverse operator T'(a)~'. If a(¢) admits a p -
factorisation, then Corollary 2 yields an explicit formula
for T(a)~!. In case the boundary of D is a sectorial curve,
it is possible to construct a p -factorisation of (&) with the
help of conformal mapping z = ¢(¢).

Theorem 9. Let C be a p-sectorial curve; then the
Dirichlet problem has a unique solution u = Rf with
f € EP(D), and this solution is of the following form:

1 ¢+ de
=R [ -2 —=
u(z) =N /T L — () uo(c(¢)) :
forz e D.
Proof. According to Theorems 8 and 2, a p -factorisation

of the symbol of Toeplitz operator corresponding to the
Dirichlet problem in a domain with p -sectorial boundary,
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if there is any, looks like a(¢) = at(£)a™ (). We begin
with the following representation:

——\ 1/p
_(7©
a(t) = (c,(€)>

for ¢ € T, ¢f (10).

In the case of p-sectorial curves, the angle «(z) is
bounded, so the curve C is rectifiable. By a well-known
result (see for instance [24]), the derivative ¢/(¢) belongs
to H'*, whence &/¢/(¢) € HPT and #/(¢) € H?~ @ {c}.
Comparing this with a(¢) = at(£)a™(¢) we get the
following:

Y ©)at (&) = Y ) (1/a™ ().

By (15), the left-hand side of this equality belongs to
H'*; the right-hand side, to H'~ @ {c}. Hence, it follows
that

YdQat ) =
d@)A/a" () =c

where c is a complex constant. The factorisation a(¢) =

at(¢)a™(¢) with

at (@) = c(1/Y7Q)),
a=(¢)) = 1Y)

satisfies (15), and (T'(a)) "1 = & (Q)PF (1/4/I (7)), which
is due to Corollary 2. This establishes the theorem when
combined with the formula of Corollary 1. We fill in
details.

We first observe that, according to Remark 3, condi-
tion (13) is fulfilled. Hence, we may use the formula of
Corollary 1. Set

1
N@©) = (T@ 'g") &)= (T(@'g") O(T@ D))

for ¢ € T. An easy computation shows that

Y OPE Quo(e(2))) (©)

= YTOPE (o(c()) O/ 1/ 0))
= Y7 (OPF Quo(e(£))) (€)

— Py (up(c(£))) (0) ¢/ (§)

N() =

holds for almost all { € T. On writing the projection P?T'
as the Cauchy integral, we get the following:

<”/C’(§)/ <2Mo(t(§’)) _ uo(C(i’))) dr’

N() =

¢ —¢ ¢
_ 4““ ds’
— Q) /271 o W
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for all ¢ € . Since
N(c(2)
U (@)

the proof is complete. O

uz)y =N

Dirichlet data on logarithmic spirals

Let X, be a horizontal half-strip of the form ¥, = {3 €
C: N3 > 0, I3 € (0,a)}, with a being a positive number.
Consider the mapping

z=10,(3) = exp (—€'%3)
of the half-strip into the complex plane C,, where ¢ €
(=%,0 v (03).

A direct computation shows that the mapping z = £, (3)
is conformal if and only if a < 27 cos ¢.

Forv €[0,a],set Ry, = {3 € C: N3 > 0, I3 = v}, then
the curve S, := £, (R,) is a spiral. Indeed, if r = |z| and
¥ = argz, then any point z € S, is characterised by the
following:

r = exp(—N3 cosp + vsing),
¥ = —Nj sing — v cosg.

Hence, it follows that S, , can be described by the
following equation:

) exp (9 coty), (24)

( v
r=(exp—
sin g

where @ runs over (—v cos ¢, +0), if ¢ € (—7/2,0), and
over (—o00, —v cos¢), if ¢ € (0,7/2).

Denote by D, , the image of X, by £,. This is a domain
in the z -plane whose boundary is the following composite
curve:

Ca,(p = So,w @] Sa,(p U ba,q;,

where Sp, and S, , are given by (24) and the arc b, by
z = exp(—e'Y1v) with v €[0,a]. Thus, z = £,(3) is a
conformal mapping of ¥, onto D, , which transforms the
boundary of %, onto Cg .

It is easily seen that C,, is a rectifiable curve. Indeed,
the arc length of S, can be evaluated by the following
formula:

2
L=/ \/(r(z?))2+(r’(z9))2dz§‘.
51
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We assume for definiteness that ¢ € (—m/2,0), and then

/ r(9)y/1 + (cot ) dv
—acos ¢

exp =& oo
= — 0% exp (& cot @) dv
Ising| J_gcos )

L(Sy.a)

exp =4
= ¢ exp (—acos ¢ cotg)
cos ¢

is finite, as desired.

Our next objective is to find a conformal mapping of
D onto Dy, To this end, we compose three well-known
conformal mappings:

1. n= ll i+l maps the unit disk ) conformally onto
the upper half-plane H := {5 € C: JIn > 0}.

2. 0 =1+ +/n% — 1 maps H conformally onto the
complement in H of the closed unit disk H \ D, the

branch of /72 — 1 being chosen according to the

condition I/n2 —1 > 0.

3. 3= 7 In6 maps H\ D conformally onto the strip X,.

w

In this way, we arrive at the conformal mapping z =
a0 (¢) of D onto Dy, given by the following:

Cap() = exp (—e”” g In (n +vn2 = 1)) )

With n = n(¢), we get the following:

(25)

, 1t ”2_1
G (0) = =¥ = — T 1/(£) cap(0)
T4yt -1
1o 42 1 1

TR A

for all ¢ € . Note that n(1) = —1, n(—1) = 1 and

arg = —argl

1
(¢ —1)72
for all ¢ € T different from 1, where the equality is
understood modulo entire multiples of 27.
Since 7n(¢) runs over (—oo,—1], if ¢ € (1,1], over
[—1,1], if ¢ €[1,—1t], and over [1,00], if ¢ €[—1,1), it
follows that

o — 5 —arg¢ —acosg — Zsing In|n +/n2=1|, if ¢ € (1,0),

arg c;,(p(g) = (@ —argl{ — % COS ¢ arccos1,

@+ 5 —args — Zsing In(n + v/n?~1),

if ¢ €[1,—1],
if £ e (=1, 1).
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The second equality is due to the fact that |n(¢) +

V()% —1| = 1holds forall ¢ €[, —1].

Having disposed of this preliminary step, we introduce
the Toeplitz operator T'(a,,,) with the following symbol:

2
a0y (§) = exp (—11—9 arg c;,¢<;>> :

¢f. (10). This operator is responsible for the solvability of
the Dirichlet problem in the space REP(D,,y,).
Theorem 10. The operator T(agp) in HP* with1 < p <
00 is Fredholm if and only if

a
p # — cosg.
T

Ifp > & cosg, then T(auy) is invertible in the space HPT,
Ifp < = cosg, then ind T(agy) = 1.

Proof. The following function is introduced:

2
g (£) = exp (—z— (¢ — = sing In(y + Vo7 = 1))) ,
p T

which obviously belongs to GH>® . Indeed,

lay (§)] = { exp (= asing), it ¢ € (10,
L if ¢ € (—1,1),

and /,,(¢) is continuous at each point of the arc
[1,—1] C T. Let us consider the following quotient:

aa,go(g)
aop(¢) =
o¢ N (2)
forc eT.
An easy computation shows that
127 (5 +args +acosg), if ¢ € (1,1),
argag(¢) = é (arg{ + % cosg arccosn), if ¢ €[1,—1],
5 (=% +argg), if ¢ € (=1, 1).

Hence, ao(¢) is a PC function with discontinuity points
{1,1, —1}. One verifies readily that

8

N W —

argao(e'*t(—1)) =

N

argap (e 1) = 2 En
gao _p Nk
10+ 2 (m
argap(e’" " 1) = — (— +acos<p) s
p \2
10— 2
argap(e’” 1) = 1_9 (r +acosyp),
10+ 2w
argapg(e’”" 1) =— | — —I—ﬂCOS(p),
p \2
2
p
2
p

argao(e'* (—1)) =
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We thus conclude that a((¢) possesses a representation
(17) with ¢; =1, $ =1, {3 = —1 and

1 a 11

f1=—(1——COS€0>r fa=fs=5-.

p T 2p
Observe that

1 1
——<fh=f3<-
q p

for all p € (1,00). Therefore, we may apply Theorem 7
with «3 = x3 = 0. Since we always have

1
f1<_:
p

the following cases may occur:

1. If

Lt
q

then k1 = 0. By Theorem 7, the operator T'(ap) is

Fredholm, so the operator T'(a,,,) is Fredholm, too,

which is due to Theorem 6(1). The inequality

—1/q < f1 can be rewritten in the following form:

a
l1-p<1——cosg,
b4

. . a
which just amounts to p > £ cos ¢.

