
J. Math. Anal. Appl. 531 (2024) 127816
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

journal homepage: www.elsevier.com/locate/jmaa

Regular Articles

Eigenvalue asymptotic expansion for non-Hermitian tetradiagonal 
Toeplitz matrices with real spectrum

Manuel Bogoya a,∗, Juanita Gasca b, Sergei Grudsky b,c

a Universidad del Valle, Departamento de Matemáticas, Cali, Colombia
b CINVESTAV del I.P.N., Departamento de Matemáticas, Mexico D.F., Mexico
c Southern Federal University, Regional Mathematical Center, Rostov-on-Don, Russia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 June 2023
Available online 2 October 2023
Submitted by J.A. Ball

Keywords:
Toeplitz matrix
Eigenvalues
Asymptotic expansion
Limiting set
Laurent polynomial

In this paper we consider a family of tetradiagonal (= four non-zero diagonals) 
Toeplitz matrices with a limiting set consisting in one analytic arc only and obtain 
individual asymptotic expansions for all the eigenvalues, as the matrix size goes 
to infinity. Additionally, we provide specific expansions for the extreme eigenvalues 
which are the eigenvalues approaching the extreme points of the limiting set. In 
contrast to previous related works, we study non-Hermitian Toeplitz matrices having 
non-canonical distribution and a real limiting set. The considered family does not 
belong to the so-called simple-loop class, nevertheless we manage to extend the 
theory to this case. The achieved formulas reveal the fine details of the eigenvalue 
structure and allow us to directly calculate high accuracy eigenvalues, even for 
matrices of relatively small size.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY-NC-ND license (http://

creativecommons .org /licenses /by -nc -nd /4 .0/).

1. Introduction

For an absolutely integrable function a(z) over the complex unit circle T , we denote by Tn(a) the n × n

Toeplitz matrix (aj−k)n−1
j,k=0 where aj stands for the jth Fourier coefficient of a(z). Let a(z) be a Laurent 

polynomial,

a(z) ≡
�∑

j=−r

ajz
j with r, � � 1, a−r, a� �= 0, z ∈ T . (1.1)

In this case Tn(a) becomes a banded matrix, that is, a matrix having a finite number of non-zero diagonals, 
that is
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Tn(a) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 · · · a−r 0
...

. . . . . .

a�
. . . . . .

. . . . . . . . .
a� · · · a0 · · · a−r

. . . . . . . . .
. . . . . . a−r

. . . . . .
...

0 a� · · · a0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the non-zero “band” is highlighted in a rectangle.
The description and characterization of the different spectral features of finite Toeplitz matrices, such as 

determinant, eigenvalues, singular values, and pseudospectra, have been a fruitful research topic for more 
than a century. The huge amount of material is well collected in the books [6–8,18,19,22].

Toeplitz matrices have an important number of applications, including numerical analysis, engineering, 
stochastic processes, time series analysis, signal processing, quantum and statistical mechanics, and image 
processing; but the most popular nowadays is arguably the discretization of differential equations. A concrete 
application of a banded Toeplitz matrix is the numerical solution of a one-dimensional partial differential 
equation (PDE). In many cases, a PDE can be discretized on a uniform spatial grid, and the solution at 
each grid point can be represented by a vector, leading to a banded Toeplitz matrix. In this context, banded 
Toeplitz matrices are often used to represent discretizations of differential operators in one dimension, such 
as the second derivative or the Laplace operator.

If one has the task of calculating the spectrum of Tn(a), the easiest option seems to be the usage of any 
commercial eigensolver (such as Eigenvalues in Mathematica, eig in MATLAB, or eigvals in JULIA) but 
they can dramatically fail producing fundamentally incorrect results. Consider for example the generating 
function h(t) = (−2 + i)t−1 + 2 − t, which produces a tridiagonal Toeplitz matrix Tn(h). If we calculate 
the eigenvalues of T200(h) with double precision (approximately 64 precision digits), then we will obtain 
a result with only 1 correct digit. Generally speaking, those difficulties can be related with the condition 
number of the eigenvector matrix, the proximity between eigenvalues, and the sparse nature of the matrix. 
For instance, the eigenvector matrix arising from the discretization of a PDE, is known to be ill-conditioned 
polynomially in the matrix size, and the numerical calculation of its eigenvalues is, in general, a difficult 
task. In addition, all commercial eigensolvers are non-parallel and have time complexities approaching the 
order O(n3) where n is the matrix size. For structured matrices, such as the Toeplitz matrices, there exist 
specialized algorithms with a slight time complexity improvements. For example, the NAG library uses the 
Lanczos algorithm, which is an iterative method to find eigenvalues and eigenvectors of an n ×n Hermitian 
matrix. The time complexity of the Lanczos algorithm is O(dn2) where d is the average number of non-zeros 
in a row. But beyond the time complexity, the available eigensolvers have a memory consumption which 
increases as n2, therefore, it is important to have a more efficient alternative.

The classic results of Szegő [19] were the starting point of several studies that pursued the distribution 
for the spectrum of Tn(a). This research line evolved for almost eight decades until the nice work of Tyr-
tyshnikov [23] described the a ∈ L1 case. In some applications, i.e. when the extreme eigenvalues or the 
eigenvectors are required, the individual eigenvalue description is necessary because the distribution-like 
results are of little or no help (for a theoretical example see [2,9] and for a numerical one see [12,14]). 
In such a case, having access to an exact expression like λj(Tn(a)) = Φj,n(a) would constitute the best 
possible solution, because it can produce instantly individual eigenvalues for any matrix size n and any 
eigenvalue index j ∈ {1, . . . , n}, without the necessity of even storing the matrix entries (a process known 
as matrix-less). Unfortunately, this kind of expressions is available only in very few situations (i.e. circulant 
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Fig. 1. The range of the generating function a(z) (red curve) and the limiting set Λ(a) (blue segment), for a(z) = z2 + cz + cz−1

with c = 6. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

or some tridiagonal Toeplitz matrices, see [6]). If an exact expression is not known, then the second best op-
tion is (arguably) an asymptotic expansion, because it remains matrix-less, instantaneous, and can produce 
an approximation within machine precision. The article [10] is one of the first works producing individual 
asymptotic expansions for the eigenvalues of Toeplitz matrices, after this, a number of papers have followed 
the same research branch (see the reviews [3,5]).

For a Laurent polynomial a(z), as n goes to infinity, Schmidt and Spitzer [20] proved that the spectrum 
of Tn(a), spTn(a) converges in the Hausdorff metric, to a set called limiting set and denoted it by Λ(a), 
that is the set of all λ ∈ C for which there exists λn ∈ spTn(a) such that λn → λ. This set turns out to be 
the union of a finite number of analytic arcs together with the branch points.

For λ ∈ C and a(z) given by (1.1), consider the equation a(z) = λ. We denote by zj(λ) (j = 1, . . . , r+ �) 
the respective solutions and label them in non-decreasing modulus order, that is,

|z1(λ)| � |z2(λ)| � · · · � |zr+�(λ)|.

One of the crucial results in [20] is that λ belongs to Λ(a) if and only if |zr(λ)| = |zr+1(λ)|.
Recently, Böttcher, Gasca, Grudsky, and Kozak [11] considered the generating function (1.1) with r = 1, 

� = 2, and proved that the limiting set Λ(a) coincides with a dilatation and a translation of the limiting set 
of either generating function z2 + z−1 or z2 + cz + cz−1 where c ∈ C \ {0}. In any case, Λ(a) is the union of 
finitely many analytic arcs together with their endpoints, and it does not contain isolated points (see Fig. 1). 
To be more precise, depending on the constant c, Λ(a) can have 1, 2, or 3 analytic arcs. In the particular 
case c ∈ (−∞, −3

√
3] ∪ [3

√
3, ∞) they proved that it is a closed real interval with endpoints ρ1 ≡ a(t1) and 

ρ2 ≡ a(t2), where t1, t2 are the two zeros of a′(z) with the smallest modulus. For a generating function f , 
Shapiro and Štampach proved in [21] that Λ(f) ⊂ R if and only if spTn(f) ⊂ R, for each n ∈ N, implying 
that, in the case at hand, each spectra spTn(a) must be a real set.

In the present article we bound ourselves to the case Λ(a) ⊂ R and use the Widom determinant for-
mula [24] together with the simple-loop (SL) method (introduced in [1,10], see also [4] and the review [5]) 
to obtain an asymptotic expansion for each eigenvalue of Tn(a).

The paper is organized as follows. In Section 2 we introduce the study objects and present our main 
results. In Section 3 we use the Widom formula for the determinants of finite Toeplitz matrices, to obtain a 
nonlinear equation for the localization of all the eigenvalues. In Section 4 we extend the SL theory to prove 
our main results, and finally, in Section 5 we present numerical examples.

