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Abstract

We study the individual behavior of the eigenvalues of the laplacian matrices of
the cyclic graph of order n, where one edge has weight o € C, with Re(a) < 0,
and all the others have weights 1. This paper is a sequel of a previous one where
we considered Re(a) € [0,1] (Eigenvalues of laplacian matrices of the cycles with one
weighted edge, Linear Algebra Appl. 653, 2022, 86-115). We prove that for Re(a) < 0
and n > Re(a — 1)/ Re(a), one eigenvalue is negative while the others belong to [0, 4]
and are distributed as the function x +— 4sin?(z/2). Additionally, we prove that as n
tends to oo, the outlier eigenvalue converges exponentially to 4 Re(a)?/(2Re(a) — 1).
We give exact formulas for the half of the inner eigenvalues, while for the others we
justify the convergence of Newton’s method and fixed-point iteration method. We find
asymptotic expansions, as n tends to oo, both for the eigenvalues belonging to [0, 4]
and the outlier. We also compute the eigenvectors and their norms.
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1 Introduction

For every natural n > 3 and every « in C, we consider the n x n complex laplacian matrix
L, with the following structure:

M+a -1 0 0 0 0 0 -a

~1 2 -1 0 0 0 0 0

0 -1 2 -1 0 0 0 0

I 0 0 -1 2 -1 0 0 0
8 = 0 0 0 -1 2 -1 0 0
0 0o 0 0 -1 2 -1 0

0 o 0 0 0 -1 2 -1

| —a 0 0 0 0 0 -1 l+a

If o is real, Ly, is the laplacian matrix of G, where G4, is the cyclic graph of order n,
where the edge between the vertices 1 and n has weight a;, and all other edges have weight
1. See Figure 1 for n = 8. The eigenvalues and eigenvectors of L, , are important to solve
the heat and wave equations on G, . See [14] for general theory on laplacian matrices.

Figure 1: Graph G,z

Matrices L, 5, can be considered as tridiagonal Toeplitz matrices with perturbations in
the corners (1,1), (1,n), (n,1) and (n,n). Several investigations in this area and some of its
applications have been recently developed, see for example [2-4,6,7,10,12,13,15,16,20-22].
These matrices can also be considered as periodic Jacobi matrices.

The present paper is a continuation of [11]. There we proved that for every « in C
the characteristic polynomial of Ly, defined by Dqn(A) = det(A — Lq ), equals the
characteristic polynomial Dge(q)n Of LRe(a),n- This implies that the eigenvalues of Lq
only depend on Re(«). For this reason, we are going to consider « as a real number. For
a in R, these matrices are real and symmetric, their eigenvalues are real, we enumerate
them as follows:

)\a,n,l < Aa,n,2 <...< Aa,n,n-



It is a very well-known fact that the eigenvalues of the n x n tridiagonal Toeplitz matrix,
with values —1,2, —1 in the non-zero diagonals, are asymptotically distributed as the
values of

g(x) == 4sin®(z/2) (x €10, 7). (1.1)

on [0, 7] as n — oco. By the Cauchy interlacing theorem [19, Theorem 4.2], it follows that
the eigenvalues of L, are also asymptotically distributed by ¢ on [0, 7], as n tends to
infinity. This is also a very simple application of the theory of generalized locally Toeplitz
sequences [9)].

In [11], we studied the individual behavior of the eigenvalues of the matrices Lq p
for o in (0,1). In that case, the eigenvalues of L, belonged to [0,4]. We solved the
characteristic equation by numerical methods and derived asymptotic formulas for all
eigenvalues.

Now we consider a < 0. This means that the interaction between the vertices 1 and
n has a negative coefficient, while the interactions between vertices 1 and 2, 2 and 3, ...,
and n — 1 and n, have the same positive coefficient. We do not have physical examples of
this situation.

If n > (a — 1)/c, then only one eigenvalue of L,y is negative while the others belong
to the interval [0,4] and behave as in the case 0 < a < 1, considered in [11].

Commonly, the spectral analysis ignores the eigenvalues outside the clusters. In this
paper, we focus our attention on these eigenvalues, so we introduce the next definitions.
The phrase “number of eigenvalues” assumes counting the eigenvalues with their algebraic
multiplicities.