2. If
1 1 1
“l--<fh<-14-—=—-,
q p q
then k1 = —1. Since a < 27 cos @, the left inequality

is automatically fulfilled, so the entire inequality
reduces to the following:

1
f1<—1+—,
p

: a
ie.p < = cosg.

3. Obviously,

a
p=— Cosg
T

ifand only if f; = —1/4. In this case, there is no
entire number «; with the property that

1 1
K1 ——<f1 <k1+—.
q p

By Theorem 7, T'(ayp) is not Fredholm. From ag = ZZ’z,
it follows that T'(a,,,) is not Fredholm. ,

We now suppose that T'(ap) is Fredholm. For the symbol
ap, we get then a representation (17) with &1 = 1, L =1
and ¢3 = —1 and fi specified previously. More precisely,

3
ao(¢) = c@) [ | a50,(0)

k=1
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where ¢ € C(T). Moreover, the winding number of the
cycle ¢(T) with respect to the origin vanishes. Hence,
Theorem 7 applies to the operator T'(ap); in particular, the
index of T'(ao) is evaluated by formula (18). To complete
the proof, it suffices to use Theorem 6. O

Theorem 10 allows one to construct explicit formulas
for solutions of the Dirichlet problem in domains bounded
by logarithmic spirals.

Theorem 11. Let z = c¢4,(L) be the conformal mapping
of D onto D, , given by (25).

(1) Ifp > £ cosg, then the Dirichlet problems (1) and
(2) have a unique solution in REP (D,,,) given by the
following:

B 1§+ d¢
u(z) = m/T %Tﬁv(z) 1 (Cap($)) ?

forz € Dyyp.

(2) Ifp < £ cosg, then the Dirichlet problems (1) and
(2) have infinitely many solutions in REP (D,,,) given
by the following:

c+ee lz) c1z)
u(z) = N e i
1—cz0(2) 1—cz0(2)

X/if——lu(c (;))d_§
T — b e

for z € Dy,,y, where c is an arbitrary complex
constant.

Proof. Let p > £ cosg. By Theorem 10, the opera-
tor T(ag,,) is invertible in the space HP*. Furthermore,

Theorem 2 ensures the existence of p -factorisation of the
following form:

Aayp() = at(Q)a= (),

where a® (¢) bear properties (15). On the other hand, we
have the following:

Jo.©
)
¢f. (10).

Rewrite ¢, ,(¢) in the following form:

ﬂa,go(;) = (27)

/ _ged N2 1
CWP(;)—B - m 1—¢ Ca.w(é‘)
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for ¢ € T. Close to either of the points 1, 1 and —:, one
derives easily the following asymptotic relations:

|C;,(p(§')| ~ Cl|¢ — 1|_1+%C05‘/’ as { — elO:I:’
1

¢, ()] ~ Clg —1]72 0k,
1

I¢,, (O ~ Cl¢ +1]72

as { —> e
as { — eOE(—p).
(28)

On taking into account the estimates ¢ < 27 cos ¢ and
p > (a/m)cosg, one sees that the factorisation of a,
given by (27) satisfies (15). By Remark 2, equality (27) is
actually a p -factorisation of a,,, with « = 0.

Analysis similar to that in the proof of Theorem 9
completes now the proof of part (1).

Suppose p < 7 cosg. By Theorem 10, the p-
factorisation of the symbol 4, is of the following form:

o) =a™ ()¢ a(©),

where a® (¢) satisfy (15). Therefore, (27) fails to be a p-
factorisation of this symbol. We correct it in the following
manner. Set

at) =

Je @

V€ (0)

@) =
- ¢

then
Aap(@) =—at ()¢ a(©)

is a p-factorisation of a,,. To show this, it suffices to
establish (15) in a neighbourhood of the point ¢ = 1.
From (28), it follows that

|(@t @)™
[(@ ()

where € = 117 (1 — % cos (p) + 1. Since a < 2w cos @, we
get the following:

| ~ ¢ —1* as ¢ > 1,

Y~ -1 as ¢ 1,

q 1
qge > -(1-2)+qg=¢q|1-—-) =1,
p p
whence a* € H?". On the other hand, from p < £ cos¢
we deduce that

a
—pe = — (1 - = cos<p) —-p>—-A-p—p=-1,

b4
whence (@*)~! € H?*. Similarly, we obtain the following:

a~ € HP~ @ {c},
@)~ e HI™ @ {c}.

Consider Equation 11:
T (@a) (K () + hH(0) = g (0),

for ¢ € T, ¢f (11). Find all solutions of this equation
and choose among them those solutions which give rise
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to solutions of our Dirichlet problem. In the case under
study, the operator T'(a,,) has a right inverse of the
following form:

Lpr L

(T(@ap)); ! = =¢ —Pf—

see Theorem 2.1 in [22] and elsewhere. Moreover, the
general solution of (11) proves to be as follows:

() = — (T(age); ' (T (0) — g™

o (=)
P
Z @) ©

¢

7T < )(4) tFo
¢ 1

a*t(g) /0

¢
-2 pt
at(¢) < ) @

where ¢ is an arbitrary complex constant. Put ¢ = 0
in (29). Since the right inverse (T(aa,q)))r_1 maps H?T to
functions which vanish at the origin, we immediately get
the following:

nt0) = c ¢, ,0).

Thus, (29) yields the following:

) (@) +c

1
a*t(¢)
=1t (0)

at (§ )’
(29)

p =c§+c ( )
©=%0 a+(;> ©
+
T

a~
_(etes £
S (S (£ 0) e
Since

+
(Yo = p+ (£ o) = pr (E22
P <a—> © =Pt (55) @ = P} ( . 2U0> ©)
is the limit value for almost all ¢ € T of the Cauchy
integral

fL;f’_—l
r2mig ¢ ¢

it follows that

2uo(c(¢")) dt’,

. @)
e (©)

<C+E§
=N
1-¢

u(c($)) =19

¢ 1¢ -1 i ag’
T1-¢ AE{’—{MO(C@))?)
(30)
forall ¢ € D.
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Now, let ¢ € T. A trivial verification shows that
9% c+c¢
1-¢

for any complex constant ¢, provided that ¢ # 1. More-
over, since the function U is real-valued, we obtain the

=0

following:
¢ {—1
N — 22U = Uy(2).
1<§_1 T( ¢ 0)(§)> 0(¢)
Hence, it follows that (30) is a general solution of
Dirichlet problems (1) and (2), as desired. O

The inverse mapping of ¢,
explicitly by the following:

: D — D,y is given

-1 cosh(clnz) —1
" cosh(clnz) +1’

where ¢ = (%e"p)_

The condition a < 27 cos ¢ implies % cosg < 2 cos® ¢
whence p > £ cosg forall p > 2 cos? . In particular, the
condition p > £ cos ¢ is satisfied if p > 2 or if |¢| > 7.
Remark 4. Ifp = (a/m) cos ¢, then the operator T'(aa,y) is
not Fredholm. One can show that it has zero null space and
dense range in this case. What is still lacking is an explicit
description of the range.

Dirichlet data on spirals of power type
In this section, we consider the Dirichlet problem in
Hardy-Smirnov spaces with weights EP (D, w).

Leta > 0 and y > 0. Consider the domain D, in
the plane of complex variable 6 that is bounded by the
following curves:

Soy = {0 eC: 00 >1, 30 =0},
Say = {0 €C: 0 =0 +1a)7, RO > 1},
bay = {0 €C:60=(14+130)", 30 € (0,a)}.