2. Main results

Consider the generating function

a(z) ≡ a2z
2 + a1z + a0 + a−1z

−1, a2, a−1 �= 0.
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In [20] Schmidt and Spitzer discovered the following trick for banded Toeplitz matrices: for n � 0 and 
a constant ξ ∈ (0, ∞) consider the diagonal matrix Dξ,n ≡ diag((ξj−1)nj=1) and the generating function 
aξ(z) ≡ a(ξz), then

Dξ,nTn(a)D−1
ξ,n =

(
aj−kξ

j−k
)n
j,k=1 = Tn(aξ),

and as a consequence Tn(aξ) and Tn(a) both share the same eigenvalues. If a1 = 0 we can choose ξ such 
that ξ2a2 = ξ−1a−1, to obtain

spTn(a) = spTn(aξ) = a0 + ξ2a2 spTn(z2 + z−1).

Otherwise, taking ξ such that ξa1 = ξ−1a−1, it yields

spTn(a) = spTn(aξ) = a0 + ξ2a2 spTn(z2 + cz + cz−1),

where c = a1(ξa2)−1. Therefore, the problem of calculating the eigenvalues of a tetradiagonal Toeplitz 
matrix can be reduced to the cases a(z) = z2 + z−1 or a(z) = z2 + cz + cz−1, c ∈ C \ {0}.

In this article, we consider the second case,

a(z) ≡ z2 + cz + cz−1 with c ∈ (−∞,−3
√

3] ∪ [3
√

3,∞).

In general, we know that the eigenvalues of Tn(a) approach Λ(a), but from [11] and [21, Th.1], in our case 
we can go further and say that for each n, spTn(a) is contained in Λ(a). Let Λ∗(a) ≡ Λ(a) \ {ρ1, ρ2}, where 
ρ1 and ρ2 are the two endpoints of Λ(a); see Section 1 and item (ii) below. After [11], we know the following 
properties.

(i) Let |t1| � |t2| � |t3| be the zeros of a′(z). All tj turn out to be real numbers and there exist constants 
b ∈ (−1/2, 0) and κ ∈ {−1, 1} such that

t1 = κw, t2 = −κw

1 + b
, t3 = κw

b
, (2.1)

where w = (1 + b + b2)1/2.
(ii) Let ρj ≡ a(tj) for j = 1, 2. The points ρ1, ρ2 are branch points and Λ(a) is the real segment joining 

them.
(iii) For λ ∈ Λ(a) consider the function a(z) − λ and let

|z1(λ)| � |z2(λ)| � |z3(λ)|

be its zeros. Then z1(λ) = z2(λ) and z3(λ) ∈ R. Moreover, |z1(λ)| = |z2(λ)| < |z3(λ)| and for λ ∈ Λ∗(a)
we have z1(λ) �= z2(λ).

Since Tn(a) and Tn(aξ) have the same eigenvalues, taking ξ = −1 we seize

spTn(z2 + cz + cz−1) = spTn(z2 − cz − cz−1),

which means that the eigenvalues of the Toeplitz matrices with generating functions z2 + cz + cz−1 and 
z2 − cz − cz−1, coincide. As a consequence, it is enough to consider positive values of c only, therefore we 
bound ourselves to the generating function
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Fig. 2. The zeros of a(z) − λ for a(z) = z2 + cz + cz−1, c = 6, and λ in the limiting set Λ(a). Left: the real zero z3(λ) (green 
segment). Right: the complex-valued zeros z1(λ) (blue curve), z2(λ) (red curve), and the argument function ϕ(λ) (purple).

a(z) ≡ z2 + cz + cz−1 with c ∈ [3
√

3,∞). (2.2)

Consider the following continuous functions defined on the limiting set Λ(a) by

λ 
→ zj(λ) for j = 1, 2, 3,

labeled such that, Im z1(λ) > 0 and Im z2(λ) < 0. From property (ii) we know that Λ(a) is a compact real 
set. Combining this with the fact that all zj(λ) are continuous we infer that they are also bounded (see 
Fig. 2). In particular, z3(λ) is bounded away from zero, and there is a small real number Δ > 0 satisfying

sup
λ∈Λ(a)

|z1(λ)|
|z3(λ)| < e−Δ. (2.3)

Furthermore, using property (i) it is clear that t1t2 < 0. Since c > 0, it can be proven that κ = 1 in (2.1), 
yielding

t1 ∈
(√

3
2 , 1

)
, t2 ∈ (−

√
3,−1),

and ρ1 > 0, ρ2 < 0.
For every λ ∈ Λ(a), we define the auxiliary real-valued functions ϕ(λ) and σ(λ) by,

ϕ(λ) ≡ arg(z1(λ)) and σ(λ) ≡ − log(|z1(λ)|), (2.4)

see Fig. 3. Then, the function ϕ(λ) satisfies

ϕ(ρ1) = 0, ϕ(ρ2) = π, and ϕ(Λ(a)) = [0, π].

Using ϕ(λ) and σ(λ) we can write the zeros of a(z) − λ as

z1(λ) = eiϕ(λ)e−σ(λ), z2(λ) = e−iϕ(λ)e−σ(λ), z3(λ) = −ce2σ(λ). (2.5)

From property (ii) we know that z1(ρj) = tj (j = 1, 2) and in Lemma 3.3, we will see that the range of 
σ(λ) is the real segment joining the points − log(|t1|) and − log(|t2|), see Fig. 3.

In Lemma 3.3 we will show that ϕ(λ) is continuously differentiable, one-to-one, and that its inverse 
function ψ : [0, π] → Λ(a) is also continuously differentiable (see Figs. 3 and 4). As a consequence, ψ(s) is 
a bijection between s ∈ [0, π] and λ ∈ Λ(a). In this article we prefer to work with the variable s instead of 



6 M. Bogoya et al. / J. Math. Anal. Appl. 531 (2024) 127816
Fig. 3. The functions ϕ(λ) (left) and σ(λ) (right) for λ ∈ Λ(a) with generating function a(z) = z2 + cz + cz−1 and c = 6.

Fig. 4. The functions ψ(s) (left) and θ(s) (right) for the generating function a(z) = z2 + cz + cz−1 with c = 6.

λ itself, because it will produce cleaner and simpler calculations. Accordingly, for j = 1, 2, 3, and s ∈ [0, π], 
we introduce the functions

ẑj(s) ≡ zj(ψ(s)) = zj(λ), σ̂(s) ≡ σ(ψ(s)) = σ(λ), (2.6)

and from them, we define the auxiliary functions

f(s) ≡ e−σ̂(s)

ẑ3(s)
, η(s) ≡ 1 − eisf(s), θ(s) ≡ arg(η(s)). (2.7)

The fact that θ(s) is well-defined is a consequence of f(s) = |ẑ1(s)|/ẑ3(s) from property (iii).
For n ∈ N and j ∈ {1, . . . , n}, we consider the grid points

dj,n ≡ πj

n + 1 , ej,n ≡ dj,n − θ(dj,n)
n + 1 , (2.8)

and the neighborhoods

Ωj,n ≡
{
s ∈ (0, π) : |s− ej,n| � rj,n

}
, (2.9)

where rj,n ≡ 3‖θ′‖∞θ(dj,n)/(n + 1)2. For each n the sequence (dj,n)nj=1 is a regular mesh for the interval 
[0, π], and the constants rj,n were selected in such a way that the sets (Ωj,n)nj=1 become pairwise disjoint.

In asymptotic analysis, if fj(n) for j ∈ {1, . . . , n} and g(n) are functions defined on N, we say that 
fj(n) = O(g(n)) as n → ∞ uniformly with respect to j, if there exist positive numbers N and M not 
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depending on j, such that for all j ∈ {1, . . . , n} and n > N we have |fj(n)| � M |g(n)|. Now we write our 
main results.

Theorem 2.1. Let a(z) be the generating function in (2.2), ψ(s) be the inverse function of ϕ(λ) defined 
in (2.4), θ(s) be the function defined in (2.7), Ωj,n be the set defined in (2.9) and let λ1,n � λ2,n � · · · � λn,n

be the eigenvalues of Tn(a). Then for each j ∈ {1, . . . , n} and every sufficiently large n ∈ N, the following 
statements hold.

1. The eigenvalues are pairwise distinct and λj,n ∈ ψ(Ωj,n).
2. The number sj,n ≡ ϕ(λj,n) (equivalently λj,n = ψ(sj,n)) belongs to Ωj,n and satisfies the equation

(n + 1)sj,n + θ(sj,n) = πj + E1(sj,n),

where E1(s) is a differentiable function with E1(sj,n) = O( e−Δn), and whose derivative satisfies 
E′

1(sj,n) = O(n e−Δn). Both order relations work as n → ∞ uniformly in j.
3. The equation

(n + 1)s + θ(s) = πj,

has a unique solution s∗j,n ∈ Ωj,n and

λj,n = ψ(s∗j,n) + E2(s∗j,n), (2.10)

where E2(s∗j,n) = O(n−1e−Δn), as n → ∞ for certain Δ > 0, uniformly in j.

Theorem 2.2. Under the same hypothesis of Theorem 2.1, as n → ∞ and for any m � 1, we have the 
following expansions,

1. sj,n =
m−1∑
k=0

sk(dj,n)
(n + 1)k + Hm(dj,n),

2. λj,n =
m−1∑
k=0

rk(dj,n)
(n + 1)k + Ĥm(dj,n),

where dj,n is the number defined in (2.8) and the coefficients sk and rk can be exactly calculated, for instance

s0 = id, s1 = −θ, s2 = θθ′,

r0 = ψ, r1 = −ψ′θ, r2 = 1
2ψ

′′θ2 + ψ′θθ′;

Hm(dj,n) = O(dj,n(π − dj,n)n−m) and Ĥm(dj,n) = O(dj,n(π − dj,n)n−m), as n → ∞, are the remainder 
(error) terms with the order relations being uniform in j.