The boundary of D, ,, is thus the composite curve C,,, =
8o,y U S,y U by, , with each arc being smooth.
Given any § > 0, we define the following:

exp(10)

03
for 6 € D,,. This function maps D,, onto a domain
Days-

Consider the curve /5(Sp,,,) in the z-plane. Introduce
the polar coordinates r = |z| and ¥ = argz, and then the
parametric representation of the curve just amounts to the
following:

r= (0H)73,
o = 90,

z=hs0) =

)

so the equation of /15(Sp,,, ) reduces to r = 98 with 9 > 1.
In this way, we obtain what will be referred to as the power
spiral.
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Note that the curve /5(Sp,, ) is rectifiable if and only if
8 > 1. Indeed, the integral

L(hs(So,)) = /1 Joo)? + )2 av

o0 5 82
= D% 14+ —do
/1 R

is finite if and only if § > 1.
Theorem 12. Assume y € (0,1/2] and § > 0. Ifa > 0
is small enough, then hs : Dy, — D, s is a conformal

mapping.

Proof. 1t is sufficient to show that the curve /;5(C,,))
has no self-intersections. The arcs /5(So,, ), /15(S4,,) and
hs(bg,,) have no self-intersections, which is easy to check.
Our next goal is to show that the arcs /5(Sp,) and
hs(Sa,,) do not meet each other.

Suppose

z1 € hs(So,p)s
2y € h3(Say),

then z; = hs(31) and zp = hg(jg) for some 3; €[1,00)
und 32 €[1,00) + 1a. If z1 = z, then a trivial verification
shows that

exp(131) _ exp (=l2l” sin(y arg32)) exp(1lz2]” cos(y argsn))
I 32178 exp(1y 8 arg 32)

)

where [35] = +/(M32)% + a2 and arg 3, = arctan miﬁ' The
last equality is equivalent to the couple of real equalities:

1 exp (—l3217 sin(y arg32))

3 [3217°
31 = 3217 cos(y arg32) — y 8 arg sy + 27j,

with j being an integer number. In this way, we arrive at an
equation relative to the real part of 35, namely

321" cos(y arg3y) — ydargsa + 27j
y 1 (31)
= |321" exp 3 3217 sin(y arg32) | .

Ifa — 0, then

Y = (Ryy)? o2
- 1 ,
22] (¥i32) ( * <(9?32)2>)

ar = + 0 i
832 = 5 T\ 02 )

) a a3
sin(y argz) = y WZ)z + O W s

22
cos(y argz) = 1+0 (W) .
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On substituting these asymptotic formulas into (31), we

get the following:
G (140(=2)) = ys-% 10 =) 4 20/
a2 ®322)) " T N3 ) T

= o (10 (5 e o 140 (55)
=) |1+ o2 )P S(L 327 |1+ )2

a a?
x (V M ((?“32)3)»

a3 P
_— T
M32)? /

or
2
Ni)” (140 “—>>— -2 10
(s2) ( - ((%)2 5w "
112
__ Y -
= Pa) <1+O<<m52>2>>

2
y a a
1 — .
x ( 5 i 7O ((mz,z>2-2y>>

This equation is in turn equivalent to the following:

az
o —— 2]
<<ﬂtzz>2—y>+ i

2
14 a a
= 0] ’
§ (Mzo)-2v + <(fﬁaz)2—3y>

a
—y6—+
N32

2
V4 a a . a
-ty — =2 o ————).
5 O T Gy T ((9{32)2—”)

If a is small enough, then

N 2y 52 2
0< 4 a (32)7 + + 0 4 < 27
d N32 (N32)23Y

for any 32 €[ 1,00). Hence, it follows that (31) has no
solutions for any j, so the equation z; = z3 is not possible,
as desired. Od

We now construct a conformal mapping of the unit disk
onto D, 5. To this end, we compose four well-known
conformal mappings:

1L n=1 % maps the unit disk D conformally onto

the upper half-plane H := {n € C: J5 > 0}.

2.5=2In (77 +/n? - 1) maps H conformally onto

the strip X,.

3 > 3 + 1 translates the strip ¥, horizontally.

4. 0 = 3¥ maps X, + 1 conformally onto the domain
Dy,y .

S

In this way, we obtain the conformal mapping z =
Ca,y,6(¢) of D onto D, ,, s given by the following:

exp1 (%ln <n+\/n2 - 1) + 1);/
(% In (n + \/712——1) + 1))/5

Ca,y,8 ©) =
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with n = 7(¢). Recall that the continuous branches of
the multi-valued functions under consideration are cho-
sen in such a manner that In6 = In|f| + 1 argd with
argd €[0,27), Iv/n% —1 > 0, and more generally, 37 =
|31 exp(iy arg3) with argj €[ 0, 27).

Introduce the function 3(¢) = £ In (n +Vn? - 1) +1
of { € D. A direct computation yields the following:

y Y GO =y

Coys () = expi(3(2)) A

where 3'(¢) = £ \/11+7 £ We rewrite this as follows:

oy (©) = Y2y = A +18GEN ™)

LGy
Vitaea-o

For the analysis of the Dirichlet problem in D, , 5, we

employ the Hardy-Smirnov spaces with weight w(¢) =
(1—2¢) ", where —1/qg < u < 1/p.
Theorem 13. Let y € (0,1/2], 6 > 0 and let ¢, s(¢) be
the conformal mapping of D onto D, s given by (32). The
Toeplitz operator T(a,,y ) is then Fredholm if and only if
n # 0. Moreover,

(33)
exp(3(¢)”.

(1) If—% < u < 0, then the operator T'(as,y,s) is
invertible.

(2) If0 < pu < ]17, then the index of T(aa,, ) is equal to
—1.

Proof. Consider the Toeplitz operator T'(a,,y,s) with the
following symbol:

agys(C) = exp <—l— algc’ (é)) W)
v p @y,8 w(¢)
a- l/é) "

1T—o*
2
exp (—z; arg c;,y,8<z>) (="

2
= exp (—l; arg c;,y,5(§)>

of (10). Set
2
hays(0) = exp <—ll—9(3(§))}’)

for ¢ € T.Itis easily seen that (/1,,,,5(¢))*! € H*T, s0 we
introduce the following function:

L Gays ()
‘10@) o ha,y,&(g)
of¢z €.
Note that

li Y =0
Jim_ arg G(¢)
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for all real y. Hence, it follows that ag(¢) € PC with
discontinuities at the points 1 and +:.
On taking into account that
1 T 1
arg;:a—iargg

with arg ¢ € (0,2 ), we readily deduce that

lim, _ go- argao(¢) —lim, _ g0y argao(¢) =27 (3+1),
lim,_, go-, argao(¢) —lim,_, por, argao(§) = %,
lim; _, go- () argao(§) —lim; _, o+ argao(¢) = .
Hence, representation (17) holds for the symbol a¢(¢)
with ¢ = 1,8 =1, 3 = —1,and
11

fa="f3= 5 1—7,
and a continuous function ¢(¢), such that the winding
number of the curve ¢(T) about the origin vanishes.
Thus, according to Theorem 7, the operator T'(ay,y,s) is
Fredholm if and only if i # 0.

Suppose that —1/g < u < 0, then all the quantities f,

f2 and f3 belong to the following interval:

)

In this case, Theorem 7 applies with k1 = k9
0. Combining Theorems 7 and 3 yields the invertibility of
T(ap) in the space H?*. By Theorem 6(1), the operator
T(ag,y ) is invertible in HP™, too, for Aays = MNaysd0.
According to Theorem 2, the symbol a,,, 5 admits a p-
factorisation with ¥ = 0. Hence, the operator T'(a,,, s) is
invertible.
Now, let u € (0, }7) , then

1
fi=-+u
p

=K3=

1 1 1 1
—+1l<fi<—41 ——<h=fz<-—
q p q p

for all p € (1,00). In this case, Theorem 7 applies
with k1 = 1 and k2 = k3 = 0, according to
which the operator T(ag) in H?T is Fredholm and its
index just amounts to —1. By Theorem 2, the symbol
dg,y,s admits a p -factorisation with x = 1 whence ind
T(agys) = —1. Od

The advantage of our method lies in the fact that we
construct explicitly the p -factorisations in question.
Theorem 14. Lety € (0,1/2],8 > Oand let z = ¢4, 5(¢)
be the conformal mapping of D onto D, 5 given by (32).

(1) If—% < u < 0, then the Dirichlet problems (1) and
(2) have a unique solution in WE? (D, s, w) given by
the following:

1 ¢+, d¢

uo(cqy,s(8)) —

u(z) = R a
T2 — ¢, 5(2) ¢

forz € Dy 5.
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2) If0<pu< }9, then the Dirichlet problems (1) and (2)
have a unique solution in REP (D,,,, s, w) given by the
following:

-1
S O 1
uz) =N .[]1‘ - (—1 - C;)l,,g ) uo(cq,y,5(8)) d¢

forz € Dy, 5.

Proof. Suppose
1

—— < u<0.
q

By Theorem 13, the symbol a,,,s(¢) admits a p-
factorisation with ¥ = 0. Reasoning similar to that in the
proof of Theorem 11 shows that this factorisation has the
forma,, s = ata~ with

1 1
at(t) = — ——
w(¢) o 5(0)

’

a= () = w(t) ¢, 5().

Corollary 2 now implies

(T(aay,5) " "g") ©)

1 1
o (1) o

1 1
o () ©

Our next task is to prove that condition (13) is fulfilled.
To this end, we observe that

1

(T(@ay$)™'1) () =w(®) /e, 5@ | Pr = ©)
) C/

a,y,8

as desired.
Thus, we can use the representation of Corollary 1. In
this way we immediately obtain the following:

u(z)= R <P5§ 2u0> ©) = ¢, ;0 <1>1‘; u0> (0)
|t ——|©
T — —
v \p/ c;,y,5

=N ((p% 2u0) ) - (P{f Uo) (0))

1 ' +¢ N
T — Uy (e -
/TZJng’—g 0(¢) I

with z = ¢, 5(¢). This establishes the formula of part (1).
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We now assume that 0 < < %. Put

1

at©) = !
1-¢ w(g) ”C;ya(f),

1\ —
a @) = (1 - E) w©) e, 5O,
then

gy () =—at () ¢a ()

is a p-factorisation of a,,, 5. Show that condition (15)
holds. For this purpose, it suffices to consider the
behaviour of the factors in a neighbourhood of the point
=1

From (33), it follows that

(34)

| @ @)™ [~ Ig —1=penD
(ln |é. _ ll—l):':(y_y3_1)/p as;‘ — 1’
1@ (@)™ ~ ¢ — 1FAptr=D

(Injg - 1|_1)i(y_y5_l)/p as¢ — 1.

Since p belongs to the interval (0, 1%) , we have the

1
q(——i—u—l) > —1,
p
1
-p <—+M—1> > —1,
p

whence a* € HI*" and (a*)~! € HPT. Analogously, we
get the following:

following:

a- € HP~ & {c},
@)™ e HI= @ {c}.

Consider the folllowing equation:
(T(@ay$)h*) (@) + hH(0) =gt (2)

for ¢ € T, ¢f (11). In the case under study, the oper-
ator T'(a4,y,s) has no inverse operator defined on all of
HP™ (but a left inverse). We introduce the auxiliary oper-
ator T(a*a™). This operator is invertible, so applying
its inverse to both sides of the equation, we rewrite it
equivalently as follows:

%p;;&i_p;; (—atcaht) + (T@a)"'ht(0)

(35)

= (T'@ra )~ 'g",
that is
=t + R0 (T@Ta) ™) @)

11
GE (é—_g) ©

for¢ e T.

(36)
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Assume that (36) possesses a solution. On putting { = 0
and taking into account that

(T@ra ) ') =1,

we get the following:

nt ) =

1 -1
= ¢, 50 PF <<I_E> 2u0> (0)
1 d
= e [ 2005 %

1 U
_ P/—c; 5(0)/ 1 @) ,
24 Tl —
As previously mentioned, (z7)~! lies in H9~ & {c}, so
P.]lf (@)~1(¢) is independent of ¢ € . An easy computa-
tion shows that

(37)

1
Pi@a) ¢ = ——
P/c;,y'a(O)

for all ¢ € D whence

o) 1 1 +< 1 )
_ pr{— )
at () %ays©) i Tt ©

which is due to (36). Combining this equality with (37)
gives the following:

n@) =<

1 1 1 1
ht =—~—</ d
(9] (it \Upmio =1 Uo(¢') dt’
1 1 ¢ )
- — 2L[ d
/szg, C7 = 0(¢") dt
1 11 W) ,,
= —= — d
at@) Jrm¢' —¢ ¢ -1 ¢
(38)
for¢ € D.
On the other hand, putting { = 0 in (38), we obtain the
following:
. 11 uo(m
N e

Since Uy(¢) is real-valued, it follows that

/ UO(;) 1
nt(0) d—
O = Jears©® /T Sy
/—( /1 Uo(;“)
ay6

which coincides with (37).

We have thus proven that each solution of (35) has nec-
essarily form (38), i.e. the solution is unique. Moreover, the
function & (¢) given by (38) satisfies Equation 35.
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To complete the proof, it suffices to apply part (2) of
Theorem 1. Equation 34 shows that the symbol a,, s
admits a p -factorisation with k = 1. By Theorem 2, the
index of the Toeplitz operator T'(a,, ) is equal to —1.
Hence, it follows by Theorem 3 that the kernel of T'(a,,,,s)
is zero. We thus conclude that Theorem 1 is applicable.

If ¢ € D, then
ht 1 ¢-1
S f 4/ ——— Up(¢" d¢,
W) e, 5(¢) ST =1 '>“

showing part (2). O

Remark 5. In the case of 1 = O, the operator T(ay,y ) fails
to be Fredholm. This motivates the introduction of spaces
with weights.

Conformal reduction of Neumann problems

The Neumann problem

Let D be a simply connected, bounded domain in the
plane of real variables (x, y). Denote by C the boundary of
D which is a Jordan curve. Given a function #; on C, we
consider the problem of finding a harmonic function « in
D whose outward normal derivative on C coincides with
u1. In this way, we obtain what has been formulated in (1)
and (3).

As usual, we give the plane a complex structure by z =
x+1y and pick a conformal mapping z = ¢(¢) of D onto D
satisfying (5). We continue to use power weight functions
w(¢) introduced in (9). A function #; on C is said to belong
to L(C, w) if

/T 1) W) P 1€ )] lde | < oo.

Definition 4. Given any u; € LP(C,w), the Neumann
problem is said to possess a solution of class REY (D, w)
if there exists an analytic function fin D, such that f' €
EP(D,w) and the harmonic function u = Nf satisfies
(0/0v)u = u; onC.

If the curve C is rectifiable and /’ € E?(D, w) then also
f € EP(D,w). However, f no longer needs to belong to
EP(D,w) if C fails to be rectifiable.

Our next concern will be to reduce the Neumann prob-
lem to Toeplitz operator equations on the unit circle.
According to [4,16], if u = Rf with f* € EP(D, w), then

L GaA®)

for almost all z € C, where B(z) is the angle at which the
outward normal of C at the point z intersects the real axis.
Introduce the following function:

(&) = w) Y @) f (€(©))

of { € D, which is obviously analytic in the unit disk.
Moreover, #™ can be specified within the Hardy space

ou
™ (2) (39)
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HP* on the unit circle, as is easy to check. Put h=(¢) :=
ht(¢) for ¢ € T. Using (39), we rewrite the equation
(0/0v)u = uy equivalently as follows:

1 h () _ h= ()
Z | B 1B(c(2)) = UL(2)
2 (e W@ MC)(/C%()) e

(40)

for ¢ € T, where U1(¢) = u1(c(2)).
Note that

B2) = a(2) —%

for z € C, where a(z) is the angle at which the tangent of
C at the point z intersects the real axis. As mentioned,

b/
arg¢'(¢) = a(c(¢)) —arg¢ — 5
for ¢ € T. Hence, it follows that
Bty arg e (©)

w(©) Y1 @)]
¢ T8 ¢(§)+iargs—i arg¢'(¢)
w(O) Y1 O]
£ e1 28 ©
w(@O) YT

where ;la + % = 1, so (40) just amounts to the following:

e BE(©)

WY@

b(©) (ch* () + % h(©) = ¢(0)
for ¢ € T, with
17 argc () @
W)
@) = 2758 O WE) YIT@) L @),

On applying the projection Pr}' to both sides of the last
equality, we derive the Toeplitz equation:

T(b) (¢h) () =g" ()
on T, where gt = P{’T' g. We have used the equality
P} (¢7'h™) = 0, which is easily verified.