In our case the eigenvalues λj,n can be classified into two types: the eigenvalues approaching either ρ1 or 
ρ2, that we called extreme, and the remaining ones that we called inner.

From properties (i) and (ii) we know that for i = 1, 2 and j = 1, 2, 3, the zeros of a(z) − ρi are zj(ρi). 
The extreme eigenvalues have an important role in practice for estimating the norm of large matrices or its 
inverse. Here is our result for the extreme eigenvalues.

Theorem 2.3. Under the same hypothesis of Theorem 2.1, we have,
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1. if j2/n → 0, then

λj,n = ρ1 + u1,1j
2

(n + 1)2 + u2,1j
2

(n + 1)3 + u3,1j
2 + u4,1j

4

(n + 1)4 + o
( j4

n5

)
; (2.11)

2. if (n − j)2/n → 0, then

λj,n = ρ2 + u1,2(n + 1 − j)2

(n + 1)2 + u2,2(n + 1 − j)2

(n + 1)3 + u3,2(n + 1 − j)2

(n + 1)4

+u4,2(n + 1 − j)4

(n + 1)4 + o
( (n− j)4

n5

)
;

where the coefficients are given by

u1,i ≡ −a(2)(ti)
2 (tiπ)2, u2,i ≡ −2u1,iti

ti − τi
, u3,i ≡

3u1,it
2
i

(τi − ti)2
,

u4,i ≡
(a(4)(ti)t4i

24 − a(3)(ti)t3i
6 − 5a(3)(ti)t4i

72a(2)(ti)
− a(2)(ti)t2i

3

)
π4,

ti is the number defined in (2.1), ρi = a(ti), and τi is the simple zero of a(z) − ρi (i = 1, 2). All the order 
relations are uniform in j.

Remark 2.4. The results in Theorem 2.3 can be extended for as many terms as desired and specialized under 
different additional conditions, for instance,

• if j/n → 0 or (n − j)/n → 0, then

λj,n = ρ1 + u1,1j
2

(n + 1)2 + o
( j2

n3

)
+ o

( j4

n4

)
,

λj,n = ρ2 + u1,2(n + 1 − j)2

(n + 1)2 + o
( (n− j)2

n3

)
+ o

( (n− j)4

n4

)
,

respectively;
• or if j4/n3 → 0 or (n − j)4/n3 → 0, then

λj,n = ρ1 + u1,1j
2

(n + 1)2 + u2,1j
2

(n + 1)3 + o
( j4

n4

)
,

λj,n = ρ2 + u1,2(n + 1 − j)2

(n + 1)2 + u2,2(n + 1 − j)2

(n + 1)3 + o
( (n− j)4

n4

)
,

respectively.

To compute the asymptotic expressions in Theorem 2.2 it is necessary to know the functions ψ(s), θ(s), 
and some of their derivatives. These functions are defined in terms of zj(λ) (j = 1, 2, 3) which don’t have an 
easy analytic expression available, but can be found numerically with an appropriate interpolation process. 
However, in the case of the extreme eigenvalues, Theorem 2.3 gives us asymptotic expressions involving a(z)
and its derivatives only, which are available analytically.
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3. Preliminaries

In the present section we derive a formula for the Toeplitz determinant Dn(a − λ) ≡ detTn(a − λ), that 
will allow us to analyze the asymptotic behavior of the eigenvalues of Tn(a) as n increases to ∞.

When the generating function a(z) is a Laurent polynomial, the classic Widom determinant formula [24]
gives us an expression for Dn(a). For the reader convenience we report it here.

Proposition 3.1 (Widom). Let a(z) be the Laurent polynomial a(z) =
∑�

j=−r ajz
j. If its zeros z1, . . . , zr+�, 

are pairwise distinct then, for every n � 1,

Dn(a) =
∑
M

cMωn
M ,

where the sum runs over all sets M ⊂ {1, . . . , r + �} with cardinality |M | = �,

ωM ≡ (−1)�a�
∏
j∈M

zj , cM ≡
∏
j∈M

zrj
∏
j∈M
k∈M

1
zj − zk

,

and M ≡ {1, . . . , r + �} \M .

Consider the generating function a(z) given in (2.2) and remember that ρj = a(tj) where tj (j = 1, 2, 3)
are the three zeros of a′(z). If we select a complex constant λ �= ρj , then the solutions of a(z) − λ = 0, 
named zj(λ) (j = 1, 2, 3) see (2.5), become pairwise distinct. Applying Proposition 3.1 we arrive at

Dn(a− λ) = c1(λ)ωn
1 (λ) + c2(λ)ωn

2 (λ) + c3(λ)ωn
3 (λ), (3.1)

where

ω1 ≡ z1z3, ω2 ≡ z2z3, ω3 ≡ z1z2,

c1 ≡ ω1

(z1 − z2)(z3 − z2)
, c2 ≡ ω2

(z2 − z1)(z3 − z1)
, c3 ≡ ω3

(z1 − z3)(z2 − z3)
. (3.2)

To exploit the relation (3.1) we now seek for an asymptotic expression for every term involved. Recall that 
Λ∗(a) = Λ(a) \ {ρ1, ρ2}.

Remark 3.2. From the open mapping theorem and the analyticity of a(z), it follows that zj(λ) (j = 1, 2, 3)
are infinitely differentiable in Λ∗(a). Moreover, each zj(λ) is one-to-one in Λ∗(a). Property (iii) in Section 2, 
tells us that z3(λ) is a simple zero of a(z) − λ for every λ ∈ Λ(a), then there exists an open neighborhood 
Ω of Λ(a) in C such that,

lim
λ→ρj

λ∈Ω

z′3(λ) = 1
a′(z3(ρj))

,

and z3(λ) is therefore, analytic in Ω.
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Lemma 3.3. The real-valued functions σ(λ) and ϕ(λ) defined in (2.4), are one-to-one and infinitely differ-
entiable in Λ∗(a).

Proof. From (2.5) we know that z3(λ) = −c e2σ(λ). Thus by Remark 3.2 we conclude that σ(λ) is infinitely 
differentiable in Λ∗(a). Since z3(λ) is a root of a(z) − λ, we have a(z3(λ)) = λ for all λ ∈ Λ(a), from which 
it follows that both z3(λ) and σ(λ) are one-to-one, and using that they are real-valued, we deduce their 
monotonicity. To be more precise, σ(λ) and −z3(λ) are both increasing.

Applying Vieta’s theorem to the equation a(z) −λ = 0 and bearing in mind the first and second equations 
of (2.5), we seize

−c = z1(λ) + z2(λ) + z3(λ) = 2e−σ(λ) cos(ϕ(λ)) + z3(λ).

Thus

cos(ϕ(λ)) = −c + z3(λ)
2 eσ(λ),

and therefore, cos(ϕ(λ)) is a monotonic function also. Since the range of ϕ(λ) is [0, π], z3(λ) = −c e2σ(λ), 
and arccos(−x) = arcsin(x) + π/2, we obtain

ϕ(λ) = arcsin
( c

2 eσ(λ)(1 − e2σ(λ))
)

+ π

2 . (3.3)

Recall that σ(λ) is contained in the segment joining the points − log(|t1|) and − log(|t2|). From (2.1) we 
have 

√
3/2 � |t1| � 1 and 1 < |t2| �

√
3, then by Vieta’s theorem, for all λ ∈ Λ(a), we obtain

σ(λ) ∈
[
log

( 1√
3

)
, log

( 2√
3

)]
.

Consider the function p(x) ≡ cx(1 − x2)/2. Since p(x) is one-to-one in [1/
√

3, ∞) it follows that both 
p( eσ(λ)) and ϕ(λ) = arcsin(p( eσ(λ))) +π/2 are one-to-one for the variable λ ∈ Λ(a). Finally, from (3.3) ϕ(λ)
is infinitely differentiable in Λ∗(a). �

Let ψ : [0, π] → Λ(a) be the inverse function of ϕ : Λ(a) → [0, π]. The fact that ψ(s) is infinitely differ-
entiable in (0, π) is an immediate consequence of Lemma 3.3. Moreover, using the derivative chain rule to 
ϕ(ψ(s)) = s together with ϕ′(λ) �= 0 for λ ∈ Λ∗(a), we seize

ψ′(s) = 1
ϕ′(ψ(s)) .

We know that, as n → ∞, the biggest and smallest eigenvalues of Tn(a) are arbitrarily close to ρ1 and 
ρ2, respectively, see Fig. 1. For the study of the extreme eigenvalues, we need to investigate the behavior of 
the functions ϕ(λ) at ρi, and ψ(s) at ϕ(ρi). Since z1(ρi) = z2(ρi) for i = 1, 2, we know that a(z) − ρi has 
only two solutions, namely, ti = z1(ρi) and τi ≡ z3(ρi), moreover, τi is a simple zero, a(ti) = ρi, a′(ti) = 0, 
and a′′(ti) sign(ti) > 0.