Suppose now that 4% (¢) is a solution of Equation 42

considered in the space H”* and that the pair #7(¢) and
h=(¢) = ht(¢) satisfies equation 40, put

b)) =e

(41)

(42)

' @
S =i
then

z +(c—1(,/
u(z) = 9{/ W @) d7z
20 w(e=H(Z) V¢ (c71(2))
z b, —1\/(~
= ﬂif h (1)) Mdz’

o w(c™1(2))
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for all z € D, where z is an arbitrary fixed point of D and
the integral is over any path in D connecting zp and z. It is
easily seen that solution u is determined uniquely up to a
real constant.

Theorem 15. Let u; € LP(C,w).

(1) Ifu = Nf is a solution of the Neumann problem in
MEY? (D, w), then the function ht (¢) = w(¢)
Y (©)f(¢(2)) is a solution of Toeplitz equation (42).
(2) Ifh™ is a unique solution of Toeplitz equation (42) in
HP™, then the function u given by (43) is a solution
of the Neumann problem in the space REY? (D, w).

Proof. This theorem can be proven in much the same
way as Theorem 1. O

If the operator T(b) is invertible in the space H”*, then
the Neumann problem possesses a solution in REY? (D, w)
if and only if (T'(b)"'g*)(0) = 0. Indeed, applying T'(b) !
to both sides of (42) yields ¢ht(¢) = (T(b)~g™)(Q).
On substituting ¢ = 0, we obtain (T(b)_1g+)(0) = 0.
Conversely, if the latter condition is fulfilled, then

1
nt(e) = : (T 'gM©)

is of Hardy class HP T, so (43) gives us the general solution
of the Neumann problem.

Corollary 3. Suppose the symbol b({) has a p-
factorisation of the form b = b™b~ with

) = YO
w(©)

b (o) = X,
J/¢/(¢)

then
(1) For the Neumann problem to possess a solution in

MEYP (D, w), it is necessary and sufficient that

1 d
—/ @O 2 = o,
L Jr é-

(2) If this condition holds, then any solution of the
Neumann problem in the space RE“” (D, w) has the
following form:

u(z) = ﬂi/ (Inc (@) </ u1(c(¢)) ik(—f?'d{) dz
2 T T —c(Z)

forz € D, where zyg € D is a fixed point and the
integration is over any path connecting zy and z.
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Proof. Using the p -factorisation b = b*b~, we get the
following:

1
(¢ = : (T 'g") )
11 (g
bt Pr <b->(§)
11
= @ PE(21¢1th) (©)
2 w()

|
~
ﬂ\
~~
LA
N

PL(Id1th) (©),

showing part (1) of the corollary.
Furthermore, on writing the analytic projection P,EC as
the Cauchy integral for ¢ € D, we deduce the following:

O 11 1 L ey
w@) Y@ L Q) Jrmie—¢ ! ’
which establishes part (2). O

Neumann data on sectorial curves

As in section ‘Dirichlet data on sectorial curves, we con-
sider a simply connected domain D € R? whose bound-
ary C is smooth everywhere except for a finite number of
points. More precisely, C is a Jordan curve of the following
form:

n
c=Jc
k=1

where Cx =[zx_1,2¢] is an arc with initial point zx_; and
endpoint z; which are located after each other in posi-
tive direction on C, and z, = zg. Moreover, (zx_1,zk) is
smooth for all .

We first notice that the Neumann problem behaves well
for sectorial boundary curves with the sectoriality index
different from that for the Dirichlet problem. To make
it more precise, we observe that the right-hand side of
estimate (19) for the variation of the inclination of the
tangent of C close to a singular point zx can be written
as min{p — 1,1} /2 for all 1 < p < oo. This has been
referred to as p -sectoriality. The right-hand side of the
estimate of variation that we might allow in the case of
Neumann problem looks like min{l/(p —1),1}7/2 =
min{g—1, 1} /2, which corresponds to the g -sectoriality.
Definition 5. The curve C is called q -sectorial if, for each
k =1,...,n there is a neighbourhood (z,:,z,f) of zx on C
and a real number @y, such that

sup
ze(z 7O \a)

|l (2) — x| < {

where «(z) is the angle at which the tangent of C at the
point z intersects the real axis.

If z; is a conical point of C, then the angle at which the
tangent of C at z intersects the real axis has jump jx < 7
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when z passes through zx. Hence, the estimate is fulfilled
at z; with a suitable ¢, if 1 < p < 2, and is fulfilled if
moreover jx < 1/(p— 1) m,ifp > 2.

Theorem 16. Let the boundary of D be a q-sectorial
curve, and the Neumann problem has then a solution in
MEYP (D) if and only if the condition of Corollary 3(1) is
satisfied. In this case, any solution of the problem has the
form of Corollary 3(2).

Proof. With the reasoning similar to that in the proof of
Theorem 8, it shows that b = cby where by is p -sectorial
and ¢ € C(T) is such that ind.)(0) = 0. Combining The-
orems 5, 6 and 3, we conclude that the operator T'() is
invertible and so the symbol b admits a p -factorisation of
the form b = b*b™.

On the other hand, (41) yields the following:

q/ 7
by = Y,
K/ C/(é-

(44)

~

whence
e (&) _
O _ e .
b+ (¢)
Since ¢ € H'* and 1/b* € HPT, the left-hand side of
this equality belongs to H 1+ (see for instance [24]). In the

same manner, one sees that the right-hand side belongs to
H'~ @ {c}. Therefore,

bt () = cJ(©),
_ 1 1
b (C) = - )

“ e
where ¢ is a complex constant. Thus, equality (44) is actu-

ally a p -factorisation, so Corollary 3 applies to complete
the proof. O

~

Neumann data on logarithmic spirals

Let D,y be a simply connected domain bounded by two
logarithmic spirals and an auxiliary curve as described in
the ‘Dirichlet data on logarithmic spirals’ section. Accord-
ing to formula (41), the Toeplitz operator corresponding
to the Neumann problem in the space RE”(D,,) has the
following form:

2 /
ba,w({) = exp l; arg ca,(p({)
with the argument of c;,q)(;) evaluated in (26).

_p
Since b,y(¢) = (a4e(¢)) 9, the symbol a,, being
given before Theorem 10, we obtain the following:

_Db
ba,q)({) = (ha,w(g)) g bO(g)
with

_p 2
(hap(£)) 1 :=exp (l; (w - ;sinw In(n 4+ vn? — 1)))
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_p
belonging to GH®™ and by(¢) = (ao(¢))” 4 belonging to
PC. Moreover, by(¢) has representation (17) with ¢ = 1,
L =r1and {3 = —i,
1

and a continuous function c(¢) which is different from
zero on T and satisfies ind.) (0) = 0.

We are now in a position to employ Theorem 15 and
Corollary 3 for studying the Neumann problem in D, ,.
Theorem 17. As previously defined, the operator T (b,,y)
is Fredholm in the space HP " if and only if

2 cos @ # q.
T

Proof. Since a < 27 cos g, it follows that

1 1 1
fi1 < — (2c052<p— 1) = — cos(2p) < —
q q

BN

whence
1 1 1 1
——<fi<l4+—-, ——<fa=fz<-.
q p q p
By Theorem 7, the operator T'(b,,,) is Fredholm if and
only if f; # 1/p, as desired. O
Theorem 18. Assume that
a
q > — cosg, (45)
T

then

(1) The operator T(b,,) is invertible in HP", and the
symbol has a p -factorisation bs,, = b*b~ with

bt () = ¢, (),

1
(S
/ ¢, (2)

(2) For the Neumann problem to possess a solution in
RELP (Da,), it is necessary and sufficient that

1 o de
y fT 0y €)1, (O 5 = 0.

(3) Under this condition, any solution of the Neumann
problem in RE'? (Dg,p) has the following form:

z 1 e,
M(Z)=9i/ (Inc; () (/ 1 (Cap(§)) —L_ldz) dz
20 T L — Cq(2)
forz € Dy, where zg € D, is an arbitrary fixed
point and the integration is over any curve in Dy
connecting zo and z.