Consider the coefficients

ak,i ≡
a(k)(ti)

k! , bk,i ≡
a(k)(τi)

k! , k ∈ N. (3.4)
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Proposition 3.4. For i = 1, 2, and every m ∈ N the real-valued functions ϕ(λ) and ψ(s) admit the following 
asymptotic expansions,

ϕ(λ) = ϕ(ρi) +
m−1∑
k=1

γk,i|λ− ρi|
k
2 + W1,i,m(λ),

ψ(s) = ρi +
m−1∑
k=1

νk,i(s− ϕ(ρi))2k + W2,i,m(s), (3.5)

where

• the coefficients γk,i and νk,i can be calculated explicitly, for instance

γ1,i = 1
ti|a2,i|

1
2
, ν1,i = −t2i a2,i,

γ2,i =
a2
3,i

8a4
2,it

2
i γ1,i

+ (−1)i
3a2

3,iγ1,i

4a3
2,i

+
a4,it

2
i γ

3
1,i

2a2,i
+ (−1)i a3,iγ1,i

2a2
2,iti

−
γ3
1,i

3 ,

ν2,i = a4,it
4
i − a3,it

3
i −

5a2
3,it

4
i

4a2,i
− 2a2,it

2
i

3 ;

• W1,i,m(λ) = O(|λ − ρi|
m
2 ) as λ → ρi;

• in the particular case m = 2m0, m0 � 1, W1,i,m(λ) is differentiable in a neighborhood of ρi intersected 
with Λ∗(a), and W ′

1,i,m(λ) = O(|λ − ρi|m0−1);
• W2,i,m(s) = O((s − ϕ(ρi))2m) as s → ϕ(ρi);
• W2,i,m(s) is differentiable in a neighborhood of ϕ(ρi) intersected with (0, π), and W ′

2,i,m(s) = O(|s −
ϕ(ρi)|2m−1).

Proof. We start with the case i = 1. To simplify the notation and only in this proof, we will write ak instead 
of ak,1.

Recall that ϕ(λ) is the argument of z1(λ) which is the complex-valued zero of a(z) −λ having non-negative 
imaginary part. The asymptotic expansion of a(z) centered at t1 for im z � 0, yields

a(z) = ρ1 +
m−1∑
k=2

ak(z − t1)k + P1,m(z),

where m � 3 and P1,m(z) = O(|z−t1|m) as z → t1, is a differentiable function. Here the term corresponding 
to k = 1 is missing because of a1 = a′(ti) = 0. Hence, taking z = z1(λ) for λ ∈ Λ∗(a) and any m � 3, we 
arrive at

λ− ρ1 =
m−1∑
k=2

ak(z1(λ) − t1)k + P̂1,m(λ), (3.6)

where P̂1,m(z) = O(|z1(λ) − t1|m) as λ → ρ1, is a differentiable function in Λ∗(a). Since by continuity, 
λ → ρ1 implies z1(λ) → t1, we can solve (3.6) for z1(λ) (see [17, Sc.1.5]), resulting in

z1(λ) = t1 +
m−1∑

αk(ρ1 − λ) k
2 + K1,m(λ), (3.7)
k=1
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where m � 2 and the coefficients αk, can be computed by formal substitution, for example

α1 = i 1
|a2|

1
2
, α2 = a3

2a2
2
, α3 = i

(
a2
3|a2|

1
2

8a4
2

− 3a2
3

4a3
2|a2|

1
2

+ a4

2a2|a2|
3
2

)
.

Moreover, K1,m(λ) = O((ρ1 − λ)m
2 ) as λ → ρ1. Solving (3.7) for K1,m(λ) we can see that it is infinitely 

differentiable in the real interval (ρ1 − ε, ρ1) for some ε > 0.
To obtain an asymptotic expansion for ϕ(λ), we use the representation

ϕ(λ) = arg(z1(λ)) = arctan
(
Im z1(λ)
Re z1(λ)

)
,

which combined with (3.7), the geometric series, and the Maclaurin series of arctan, yields

ϕ(λ) =
m−1∑
k=1

γk(ρ1 − λ) k
2 + K2,m(λ), (3.8)

where the coefficients γk can be found explicitly, for example

γ1 = Imα1

t1
, γ2 = Imα3

t1
− α2 Imα1

t21
− (Imα1)3

3t31
,

and K2,m(λ) = O((ρ1 −λ)m
2 ) as λ → ρ1. Using that ϕ(λ) is infinitely differentiable in Λ∗(a), we deduce the 

same for K2,m(λ) in the real interval (ρ1 − ε, ρ1) for some ε > 0. Finally, differentiating term-by-term the 
expansion (3.8) we obtain the first assertion.

We now prove our second assertion. For s ∈ (0, π) we know that λ = ψ(s) ∈ Λ∗(a) and s = ϕ(ψ(s)). 
Furthermore, by Lemma 3.3 it follows that ψ(s) is infinitely differentiable in (0, π). Expanding ψ(s) around 
s = 0 we reach

ψ(s) = ρ1 +
∞∑
k=1

νks
k, (3.9)

where νk = ψ(k)(0)/k!. Additionally, by composing the expansions (3.8) and (3.9), we can seize the values 
of νk in terms of γk, for instance

ν1 = 0, ν2 = − 1
γ2
1
, ν3 = 0, ν4 = 2γ3

γ5
1
, ν5 = 0,

finishing the proof for the case i = 1. The case i = 2 can be readily proven. �
Mimicking the proof of Proposition 3.4, for any m � 2 as λ → ρi, we obtain the following asymptotic 

expansions,

z1(λ) = ti +
m−1∑
k=1

αk,i|λ− ρi|
k
2 + G1,i,m(λ), (3.10)

z3(λ) = τi +
m−1∑
k=1

βk,i|λ− ρi|k + G2,i,m(λ), (3.11)

where
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• the coefficients αk,i and βk,i can be found explicitly, for instance

α1,i = i
|a2,i|

1
2
, α3,i = i

2a2,i

(
a2
3,i|a2,i|

1
2

4a3
2,i

+
3a2

3,i(−1)i

2a2
2,i|a2,i|

1
2

+ a4,i

|a2,i|
3
2

)
,

α2,i = (−1)i+1 a3,i

2a2
2,i

, β1,i = 1
b1,i

, β2,i = −b2,i

b3
1,i

;

where ti = z1(ρi) and τi = z3(ρi) are the zeros of a(z) − ρi, and the numbers ak,i and bk,i are defined 
in (3.4).

• G1,i,m(λ) = O(|λ − ρi|
m
2 ) and G2,i,m(λ) = O(|λ − ρi|m) are infinitely differentiable functions in a 

neighborhood of ρi intersected with Λ∗(a).

The respective expansion for z2(λ) can be obtained using z2(λ) = z1(λ).
Since the zeros of a(z) − ψ(s) are given by ẑj(s) = zj(ψ(s)) for j = 1, 2, 3, see (2.6), the relation 

σ̂(s) = − log(|ẑ1(s)|) combined with (2.5), produces the simpler equalities,

ẑ1(s) = eise−σ̂(s), ẑ2(s) = e−ise−σ̂(s), ẑ3(s) = −ce2σ̂(s), (3.12)

which are the protagonists of our next result.

Proposition 3.5. For j = 1, 2, 3, the functions ẑj(s) defined in (2.6) are infinitely differentiable on [0, π] and 
for any m � 1, they admit the expansions

ẑ1(s) = ti +
m−1∑
k=1

hk(s− ϕ(ρi))k + F1,i,m(s), (3.13)

ẑ3(s) = τi +
m−1∑
k=1

gk(s− ϕ(ρi))2k + F2,i,m(s), (3.14)

where

• ti = z1(ρi), τi = z3(ρi) are the zeros of a(z) − ρi where ρi is the branch point of Λ(a) and the function 
ϕ(λ) defined in (2.4);

• the coefficients hk and gk can be found explicitly, for instance

h1 = iti, h2 = a3,it
2
i

2 , h3 = i
(
a3,it

2
i

2a2,i
+ ti

3

)
,

g1 = −a2,it
2
i

b1,i
, g2 = 1

b1,i

(
a4,it

4
i − a3,it

3
i −

5a2
3,it

4
i

4a2,i
− 2a2,it

2
i

3

)
−

b2,ia
2
2,it

4
i

b3
1,i

,

where the numbers ak,i and bk,i are defined in (3.4);
• F1,i,m(s) = O(|s − ϕ(ρi)|m) and F2,i,m(s) = O(|s − ϕ(ρi)|2m) as s → ϕ(ρi) with i = 1, 2;
• the functions F1,i,m(s) and F2,i,m(s) are differentiable in the intersection of (0, π) with a neighborhood 

of ϕ(ρi) and satisfy F ′
1,i,m(s) = O(|s − ϕ(ρi)|m−1) and F ′

2,i,m(s) = O(|s − ϕ(ρi)|2m−1) as s → ϕ(ρi)
with i = 1, 2.

The respective expansion for ẑ2(s) can be obtained using ẑ2(s) = ẑ1(s).
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Proof. By Lemma 3.3 and Proposition 3.4, we know that the real-valued function ψ(s) is infinitely differ-
entiable in [0, π]. The composition of the asymptotic expansion (3.5) with (3.10) and (3.11), yields (3.13)
and (3.14), respectively. Moreover, the existence of the limits of ẑ(�)

j (s) (� ∈ N) at s = 0, π is a consequence 
of Proposition 3.4, therefore, ẑj(s) is infinitely differentiable in the interval [0, π], and the proof is over. �

Because of (3.12) an immediate consequence of Proposition 3.5 is that σ̂(s) is infinitely differentiable 
in the whole set [0, π], where the derivatives on the extreme points {0, π} are defined in the lateral sense. 
Lemma 3.3 tells us, in particular, that the function ψ(s) is an infinitely differentiable bijection between 
Λ(a) and [0, π]. Hence to easy the reading of the paper and to simplify some proofs, we decide to work with 
the variable s ∈ [0, π] rather that λ ∈ Λ(a). With this change, the Toeplitz determinant defined in (3.1), 
becomes

Dn(a− λ) = Dn(a− ψ(s)) = ĉ1(s)ω̂n
1 (s) + ĉ2(s)ω̂n

2 (s) + ĉ3(s)ω̂n
3 (s), (3.15)

where

ω̂j(s) ≡ ωj(ψ(s)) = ωj(λ), ĉj(s) ≡ cj(ψ(s)) = cj(λ), j = 1, 2, 3;

and ωj , cj are defined in (3.2).

Lemma 3.6. Let s ∈ (0, π), then the terms in the Widom determinant formula (3.15), can be written as

ω̂1(s) = g(s)eis, ω̂2(s) = g(s)e−is, ω̂3(s) = g(s)f(s),

ĉ1(s) = eis

2i sin(s)η(s)
, ĉ2(s) = − e−is

2i sin(s)η(s) , ĉ3(s) = g(s)f(s)
(ẑ3(s)|η(s)|)2

;

where

g(s) ≡ ẑ3(s)e−σ̂(s), f(s) ≡ e−σ̂(s)

ẑ3(s)
, η(s) ≡ 1 − eisf(s).

Proof. The expressions for each ω̂j(s) follow from the Widom formulas (3.2) together with (3.12). Since 
ẑ1(s) = ẑ2(s) then ĉ1(s) = ĉ2(s), hence it is enough to prove the equalities for ĉ1(s) and ĉ3(s). We have

ĉ1(s) =
(
1 − ẑ2(s)

ẑ1(s)

)−1(
1 − ẑ2(s)

ẑ3(s)

)−1
= 1

(1 − e−2is)η(−s) = eis

2i sin(s)η(s)
,

ĉ3(s) = ẑ1(s)ẑ2(s)
ẑ2
3(s)η(s)η(−s) = g(s)f(s)

ẑ2
3(s)η(s)η(s)

= g(s)f(s)
ẑ2
3(s)|η(s)|2 ,

and the lemma is proved. �
From the previous lemma, we deduce that η(s) = 1 − ẑ1(s)/ẑ3(s) which combined with (2.3) show us 

that η(s) is bounded and bounded away from zero on [0, π], making

θ(s) ≡ arg(η(s)), (3.16)

a well-defined function. Additionally, from properties (ii) and (iii) in Section 2, it follows that ẑj(ϕ(ρi)) ∈ R

for j = 1, 2, 3 and i = 1, 2. Therefore, η(ϕ(ρi)) ∈ R and θ(ϕ(ρi)) = 0. Recall that ϕ(ρ1) = 0 and ϕ(ρ2) = π.
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Lemma 3.7. The function f(s) given in Lemma 3.6, is infinitely differentiable in [0, π]. Moreover, for i = 1, 2, 
we have f ′(ϕ(ρi)) = 0.

Proof. Since ẑ3(s) and σ̂(s) are infinitely differentiable in [0, π] so is f(s). Now, differentiating the re-
lation (3.14) we can see that ẑ′3(ϕ(ρi)) = 0, which combined with the representation ẑ3(s) = −c e2σ̂(s)

produces σ̂′(ϕ(ρi)) = 0. Finally, the fact that f ′(ϕ(ρi)) = 0 is the result of f ′(s) = −3σ̂′(s)f(s). �
Proposition 3.8. The real-valued function θ(s) defined in (3.16), is infinitely differentiable in [0, π]. Moreover, 
for i = 1, 2, we have θ′(ϕ(ρi)) �= 0.

Proof. For a complex number z and under the usual writing z = x + iy, we know that arg(z) = arctan(y/x)
when x �= 0. Since f(s) is real-valued and

|f(s)| = |ẑ1(s)|
|ẑ3(s)|

< 1,

a simple calculation shows that 0 < 1 − cos(s)f(s) < 2 for all s ∈ (0, π). We now want to express θ(s) as an 
algebraic function of f(s). It can be done by using the relation η(s) = 1 − eisf(s), which yields

θ(s) = arg(η(s)) = arctan
(

− sin(s)f(s)
1 − cos(s)f(s)

)
.

Hence, Lemma 3.7 tells us that θ(s) is infinitely differentiable in [0, π]. Differentiating the previous expression 
we obtain

θ′(s) = f2(s) − f(s) cos(s) − f ′(s) sin(s)
1 + f2(s) − 2 cos(s)f(s) ,

whose denominator coincides with |η(s)|2 which is bounded away from zero. Finally, the fact that θ′(ϕ(ρi)) �=
0 is a consequence of ϕ(ρi) ∈ {0, π} combined with f(ϕ(ρi)) = |ti|/τi �= ±1 for i = 1, 2. �
Proposition 3.9. For any m � 1, the real-valued function θ(s) defined in (3.16), admits the following asymp-
totic expansion at the points ϕ(ρi) for i = 1, 2,

θ(s) =
m−1∑
k=1

κk,i(s− ϕ(ρi))2k−1 + Km,i(s), s → ϕ(ρi), (3.17)

where

• the coefficients κk,i can be found explicitly, for instance

κ1,i = ti
ti − τi

,

κ2,i = (−1)i 3a3,i − 2a2,j

6a2
2,jti(τi − ti)

+ t2i
τi(τi − ti)

(
|a2,i|

1
2

b1,i
+ (−1)i a2,it

2
i

b1,iτi
+ a3,iti

2a2,i
+ ti

τi

)
;

where ti = z1(ρi) and τi = z3(ρi) are the zeros of a(z) − ρi, and the numbers ak,i and bk,i are defined 
in (3.4).

• Km,i(s) = O(|s − ϕ(ρi)|2m−1) as s → ϕ(ρi), is differentiable in (0, π).
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Proof. In order to find an asymptotic expansion for η(s) we use the equality

η(s) = 1 − ẑ1(s)
ẑ3(s)

,

the relations (3.13), (3.14), and the geometric series, to obtain

η(s) ≡ 1 − ti
τi

+
∞∑
k=1

ek,i(s− ϕ(ρi))k,

where the coefficients ek,i can be calculated explicitly, for instance

e1,i = −i ti
τi
, e2,i = (−1)i+1 a2,it

3
i

b1,iτ2
i

− a3,it
2
i

2a2,iτi
,

e3,i = i
(
t2i |a2,i|

1
2

b1,iτ2
i

+ (−1)i 3a3,i − 2a2,i

6a2
2,iτiti

)
.

To finish the proof, it is enough to use that θ(s) is the argument of η(s) together with an application of the 
Maclaurin series for arctan. �

We are ready to combine the (rather) technical results of the present section to produce an expansion 
for the Toeplitz determinant at hand.

Proposition 3.10. Let the generating function a(z) have the form (2.2), then for s ∈ (0, π) we have

Dn(a− ψ(s)) = gn(s)
sin(s)|η(s)|

{
sin

(
(n + 1)s + θ(s)

)
+ Rn(s)

}
, (3.18)

where the functions f(s), g(s), η(s) are given in Lemma 3.6 and

Rn(s) = sin(s)
|η(s)| f

n+2(s).

Moreover, Rn(s) = O( e−Δn) and R′
n(s) = O(n e−Δn) for some Δ > 0.

Proof. From Widom determinant formula (3.15) and Lemma 3.6, we have

Dn(a− ψ(s)) = ei(n+1)sgn(s)
2i sin(s)η(s)

− e−i(n+1)sgn(s)
2i sin(s)η(s) + (g(s)f(s))n+1

(ẑ3(s)|η(s)|)2
.