Proof. Inequality (45) just amounts to saying that f; <
1/p. In this case, Theorem 7 applies immediately to con-
clude that the operator T'(b,,) is invertible in the space
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HP*. The p -factorisation is now derived analogously to
that in the proof of Theorem 10. The remaining part of the
theorem follows readily from Corollary 3. O

Theorem 19. If
a
q < — cosg, (46)
T

then T(ba) is a Fredholm operator in H?™ of index —1,
and the symbol has a p -factorisation by, = —b* b~ with

1
bt () = - ete ()
1 1
b= () = (1 - —) —_—
&) e, ©

Proof. Note that the assumption is equivalent to the
following:

1 1
- <fi<l+4-.
p p

Hence, from Theorem 7, it follows that the operator
T (ba,) in HPY is Fredholm and its index equals —1. The
p -factorisation is established similarly to that in the proof
of Theorem 10. O

We now turn to the Neumann problem provided that
(46) is satisfied. In our case, Equation 42 looks like the
following:

—T(b*¢b™) (ChY) () =g"(©)
for ¢ € T. The operator T(b"b™) is easily seen to be
invertible, and its inverse is given by the following:

1 1

(T )t = o Pt =

Applying the inverse to both sides of (47) leads us to the
following:

1 +
—2nt) = Pt (g—) ©

(47)

b)) T \b-
_ 1 +( &
= o T (b—)@)

1-¢ ¢
- pg;( 1|c;,¢|2L[1>.

Je@) N8~

Thus, h* € HPT if and only if the right-hand side of
the last equality has a second-order zero at the point
¢ = 0, and in this case, the solution is unique. Since

a-¢/4 cgw(g) does not vanish at the origin, we get the

following:
Corollary 4. Let (46) be satisfied, then the condition

3y 1 1 ¢ ’ ’ / ’ _
(§> |7 g e | =0
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forj = 0,1, is necessary and sufficient in order that the
Neumann problem might have a solution in REP (D)
Under this condition, all solutions in WELP (Da,p) have the
following form:
z (2)—1
u(z) = sn/ (Inc; Lz ))’“‘"—
20 “ Cap (Z/)

1 1 15 ) /
* ( Tl m c—1 | a,(p(é‘)lul(g)dé‘> dz

forz € Dy, wherezg € D, is fixed and the outer integral
is over any path in D, , connecting zo and z.

Proof. It remains to establish the formula for solutions.
The latter follows readily from the following:

1 1-¢

h+(§) P e
¢ ¢, ()
1 ]. §/ 12 / / /
X/TZ_mﬁ (ﬁlcw(mlzul(; )) dt
forall ¢ € D. =

Neumann data on spirals of power type

Let D,y s be a simply connected domain bounded by
two power-like spirals and an auxiliary curve as described
in the ‘Dirichlet data on spirals of power type” section.
According to formula (41), the Toeplitz operator corre-
sponding to the Neumann problem in RE? (D, 5, w) has
the following form:

2
= exp (l 6_] arg C;,y,g (;)) (_{)li’
where w(¢) = (1 —¢)™*.

Arguments similar to those in the proof of Theorem 13
show that the symbol b, s factorises as follows:

ba,y,5 (C) = ha,y,& (C) bO(C)
with

2
hq,y,S(é‘) = exp <_l;(3(§))y>

belonging to GH®" and by € PC having discontinu-
ities at the points 1 and =+:. Moreover, bp(¢) admits a
representation (17) with ¢y = 1,¢ =1 and {3 = —

and a continuous function ¢(¢) which does not vanish
on the circle T and satisfies ind,T) (0) = 0. Thus, we
may apply Theorem 15 and Corollary 3 to develop the
Neumann problem in D, s. The exposition is much the
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same as that for data on logarithmic spirals at the end of
the ‘Neumann data on logarithmic spirals’ section.
Theorem 20. As defined previously, the operator T (b, ,s)
is Fredholm in the space HP T if and only if u # 0.

1

Proof. Since u € (—— ;) we get the following:

——<fi<l——, ——<fa=f3<-.
q p

By Theorem 7, the operator T (b, 5) is Fredholm if and
only if f; # —1/g, which is equivalent to u # 0. O

Theorem 21. Let

(02)
/’LE 07_ )
p

then

(48)

(1) The operators T (bg,, s) is invertible in the space
HP™, and its symbol has a p -factorisation

bays = btb~ with
N c;,y,(; ()
w(¢)
w(¢)

Jo©

(2) In order that the Neumann problem might have a
solution in REW? (Da4,y 5, W), it is necessary and
sufficient that

1 ,de
= /T a0 16,5 €)1 5 =

bt () =

’

b~ () =

(3) Under this condition, any solution of the Neumann
problem in REY? (D, 5, w) is of the following form:
Ie,, 5l

X (/ Ml(tays@))ﬂ—mdé") dz
— Sy

forz € Dy, 5, wherezg € D, s is an arbitrary fixed
point and the integration is over any curve in Dy, s
connecting zp and z.

u(z) = ‘h/ (lncaM(z )Y

Proof If u € (0, %) , then

1 1 1

— <1 < ——4- < -

9 p P
In this case, Theorem 7 implies readily that the oper-
ator T(bg,,ys) is invertible in the space HP'. The p-
factorisation is now derived analogously to that in the
proof of Theorem 10. The remaining part of the theorem
follows immediately from Corollary 3. d
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Theorem 22. If

(-32)
nuel—,0),
q

then T (b, ;) is a Fredholm operator in HP™ of index 1,

(49)

and the symbol has a p -factorisation by, = —b*¢~1b™
with
,q/ C; 5(()
bre) = 1 -
) =@0a-=9) @)
-1 <
b=(¢) = (1 _ l) &
&) e @

Proof. If u € (—%, 0) , then

—1—-—-<H <—1=—1+—.
q p

Hence, from Theorem 7 it follows that the operator
T(by,y,5) in HP7T is Fredholm and its index equals 1. By
Theorem 2, the symbol b,, s admits a p -factorisation
bays = —btr7'b™. Arguing as in the proof of
Theorem 11, we deduce that the factors b* have the
desired form. |

We now turn to the Neumann problem provided that
(49) is satisfied. In our case, Equation 42 looks like the
following:

=T ™) () () =g (©) (50)

for ¢ € T. The operator T(bTh™) is invertible, so
Equation 50 has a unique solution in H”* given by the

following:
© =57 (5)
@ = e P (5 ) ©
_ 1 + (8
N b+(;)PT (b—)m
1 1
= %p% <<1 - —> I, 5] 2u1>
¢ qc, 5(@) ¢
for¢ e T.

Corollary 5. Let (49) be satisfied, then for each u; €
LP (0D, 5, w), the Neumann problem has a solution in
MEYP(D,,, 5, w). The general solution of this problem has
the following form:

z —1 N/,
u(z)=m/ (ay ) @)

—1
0 1= o 5(2)

1 1 1-¢ , ,
X | = —— Iy sOIh(§) di ) dz
(T]Tl ;—ca,é Z) ¢ @y b
forz € Dy, s, where zg € D,y 5 is fixed and the outer
integral is over any path in D, s connecting zo and z.
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Proof. 1t suffices to use the formula u = 9%if, where f is
determined from the following equation:

ht ()

feays@) = ——F—
w(¢) e, s(&)

for; € D. O

Conformal reduction of Zaremba problems

The Zaremba problem

Let C be a Jordan curve in the plane and D the bounded
domain in R? whose boundary is C. We assume that C is
smooth almost everywhere and denote by 1 = 1(2) the
unit tangent vector of C at a point z € C. As defined pre-
viously, by v = v(z), it is meant that the unit outward
normal vector of C at z which exists for almost all points
zeC.

Moreover, let S be a non-empty open arc on C. Given
any functions up and #; on S and C \ S, respectively, we
consider the problem of finding a harmonic function u in
D such that

u = ug on S,
(@/0v)u = u3 on C\ S,

¢f. (4). Zaremba wrote in [13] that it was Wirtinger who
pointed out to him the great practical importance of this
mixed boundary problem.

Our standing assumption is that %o has a derivative
along the arc S almost everywhere on S, that is,

bl d bl

ué,(z) = —1up (z2) = cosa(z) —ug (z) + sina(z) —up (2)
T ox ay

for z € S, where a(z) is the angle at which the tangent

of C at z intersects the real axis. Introduce the following

function:

1uy(2), if z€ S,

ui(z), ifzeC\S. (51)

uo,1(z) = {
Our next goal is to reduce the mixed boundary value
problem to a Toeplitz operator equation. To this end, we
notice that if u = Nf, where f is an analytic function
in D, then the Dirichlet condition on S can be rewritten
equivalently up to a constant function as follows:
9, (e“"(z)f’(z)> = 1) (2) (52)
for almost all z € S. On the other hand, the Neumann
condition on C \ & just amounts to the following:

N (e’ﬂ(z>f’(z)) = u1(2) (53)

for almost all z € C \ S, where B(z) is the angle at
which the outward normal of C at z intersects the real axis
(see (39)).