Hence Dn(a − ψ(s)) equals

gn(s)
sin(s)

(
1

2i|η(s)|2
{
ei(n+1)sη(s) − e−i(n+1)sη(s)

}
+ g(s)fn+1(s) sin(s)

ẑ2
3(s)|η(s)|2

)

= gn(s)
sin(s)|η(s)|

(
1
2i
{
ei(n+1)seiθ(s) − e−i(n+1)se−iθ(s)} + sin(s)

|η(s)| f
n+2(s)

)

= gn(s)
sin(s)|η(s)|

(
sin

(
(n + 1)s + θ(s)

)
+ Rn(s)

)
,

where Rn(s) = sin(s)fn+2(s)/|η(s)|. From Lemma 3.7 we know that η(s) is bounded away from zero and 
from (2.3) it follows that |f(s)| � e−Δ for some Δ > 0, hence |Rn(s)| = O( e−Δn).
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Finally, to verify the smoothness of Rn(s), we recall that f(s) is infinitely differentiable in [0, π], then so 
is |η(s)| = (1 + 2f(s) cos(s) + f(s)2) 1

2 in (0, π). Moreover, from Lemma 3.7 f ′(s) is continuous in [0, π] and 
therefore R′

n(s) = O(n e−Δn), which finishes the proof. �
Using Proposition 3.10 we can see that the extreme points of the limiting set Λ(a), that is ρ1 and ρ2, 

are not eigenvalues of Tn(a) for any sufficiently large n, as follows. From Remark 3.2, Lemma 3.7, and 
Proposition 3.8 we know that

f(ϕ(ρi)) �= 0, f ′(ϕ(ρi)) = 0, θ(ϕ(ρi)) = 0, θ′(ϕ(ρi)) �= 0.

Then, using ψ′(ϕ(ρi)) = 0 and the above conditions, we arrive at

g(ϕ(ρi)) �= 0, η(ϕ(ρi)) �= 0, Rn(ϕ(ρi)) = 0,

g′(ϕ(ρi)) = 0, η′(ϕ(ρi)) �= 0, R′
n(ϕ(ρi)) �= 0.

Since the numerator and the denominator of Dn(a −ψ(s)) in (3.18) go to 0 as s → ϕ(ρi), an application of 
the L’Hôpital rule produces

lim
s→ϕ(ρi)

Dn(a− ψ(s)) = −gn(ϕ(ρi))
(−1)n+1{n + 1 + θ′(ϕ(ρi))} + R′

n(ϕ(ρi))
|η(ϕ(ρi))|

,

which shows that, for every sufficiently large n this limit exists and is nonzero.

4. Proof of the main theorems

Since the function g(s) = ẑ3(s) e−σ̂(s) = ẑ3(s)|ẑ1(s)| in Lemma 3.6, does not take the value zero, Propo-
sition 3.10 tells us that λ = ψ(s) is an eigenvalue of Tn(a) if and only if

sin
(
(n + 1)s + θ(s)

)
+ Rn(s) = 0,

or equivalently

(n + 1)s + θ(s) + (−1)jEn(s) = πj, (4.1)

where j ∈ Z, s ∈ (0, π), and En(s) ≡ arcsin(Rn(s)). We are going to show that the term En(s) being 
relatively small, plays the role of a remainder which suggests the usage of the reduced equation

(n + 1)s∗ + θ(s∗) = πj. (4.2)

We now introduce the necessary auxiliary elements to prove our main results. Consider the functions

Hj,n(s) ≡ dj,n − θ(s)
n + 1 ,

H̃j,n(s) ≡ dj,n − θ(s) + (−1)jEn(s)
n + 1 ,

where dj,n = πj/(n + 1), the function θ(s) is defined in (3.16), and note that if sj,n and s∗j,n are solutions 
of the equations (4.1) and (4.2), respectively, we obtain

Hj,n(s∗j,n) = s∗j,n and H̃j,n(sj,n) = sj,n. (4.3)



18 M. Bogoya et al. / J. Math. Anal. Appl. 531 (2024) 127816
From Proposition 3.8 we know that ‖θ‖∞ ≡ sups∈[0,π] |θ(s)| and ‖θ′‖∞ ≡ sups∈[0,π] |θ′(s)| are both finite. 
Lastly, for each n ∈ N and j ∈ {1, . . . , n}, we consider the set

Ωj,n ≡
{
s ∈ (0, π) : |s− ej,n| � rj,n

}
,

where ej,n ≡ dj,n − θ(dj,n)/(n + 1) and rj,n ≡ 3θ(dj,n)‖θ′‖∞/(n + 1)2.

Lemma 4.1. Let a(z) be the function given by (2.2). For n ∈ N and j ∈ {1, . . . , n}, the functions Hj,n(s)
and H̃j,n(s) are contractive maps on Ωj,n to itself.

Proof. Take s ∈ Ωj,n. We start with H̃j,n(s). From the mean value theorem it follows,

|H̃j,n(s) − ej,n| =
∣∣∣∣θ(s) − θ(dj,n)

n + 1 + (−1)jEn(s)
n + 1

∣∣∣∣
� ‖θ′‖∞

|s− dj,n|
n + 1 + |En(s)|

n + 1 .

Proposition 3.10 together with the Maclaurin series of arcsin tells us that |En(s)| = O( e−Δn). We now 
manipulate the last expression in order to include the term |s − ej,n|,

|H̃j,n(s) − ej,n| � ‖θ′‖∞
|(n + 1)(s− ej,n) + θ(dj,n)|

(n + 1)2 + O

(
e−Δn

n

)

� ‖θ′‖∞
(
|s− ej,n|
n + 1 + θ(dj,n)

(n + 1)2

)
+ O

(
e−Δn

n

)

� rj,n

(
1
3 + ‖θ′‖∞

n + 1 + O(ne−Δn)
)
,

the last bound being strictly smaller than rj,n tells us that H̃j,n(s) is an element of Ωj,n, for every sufficiently 
large n.

Suppose now that s1, s2 ∈ Ωj,n. We have

|H̃j,n(s1) − H̃j,n(s2)| �
|θ(s1) − θ(s2)|

n + 1 + |En(s1) −En(s2)|
n + 1

� ‖θ′‖∞
|s1 − s2|
n + 1 + |E′

n(ς)| |s1 − s2|
n + 1 ,

for some ς between s1 and s2. The bound E′
n(s) = O(n e−Δn) uniformly in s ∈ (0, π), is a consequence of 

Proposition 3.10, therefore

|H̃j,n(s1) − H̃j,n(s2)| �
(
‖θ′‖∞
n + 1 + O(e−Δn)

)
|s1 − s2| = O

( 1
n

)
|s1 − s2|,

and hence, H̃j,n is contractive on Ωj,n for every sufficiently large n.
Finally, a similar calculation for Hj,n(s) yields

|Hj,n(s) − ej,n| � rj,n

(1
3 + ‖θ′‖∞

n + 1

)
,

which tells us that Hj,n(s) ∈ Ωj,n for every sufficiently large n. Moreover
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|Hj,n(s1) −Hj,n(s2)| �
‖θ′‖∞
n + 1 |s1 − s2|,

showing that Hj,n(s) is contractive on Ωj,n and finishing the proof. �
With the previous theorem and the Banach fixed point theorem, we deduce that for each j ∈ {1, . . . , n}

and every sufficiently large n, there are points sj,n and s∗j,n in Ωj,n, satisfying (4.3), and being the solutions 
of (4.1) and (4.2), respectively.

Proof of Theorem 2.1. A simple calculation shows that

|ej+1,n − ej,n| �
π − |θ(dj,n) − θ(dj+1,n)|

n + 1 � π

n + 1

(
1 − ‖θ′‖∞

n + 1

)
,

which means that |ej+1,n − ej,n| � O(n−1) while rj,n = O(n−2), and therefore for every sufficiently large n

the domains Ωj,n pairwise disjoint. Thus for every j ∈ {1, . . . , n}, Hj,n(s) = s has a unique solution 
sj,n ∈ Ωj,n satisfying (4.1) which proves the second statement.

By Proposition 3.10 we know that λj,n = ψ(sj,n) is an eigenvalue of Tn(a) lying on ψ(Ωj,n). Moreover, 
the points λj,n with j ∈ {1, . . . , n} are pairwise distinct, which proves the first statement.

We are left with the proof of the third statement. From Lemma 4.1, for each j ∈ {1, . . . , n}, we know 
that the point s∗j,n is the unique solution of (4.2) belonging to Ωj,n. Consider the function

Fn(s) ≡ s(n + 1) − θ(s),

and note that

Fn(sj,n) − Fn(s∗j,n) = (n + 1)(H̃j,n(sj,n) −Hj,n(s∗j,n)) = (−1)jEn(sj,n),

where En(s) is given by (4.1), then by the mean value theorem it follows that there is an s̃ between s∗j,n
and sj,n, such that

Fn(sj,n) − Fn(s∗j,n) = F ′
n(s̃)(sj,n − s∗j,n),

and therefore

|s∗j,n − sj,n| = |En(sj,n)|
|F ′

n(s̃)| .

The bound |En(s)| = O( e−Δn) uniformly in s ∈ (0, π), together with

|F ′
n(s)| = |n + 1 − θ′(s)| � n + 1 − ‖θ′‖∞ >

n + 1
2 ,

produces the estimation

|s∗j,n − sj,n| = O

(
e−Δn

n

)
.

To finish the proof we merge ‖ψ′‖∞ < ∞ (see Lemma 3.7) with

|λj,n − ψ(s∗j,n)| = |ψ(sj,n) − ψ(s∗j,n)| � ‖ψ′‖∞|s∗j,n − sj,n|,
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and write

λj,n = ψ(s∗j,n) + E(s∗j,n),

where E(s∗j,n) = O(n−1e−Δn) uniformly in j. �
Remark 4.2. Since Hj,n(s) is contractive on Ωj,n, it admits a unique fixed-point, namely s∗j,n. Furthermore, 
the recursive sequence

s
(1)
j,n ≡ ej,n, s

(k)
j,n ≡ Hj,n

(
s
(k−1)
j,n

)
(k � 2),

satisfies s(k)
j,n → s∗j,n as k → 0, together with the bound

|s(k)
j,n − s∗j,n| �

6‖θ′‖k∞θ(dj,n)
(n + 1)k+1 .

By (3.17) it follows that θ(dj,n) = O(dj,n(π − dj,n)) as n → ∞ uniformly in j. Thus, we can write

s∗j,n = s
(k)
j,n + O

(
dj,n(π − dj,n)

nk+1

)
,

as n → ∞ uniformly in j.

Proof of Theorem 2.2. Suppose that m = 2, consider the second term in the recursive sequence (s(k)
j,n)k, and 

write

s
(2)
j,n = Hj,n(s(1)

j,n) = dj,n −
θ(s(1)

j,n)
n + 1

= dj,n −
θ
(
dj,n − θ(dj,n)

n + 1

)
n + 1

= dj,n − θ(dj,n)
n + 1 + θ′(dj,n)θ(dj,n)

(n + 1)2 + O

(
θ′′(dj,n)θ2(dj,n)

n3

)
.

To improve the previous bound, from Proposition 3.8 we know that ‖θ′′‖ < ∞ and from (3.17) it follows 
that θ(dj,n) = O(dj,n(π − dj,n)) uniformly in j. Thus

s
(2)
j,n = dj,n − θ(dj,n)

n + 1 + θ′(dj,n)θ(dj,n)
(n + 1)2 + O

(
d2
j,n(π − dj,n)2

n3

)
,

which combined with s∗j,n = s
(2)
j,n + O(dj,n(π − dj,n)n−3) (see Remark 4.2), produces

s∗j,n = dj,n − θ(dj,n)
n + 1 + θ′(dj,n)θ(dj,n)

(n + 1)2 + O

(
dj,n(π − dj,n)

n3

)
, (4.4)

finishing the proof of the first statement.
Let us now work with the second statement. By (2.10) we know that

λj,n = ψ(s∗j,n) + O(n−1e−Δn),
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and (4.4) tells us that the main term in the expansion of s∗j,n is dj,n, hence in order to obtain an expression 
for λj,n, we need to expand ψ(s) around dj,n. For that purpose, we merge

ψ(s∗j,n) = ψ(dj,n) + ψ′(dj,n)(s∗j,n − dj,n) + ψ′′(dj,n)
2 (s∗j,n − dj,n)2 + O(|s∗j,n − dj,n|3),

with (4.4) to reach

ψ(s∗j,n) = ψ(dj,n) + r1(dj,n)
n + 1 + r2(dj,n)

(n + 1)2 + Ej,n,

where Ej,n plays the role of a remainder term and satisfies

Ej,n = O

(
ψ′(dj,n)dj,n(π − dj,n)

n3

)
+ O

(
ψ′′(dj,n)θ′(dj,n)θ(dj,n)

n3

)
+ O

(
ψ′′′(dj,n)θ(dj,n)

n3

)
,

while the coefficients rk are given by,

r1(dj,n) ≡ −ψ′(dj,n)θ(dj,n), r2(dj,n) ≡ 1
2ψ

′′(dj,n)θ(dj,n)2 + ψ′(dj,n)θ(dj,n)θ′(dj,n).

Finally, the bound

Ej,n = O

(
d2
j,n(π − dj,n)2

n3

)
,

is a consequence of (3.5), (3.17), and the fact that ψ(s) is infinitely differentiable in the interval [0, π]. The 
cases m > 2 can be readily shown. �

Theorem 2.2 shows in particular that, as n increases, there are eigenvalues arbitrarily close to the points ρ1
and ρ2. This situation happens, for instance, when either j/n → 0 or j/n → 1. The respective eigenvalues 
are called extreme. With the aid of Propositions 3.4 and 3.9, together with Theorem 2.2, we now give 
specialized asymptotic expansions for the extreme eigenvalues.

Proof of Theorem 2.3. We prove (2.11) first. For simplicity, we write νk instead of νk,1. From Proposi-
tions 3.4 and 3.9, we know that as s → 0, we have

ψ′(s) = 2ν1s + 4ν2s
3 + O(s5), ψ′′(s) = 2ν1 + 12ν2s

2 + O(s4), θ′(s) = κ1 + O(s2).

Then, as s → 0,

r1(s) = −2κ1ν1s
2 + O(s4) and r2(s) = 3ν1κ

2
1s

2 + O(s4).

Take s = dj,n and use the second statement in Theorem 2.2, to obtain

λj,n = ρ1 + ν1d
2
j,n + ν2d

4
j,n − 2κ1ν1

d2
j,n

n + 1 + 3ν1κ
2
1

d2
j,n

(n + 1)2

+ O(d6
j,n) + O

(
d4
j,n

n2

)
+ O

(
d4
j,n

n

)
+ O

(
d2
j,n(π − dj,n)2

n3

)
,

which combined with the fact O(d2
j,n(π − dj,n)2n−3) = O(j2n−5) together with the assumption j2/n → 0

gives us the first statement of the theorem. The second statement can be readily proved. �
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Table 1
The condition number κn for the eigenvector matrix of Tn(a), the generating function a(t) =
t2 + 6t + 6t−1, and different values of n.

n 128 256 512 1024 2048 4096
κn 3.40 × 1015 6.39 × 1019 3.17 × 1020 3.43 × 1021 5.16 × 1022 7.08 × 1022

5. Numerical experiments

In this section we test the asymptotic expansions in Theorems 2.2 and 2.3 for the Toeplitz matrices Tn(a)
with generating function

a(t) = t2 + 6t + 6t−1.

We split our experiments into inner and extreme eigenvalues.
To make an appropriate estimation of the errors, we need “exact” eigenvalues λj,n for the largest at-

tainable n. But, as mentioned in Section 1, the numerical computation of eigenvalues can be extremely 
difficult, which was our case. The condition number of the respective eigenvector matrix can explain those 
difficulties. Table 1 shows that the eigenvector matrix of Tn(a) is severely ill-conditioned. Then, to guarantee 
accurate exact eigenvalues, we employed the software Wolfram Mathematica v.13 and perform eigenvalue 
computations using no less than 300 and some times, 1000 precision digits.

We highlight here that our asymptotic expansions can be used to implement a matrix-less algorithm in 
the same fashion of [13,15,16].

5.1. General eigenvalues

We introduce the term-by-term approximation of λj,n, given by our expansion in Theorem 2.2, by

λ
sl(1)
j,n ≡ ψ(dj,n),

λ
sl(2)
j,n ≡ ψ(dj,n) + r1(dj,n)

n + 1 ,

λ
sl(3)
j,n ≡ ψ(dj,n) + r1(dj,n)

n + 1 + r2(dj,n)
(n + 1)2 , (5.1)

where

r1(s) ≡ −ψ′(s)θ(s) and r2(s) ≡
1
2ψ

′′(s)θ2(s) + ψ′(s)θ(s)θ′(s).

To implement the approximations in (5.1), we need the values of ψ(s), θ(s), and its first derivatives. Those 
values can be obtained numerically but the computation is slow, hence we opted to record a sample over a 
regular mesh of 6000 nodes, and to perform a local interpolation.

Trying to understand how good the approximation given by λsl(1)
j,n is, we can proceed as follows. From 

the second statement in Theorem 2.1, we know that λj,n = ψ(sj,n) satisfies

|λj,n − λj+1,n| � ‖ψ′‖∞|sj,n − sj+1,n| �
‖ψ′‖∞M

n + 1 , j ∈ {1, . . . , n− 1},

where M = 6‖θ‖∞‖θ′‖∞ + π(1 + ‖θ′‖∞), hence the distance between two consecutive eigenvalues has order 
O(n−1). On the other hand, by Theorem 2.2 we easily deduce |λj,n − λ

sl(1)
j,n | = O(n−1), which means that 

the one term eigenvalue approximation λsl(1)
j,n , produces an error comparable with the distance between 
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Fig. 5. The 10-base logarithm of the individual absolute error AEsl(k)
j,n for n = 4096 and different values of k: k = 1 (blue), k = 2

(red), and k = 3 (green). For the eigenvalue λj,n = ψ(sj,n) we took as independent variable sj,n and plotted the errors over the 
grid jπ/(n + 1) for j ∈ {1, . . . , n}.