Grudsky and Tarkhanov Mathematical Sciences 2013, 7:14
http://www.iaumath.com/content/7/1/14

Pick a conformal mapping z = c¢(¢) of the unit disk
D onto D, such that ¢'(0) > 0. Introduce the following
weight function:

©=1] (1 ¢ )_“k
w(e) = _ 2
1 Ck
for ¢ € D, where uy € (—%,%) , and define
(&) = w@) /@) f(c)),
h=(&) = bt ().

On substituting these expressions into (52) and (53), we
get a system of two real equations for the unknown
complex-valued function 4" of Hardy class on T, namely

gote) PO ey PO
w() Y @) mﬁ
=2up(c(2)), ¢ ec(S), 59
gBeen MO peey Q)
w(£) /(@) W&){/%
=2um(c@), ¢ec(C\S).

In the section ‘The Neumann problem; we have proven
that

e B(©) ek i
W)@ w) Y@
where L + 1 = 1. On taking into account that «(z) =

B(z) + 5 for z € C, we can rewrite (54) in the following
form:

1b(@) (Cht (@) =17 h () = @),
b@) (¢hT () + ¢ h(©) = g2(0),

where for ¢ € T, with

¢ eci(S),
rectc\S)

z% arg ¢’(¢) w(s)

b(7) =
G)=e W)

and
@1 (@) = 26175 O@) Y@ uh(c(0)),

@) = 2678 O %@y V0@ w1 (cc)).

Multiplying the first equation by i, we reduce system
(54) finally to the following single equation:

os(©)b(@) (EhT (@) + ¢ h™ () = g©)

on T, where

(55)

-1 if e,
"5(5)—{ 1, if £ € L\ S),

and g(¢) = 2€' 18O (@) YD o1 ((0)) (see (51)

for the definition of ug ;).
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Use the following representation of the function os5(¢).
Write A for the initial point of S and E for the end point.
Let
L) =: ¥4,
cUE) =: &',

&
¢}

then

05(0) =03 ()05 ()
for ¢ € T with

1 1
2 2
w0 = (1-5) 7 (1-55)

1 1
1, bl 1O, -y
05 () = e <1 _ ‘%)2 <1 _ ‘%) 2

The functions o (¢) and o5 (¢) are analytic in the unit
disk D and in the complement of D), respectively, and the
branches of these functions are chosen in such a way that

¢ elPAE
1-- =1, 1-—
elPAE |r=0 ¢

Notice that (56) fails to be a p -factorisation of o5(¢), for
condition (15) is violated.
We now rewrite Equation 55 in the following form:

Q) g@)

(56)

=1

g=00

b TRt ©) + = )
@) (tad(ORT @) +¢ O oz
Set B
() = od (OKT (),
7— _ h©
h= () = i

Applying to both sides of this equality the analytic pro-
jection P{f leads us to the following Toeplitz equation:

1) (¢*) &) = P ((f;_) ©)
S

on T. It is quite natural to look for a solution of this
equation in the Hardy space H” T, so we assume that

It = o) YOS (@) ¢ HPF,
£ =2 (05) " et B O WD) YT 0, () € LP(T).

s

(57)

These preliminary considerations suggest a functional
theoretic setting to treat (1) and (4).

Definition 6. Given any Zaremba data (uo,u1) on C of
class IP (C,w/o 5) in the sense that

p

MO 00y 1de | < oo,

a5 ()

f 0,1 (c ()P
T

we shall say that the Zaremba problem possesses a solution
in REVP (D, ogr w) if there is a harmonic function u in D,
such that u = Rf for somef € EV(D, agrw) and u satisfies
(4)onC.
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If i+ is a solution of (57), then

M09)

SO = o w07

and

u(z) = us(z) + ¢
for all z € D, where

z 2 e—=1V ('
- m/ ATC g . AL —
20 og (T @Nw(c™(2))

¢f (43), zo = ¢~1(0), the integral is over any path in D
connecting the points zg and z, and ¢ an arbitrary real con-

stant. Each function u of family (58) satisfies the following
conditions:

us(2)

(0/01)u = uy on S,
(@/0v)u = u; on C\ S,

but not necessarily the first condition of (4). The latter
is satisfied by the one and only function of family (58).
For finding the corresponding constant ¢, we observe that
the function ug is continuous almost everywhere on S.
Suppose u is continuous up to at least one continuity
point z; € S of uy, then up(z1) = us(z1) + ¢, implying
¢ =uo(z1) — us(z1).

Theorem 23. Let ug; € L (C,w/og).

(1) Ifu=%Nf is a solution of the Zaremba problem in
RELP (D, US Tw), then the function
mt@e) = o (W) YT (1)) is a solution of
the Toeplitz equation (57) in HP*.

(2) Ifh™ is a unique solution of the Toeplitz equation (57)
in HP™, then the function u given by (58) is a solution
of the Zaremba problem in the space REY? (D, o; w).

Proof. This theorem just summarises the reduction of
the Zaremba problem to a Toeplitz operator equation,
as stated previously. The proof is analogous to that of
Theorem 1. O

If the operator T'(b) is invertible in the space HP™,
then for the Zaremba problem to possess a solution in
MRELP (D, o;w), it is necessary and sufficient that the con-
dition

T(b)™! (P+ £ )(0) =0 (59)
Os

be fulfilled. Indeed, applying 7'(b)~! to both sides of (57)
yields the following:

et (@) = T(b)~! (P+ £ )(;)

Os
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On substituting { = 0, we obtain (59). Conversely, if the
latter condition is fulfilled, then

it () = é“T(ln 1<P+gg )(;)

S

is of Hardy class HP T, so (58) gives us the general solution
of the Zaremba problem.

Corollary 6. Assume that the symbol b(¢) has a p-
factorisation of the form b = bTb~ with

Ga)

b+ = —,
€= 1
(o) = 2L,
&3

then

(1) For the Zaremba problem to possess a solution in
MELP (D, agw), it is necessary and sufficient that

I’ d¢
/ u0,1(c(¢)) 0T L =

(2) Under this condition, the problem has a unique
solution in REY? (D, a;'w) given by u = ug + ¢ with

“ (Inc i)y
2w 04 (c1@))

@)l 1 1
x (/T 10,1(c(£)) 05@) T L 1@ di) dz

for z € D, where zg = ¢~1(0), the outer integral is
over any curve connecting zo and z, and
¢ = up(z1) — us(z1).

Uus(z) =N

Proof. Using the p -factorisation b = b*b~, we get the
following:

@) = 2 T <P+ g )(:)
e US
1 1 L g
== Pt —pi=
(@ T (b— g) ©
2 w() ['|
= — P u )
¢ c’(;) T (_0'5 01) )
where Up,1 := uo,1 o c. Here, we have used the equality
+ 1 pt _pr 1
P—Pf =Pl —

and the fact that &[] (2)[¥/]¢/(¢)] = |¢/(¢)]. This proves
part (1) of the corollary.
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Furthermore, on writing the analytic projection P,EC as
the Cauchy integral for ¢ € D, we deduce the following:

e 11
oW YTQ) ¢ ok @) @)
11 |d@) N gt
— U at’,
x [Jl‘ MU —T 03@) 01(¢)d¢
which establishes part (2). O

Zaremba data on sectorial curves

Corollary 6 readily applies to the Zaremba problem in
domains bounded by ¢ -sectorial curves.

Theorem 24. Let C be a q-sectorial curve and (uo, u1)
Zaremba data on C of class LP (C,1/0 ), then the Zaremba
problem has a solution in REVY? (D, 63) if and only if

€@l i _
~ [ R

If the solvability condition is fulfilled, then the Zaremba
problem has actually a unique solution in the space
RELP (D, o;f ). This solution is of the form u = u + ¢ with

w0 0 (@)

IO 1 1 /
x (/]1‘ uo,1(c(2)) 05 0) T @) d{) dz

for z € D, where zg = ¢1(0), the outer integral is over
any curve connecting zo and z, and ¢ = uo(z1) — us(z1), z1
being an arbitrary point on the smooth part of S.

z —1/./\\
() = 9 (Inc¢™(2))

Zaremba data on logarithmic spirals

Suppose D, , is a simply connected domain in the plane
bounded by two logarithmic spirals and an auxiliary
curve as described in the ‘Dirichlet data on logarithmic
spirals’ section. As defined previously, the symbol of the
Toeplitz operator corresponding to the Zaremba problem
in NEY (D, 02) is as follows:

2
bﬂ,(ﬂ(;) = exp <l ; arg ca,(p (C)) ’

the argument of ¢, ,(¢) being given by (26).