Table 2
The maximum and normalized errors AEsl(k)

n and NEsl(k)
n , respectively, given by (5.2) with 

k = 1, 2, 3, for different values of n.

n AEsl(1)
n NEsl(1)

n AEsl(2)
n NEsl(2)

n AEsl(3)
n NEsl(3)

n

16 1.232 × 10−1 2.094 1.115 × 10−3 0.322 1.549 × 10−5 0.076
32 6.379 × 10−2 2.105 2.944 × 10−4 0.320 2.633 × 10−6 0.094
64 3.244 × 10−2 2.108 7.672 × 10−5 0.324 3.430 × 10−7 0.094
128 1.635 × 10−2 2.110 1.947 × 10−5 0.324 4.407 × 10−8 0.094
256 8.213 × 10−3 2.110 4.908 × 10−6 0.324 5.571 × 10−9 0.094
512 4.114 × 10−3 2.110 1.231 × 10−6 0.324 7.010 × 10−10 0.094
1024 2.059 × 10−3 2.111 3.085 × 10−7 0.324 8.787 × 10−11 0.094
2048 1.030 × 10−3 2.111 7.721 × 10−8 0.324 1.100 × 10−11 0.094
4096 5.152 × 10−4 2.111 1.931 × 10−8 0.324 2.891 × 10−12 0.094

consecutive eigenvalues, and as a consequence, it is good enough only for distribution purposes. In that 
case, we use to say that the approximation λ

sl(1)
j,n does not separate the eigenvalues.

For the individual and maximum absolute eigenvalue errors, we introduce the notation,

AEsl(k)
j,n ≡ |λj,n − λ

sl(k)
j,n |, AEsl(k)

n ≡ max
1�j�n

AEsl(k)
j,n . (5.2)

Fig. 5 and Table 2 show the data. According to the second statement in Theorem 2.2, we must have 
AEsl(k)

n = O(n−k), then the respective normalized error,

NEsl(k)
n ≡ (n + 1)k AEsl(k)

n ,

should have a bounded behavior, as a matter of fact, in Table 2 we can see that in our case, it has an almost 
constant behavior.

5.2. Extreme eigenvalues

The extreme eigenvalues have attracted the attention of the mathematicians since the middle part of the 
last century, they constitute an important parameter in the design of numerical algorithms and can be used 
to estimate the operator norm of a matrix.

In our case, we know that ρ1 > λ1,n > · · · > λn,n > ρ2 with ρ1ρ2 < 0. Thus

max |λj,n| = max{|λ1,n|, |λn,n|}.

1�j�n
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Table 3
The relative and normalized extreme errors REext(k)

1,n and NEext(k)
1,n , respectively, for the eigen-

value λ1,n of Tn(a), k = 1, 2, 3, and different values of n.

n REext(1)
1,n NEext(1)

1,n REext(2)
1,n NEext(2)

1,n REext(3)
1,n NEext(3)

1,n

16 1.617 × 10−2 0.274 4.000 × 10−3 1.156 9.925 × 10−5 0.487
32 7.280 × 10−3 0.240 1.065 × 10−3 1.160 1.301 × 10−5 0.457
64 3.418 × 10−3 0.222 2.752 × 10−4 1.162 1.665 × 10−6 0.457
128 1.650 × 10−3 0.212 6.996 × 10−5 1.164 2.107 × 10−7 0.452
256 8.105 × 10−4 0.208 1.763 × 10−5 1.165 2.649 × 10−8 0.447
512 4.014 × 10−4 0.205 4.428 × 10−6 1.154 3.321 × 10−9 0.448
1024 1.997 × 10−4 0.204 1.109 × 10−6 1.165 4.158 × 10−10 0.447
2048 9.965 × 10−5 0.204 2.776 × 10−7 1.165 5.201 × 10−11 0.447
4096 4.976 × 10−5 0.205 6.945 × 10−8 1.165 6.504 × 10−12 0.447

According to the first and second statements in Theorem 2.3, there are two types of extreme eigenvalues: 
the ones approaching either ρ1 or ρ2. We start by analyzing the eigenvalues λj,n that are arbitrarily close 
to ρ1. Take 1 � j0 < �√n 
, then for j ∈ {1, . . . , j0} we define

λ
ext(1)
j,n ≡ ρ1 + u1,1j

2

(n + 1)2 ,

λ
ext(2)
j,n ≡ ρ1 + u1,1j

2

(n + 1)2 + u2,1j
2

(n + 1)3 ,

λ
ext(3)
j,n ≡ ρ1 + u1,1j

2

(n + 1)2 + u2,1j
2

(n + 1)3 + u3,1j
4 + u4,1j

2

(n + 1)4 ; (5.3)

where

u1,1 ≡ −a(2)(t1)
2 (t1π)2, u2,1 ≡ −2u1,1t1

t1 − τ1
, u3,1 ≡ 3u1,1t

2
1

(τ1 − t1)2
,

u4,1 ≡
(
a(4)(t1)t41

24 − a(3)(t1)t31
6 − 5a(3)(t1)t41

72a(2)(t1)
− a(2)(t1)t21

3

)
π4,

and τ1, t1 are the zeros of a(z) − ρ1.
Now, we define the individual relative and normalized relative errors by,

REext(k)
j,n ≡

|λj,n − λ
ext(k)
j,n |

|λj,n − ρ1|
, NEsl(k)

j,n ≡ (n + 1)k REext(k)
j,n .

The reason behind these definitions is that when the eigenvalues λj,n are arbitrarily close to ρ1, that is, 
when |λj,n − ρ1| is arbitrarily small, the relative error REext(k)

j,n shows how precise the approximation really 

is, on the other hand, when |λj,n− ρ1| is big, the relative error REext(k)
j,n is close to the value |λj,n−λ

ext(k)
j,n |, 

that is, the absolute error. Moreover, a value of REext(k)
j,n close to 1, says that the measured object and its 

approximation are comparable. Table 3 and Fig. 6 show the data for the very first eigenvalue λ1,n.
Now, we study the eigenvalues λj,n which are arbitrarily close to ρ2. Let j0 be such that 1 � n −j0 < �√n 
, 

then for j ∈ {j0, . . . , n} we introduce the approximations

λ
ext(1)
j,n ≡ ρ2 + u1,2(n + 1 − j)2

(n + 1)2 ,

λ
ext(2)
j,n ≡ ρ2 + u1,2(n + 1 − j)2

2 + u2,2(n + 1 − j)2
3 ,
(n + 1) (n + 1)
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Table 4
The relative and normalized extreme errors REext(k)

n,n and NEext(k)
n,n , respectively, for the eigen-

value λn,n of Tn(a), k = 1, 2, 3, and different values of n.

n REext(1)
n,n NEext(1)

n,n REext(2)
n,n NEext(2)

n,n REext(3)
n,n NEext(3)

n,n

16 1.000 × 10−1 1.700 2.720 × 10−2 7.862 3.416 × 10−3 16.784
32 4.793 × 10−2 1.581 8.232 × 10−3 8.964 3.652 × 10−4 13.127
64 2.292 × 10−2 1.489 2.234 × 10−3 9.442 3.938 × 10−5 10.817
128 1.112 × 10−2 1.435 5.799 × 10−4 9.650 4.458 × 10−6 9.571
256 5.472 × 10−3 1.406 1.475 × 10−4 9.745 5.261 × 10−7 8.931
512 2.712 × 10−3 1.391 3.720 × 10−5 9.790 6.376 × 10−8 8.608
1024 1.350 × 10−3 1.383 9.339 × 10−6 9.812 7.842 × 10−9 8.445
2048 6.734 × 10−4 1.379 2.339 × 10−6 9.823 9.723 × 10−10 8.364
4096 3.363 × 10−4 1.378 5.855 × 10−7 9.828 1.210 × 10−10 8.323

Fig. 6. The 10-base logarithm of the individual relative error REext(k)
j,n for n = 4096, using the approximations (5.3) and (5.4) for 

different values of k: k = 1 (blue), k = 2 (red), and k = 3 (green). The left and right panels show the errors corresponding to the 
extreme eigenvalues λj,n = ψ(sj,n) such that sj,n approaches 0 and π, respectively.

λ
ext(3)
j,n ≡ ρ2 + u1,2(n + 1 − j)2

(n + 1)2 + u2,2(n + 1 − j)2

(n + 1)3

+ u3,2(n + 1 − j)2 + u4(n + 1 − j)4

(n + 1)4 ; (5.4)

where

u1,2 ≡ −a(2)(t2)
2 (t2π)2, u2,2 ≡ −2u1,2t2

t2 − τ2
, u3,2 ≡ 3u1,2t

2
i

(τ2 − t2)2
,

u4 ≡
(
a(4)(t2)t42

24 − a(3)(t2)t32
6 − 5a(3)(t2)t42

72a(2)(t2)
− a(2)(t2)t22

3

)
π4,

and τ2, t2 are the zeros of a(z) − ρ2. In this case, the individual relative error is given by

REext(k)
j,n ≡

|λj,n − λ
ext(k)
j,n |

|λj,n − ρ2|
.

Table 4 and Fig. 6 show the data for the very last eigenvalue λn,n.
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Remark 5.1. Theorem 2.3 contains asymptotic expansions for the extreme eigenvalues, derived from The-
orem 2.2. Therefore, the respective relative errors are asymptotically equivalent. For instance when the 
eigenvalues are arbitrarily close to ρ1, we obtain

|λj,n − λ
sl(k)
j,n |

|λj,n − ρ1|
−

|λj,n − λ
ext(k)
j,n |

|λj,n − ρ1|
= O

(
1

nk+1

)
, j = 1, . . . , j0, n → ∞,

while a similar relation holds for the eigenvalues arbitrarily close to ρ2. This situation can be appreciated 
by making a comparison between Figs. 5 and 6, along with Tables 3 and 4.
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