The arguments given at the beginning of the ‘Neumann
data on logarithmic spirals’ section still hold for b,,.
To study the Zaremba problem in the domain D,
we employ Theorem 23 and Corollary 6. Our standing
assumption on the Zaremba data (u, 1) on the logarith-
mic spiral is ug1 € L7 (Cpp, 1/0g).

Theorem 25. Suppose that

a
q> — cosg
b4

then
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(1) For the Zaremba problem to possess a solution in
NEYP(D,y,0d), it is necessary and sufficient that

| €Ol di
= A”O,l(ca,w(z)) Ug(é') ¢ =

(2) Ifthis solvability condition is fulfilled, then the
Zaremba problem has actually a unique solution in
the space SRELP(DM,, 0;). The solution is of the
form u = us + ¢ with

z (1 =1\
us(Z)=9f/ M
20 0g (Cap(2))

lege (O] 1 1
x (./T 40,1(€2,9(¢)) os@) T7= c;j,(z’)

d{) dz

forz € Dy, wherezg = c;(}) (0), the outer integral is
over any path connecting zo and z, and

¢ = ug(z1) — us(z1), z1 being an arbitrary point on
the smooth part of S.

Proof. Indeed, under the assumption of the theorem, the
operator T'(b,,,) is invertible in the space H”*, and the
symbol has a p -factorisation of the form b, = bTb~

with
b)) = ¢, ),
1
b () = ———,
J €0 (8)
which is due to Theorem 18. Applying Corollary 6, we get
the remaining part of the theorem. O

Theorem 26. Let
a
q < — cosg,
b4
then

(1) The Zaremba froblem has a solution in the space
MELP (D, 0,03 ) if and only if

AV 1 1 ¢ e, (@D o
AV [ L v N achde | =0
<8c> /1rm TC U1 ogy o

forj=0,1.

(2) Under these conditions, the solution is unique and
has the following form:
u = ug + ¢ with

zl =10,V
us(2) =§)i/ (Incgy(2)) ¢

-1
20 G:g'_ (ca,w ()

ap(@)—1
Ca (p(zl)

1 1 ¢ e (O ,
U dc | d:
X(Tmc—cw(m [ og( onO)de ) dz

forz € Dy, wherezg = c;,(p (0), the outer integral is
over any path in D,, connecting zo and z, and

¢ = uo(z1) — us(z1), z1 being an arbitrary point on
the smooth part of S.
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Proof. Indeed, under the assumption of the theorem,
T (ba,) is a Fredholm operator in H?* of index —1, and its
symbol has a p -factorisation of the form b, = —b*¢b™
with

bt () = 7o (0)

1-¢

1 1
o (i-1)
&) e, @©

(see Theorem 19), so Equation (57) is as follows:
—Twter) (cht) @) =Pt [ £
w*eb) (eh) ©) T(@)(;)

for ¢ € T. The operator T'(b*b™) is invertible. Applying
the inverse to both sides of the last equality, it yields the
following:

1 (1 ¢
o s )

“ay| 2U

1-¢ (¢
= P <2l ) (©).
Jeup(© T(4“—1% M)

The function 4" determined from this equality belongs
to H?* if and only if the right-hand side of the equal-
ity has zero of multiplicity two at the point £ = 0. Since

a-0/de,

(¢) does not vanish at the origin, familiar
reasoning completes the proof. O

—¢2 (@) =

Remark 6. We do not consider q = % cos ¢, in which case,
the operator T (bg,y) fails to be Fredholm in HP™.

Zaremba data on spirals of power type

Consider the Zaremba problem in a simply connected
domain D, s bounded by two power-like spirals and
an auxiliary curve as described in the ‘Dirichlet data on
spirals of power type’ section. The functional theoretic
setting is suggested by the particular method we use for
the study and consists of weighted Hardy-Smirnov spaces
REVP (D, 6,02 w), where w(¢) = (L—¢)7* with —1/q <
© < 1/p. From what has been shown in section “The
Zaremba problem; it follows that the Toeplitz operator
corresponding to the Zaremba problem has the following
symbol:

2
ba,y,S(g) = exp( arg cay5(§)> WEE;
= exp (15 arg c;,,,,(g({)> (=0,
for; e T.

Our standing assumption on the Zaremba data (u, u1)
on power-like spirals is ug,1 € LP(0Dg,y 5, W/0g).
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Theorem 27. If

then

(1) For the Zaremba problem to possess a solution in
REVP (D, 78 agr w), it is necessary and sufficient that

/ ¢, y N9l dg
o5 ¢
(2) If this solvability condition is fulfilled, then the
Zaremba problem has a unique solution in the space
RELP (Day s G§L w). The solution is of the form
u = ug + ¢ with

= (Inc, ) 5(2))
0 0 (¢, 5(2))

1 1
x — 1
TTLE—C,, 5@
forz € Dy, 5, where zg = Cay, 3(0) the outer integral
is over any path connecting zo and z, and
¢ = up(z1) — us(z1), z1 being an arbitrary point on
the smooth part of S.

15 ()]
05()

Up,1(2) d() dz

Proof. Indeed, under the assumption of the theorem, the
operator T (b, 5) is invertible in the space H”*, and the
symbol has a p -factorisation of the form b,, s = btbh™

with
J c;,y,g (9]
bt = ——,
w(¢)
_ w(¢)
b@)———ii—
<@
which is due to Theorem 21, and Corollary 6 gives to us
all statements of the theorem. Od

Theorem 28. If

(&)
ME __)0 )
q

then, given any data of class 1P (0D, s, w/og), the

Zaremba problem possesses a unique solution in the space

REYP (D, 02 w). This solution is given by u = us+c with
1 (@)

MS(Z) = / =1/

Cay, 5(Z )—1 Og (cz,p(2)

1 —11¢,, 5@l ,
/ St Rord 2 R o 0 | dz
7”{_(“ 5(Z) ¢ og (&)

Jor z € Dgyys, where zg = c;ll, 5(0), the outer integral
is over any curve in Dy, s connecting zo and z, and ¢ =
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uo(z1) — us(z1), z1 being an arbitrary point on the smooth
part of S.

Proof. By Theorem 22, T'(bg,,s) is a Fredholm operator
in H?™ of index 1, and its symbol has a p -factorisation of
the form b,, = —b*¢~1b~ with

J c;,y,g ©)

w(¢)
(1 _ l)_l O
&) e ©
Thus, Equation 57 is as follows:

—T(+e 67 (%) ©) = T D)t (@)

b () =1-10)

)

b= () =

(£ )

Os

for ¢ € T. The operator T(b"b™) is invertible. Apply-
ing the inverse to both sides of the last equality yields the
following unique solution:

1 1 g
PH ==
) T(b— ag)@

1 —11¢, 5l
- — 20 _p (; 28 2U0,1) ©.
_{ qc;y%s(é’) ¢ Og

it (©)

The function /it defined by this equality belongs to H?™,
as is easy to check. We thus obtain u = 9if, where f is a
holomorphic function in the domain D, s, satisfying the
following:

1 1 1

¢—=1¢,,5¢) od(©)

— 11,5l
x P} (%% 2Uo,1) ©)

f/(ca,y,é (;)) =

for all ¢ € . On arguing as in (58), we derive the desired
formula for the solution . Od

Remark 7. We do not consider u = 0, in which case, the
operator T (b,,, ) fails to be Fredholm in HP Y,

Conclusions

We investigated the main boundary value problems for
harmonic functions in a simply connected plane domain
with strong singularities on the boundary. We developed
a Fredholm theory of such problems in weighted function
spaces when the boundary curve is of one of the follow-
ing three classes: sectorial curves, logarithmic spirals and
spirals of power type. Moreover, we elaborated a construc-
tive invertibility theory for Toeplitz operators and thus
derive explicit solvability conditions as well as formulas
for solutions.
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