Definition 1.1. Let N € N and (A,),>n be a matrix sequence where A,, is a n X n matrix
for every n. Suppose that 2 € C. We say that Q is an outlier adherent point for (A,)n>nN
if for every sufficiently small € > 0 the number of the eigenvalues of A, belonging to the
e-neighborhood of € is strictly positive and behaves as o(n) as n — oc.

We do not define the concept of outlier eigenvalue for an individual matrix; we speak
about outlier eigenvalues for a matrix A,, in the context of a matrix sequence (A )n>n-.

Definition 1.2. Let N € N and (A4,),>n be a matrix sequence where A, is a n x n
matrix for every n. Assume that m > N and A be an eigenvalue of A,,. We say that \ is
an outlier eigenvalue for A,, with respect to (A,)p>n if there exists € > 0 such that the
number of the eigenvalues of A,, belonging to the e-neighborhood of A behaves as o(n) as
n — 0o.

Figuratively speaking, Definition 1.2 means that A is an eigenvalue of A,, and there
are not many eigenvalues of A, near A\, when n is sufficiently large.

Obviously, if © is an outlier adherent point for (A,),>n, then there exist ¢ > 0 and
M € N such that for every m > M the eigenvalues of A,, belonging to the e-neighborhood
are outlier eigenvalues.



The principal novelty of this paper is a thorough analysis of the asymptotic behavior
of the outlier eigenvalues for the specific matrix family. In particular, we prove that
the sequence of outlier eigenvalues converges exponentially to the outlier cluster point
Qq = 40?/(2a — 1), as n — oo. The outlier eigenvalues naturally appear in the study of
some structured matrices (see [9, Example 10.7], [8]), but we have not found examples of
their detailed analysis in the literature, except for [12], where the asymptotic formula is
less precise.

The main results of this paper are stated in Sections 2. The corresponding proofs are
in Sections 3—6. We represent the characteristic polynomial in the convenient form and
show the localization of the eigenvalues (Section 3), the asymptotic behavior of the inner
eigenvalues and their computation with the Newton method (Section 4), the asymptotic
behavior of the outlier eigenvalue (Sections 5), and calculate the norms of the eigenvectors
(Section 6). In Section 7 we show some numerical experiments.

In comparison to works of other authors, we deal with a rather special matrix family,
but this matrix family is not trivial (the eigenvalues and eigenvectors are not given by
simple direct formulas), and our results on the eigenvalues and eigenvectors for this family
are very complete.

Remark 1.3. The case a > 1 (when G, has one “overweighted” edge) is slightly more
complicated, and we are going to study it in another paper. If « > 1 and n > a/(a — 1),
then one eigenvalue of L, , is greater than 4 and the others are in [0,4]. In that case,
as n tends to infinity, the maximal eigenvalue A, ,, converges exponentially to Q, =
40?%/(2a — 1) > 4. For a > 1, the situation essentially depends on the parity of n: if n is
even, then Ay pnpn < 4, and if n is odd, then Ay 5 > Q4.

2 Main results

Define ) )
Pa— @ , ie., Mo = lof + , (2.1)
o ||
Q Ao’ i Q 4 (2.2)
= ie. =— . .
T oq -1 - «T T2

Since a < 0, 5, > 1 and Q4 < 0. For every j in {1,...,n}, we put

| — 1)
dn,j = 7('] ) .
n
Theorem 2.1 (eigenvalues’ localization). Let n > 3.
1) If n < 3, then Agpn1 =0 and 0 < Ao n2 < g(dn2).

2) If n = sy, then Aani1 = Aan2 =0.



3) Ifn > Ao, then Qa < )\o“n71 <0 and )\a7n72 =0.
Furthermore, for every j with 3 < j < n,
Aang = 9(dnj)  (j is odd),
9(dnj-1) < Aanj < 9(dnj) (j is even).

Theorem 2.1 implies that A\, ; with odd j does not depend on a.

Theorem 2.1 provides another proof of the fact that the eigenvalues of L, ,, are asymp-
totically distributed as the function g on [0, 7].

Motivated by Theorem 2.1 we use g defined by (1.1) as a change of variable in the
characteristic equation when Ay, ; € [0,4] and set

Zamg =9 (Aamny)s

where g: [0, 7] — [0,4] is a restriction of g.
Define g_: [0,00) — (—o0, 0] by

g_(z) == 2 — 2 cosh(z) = —4sinh? g (2.3)

Define
Nq = max{3, |»| + 1}. (2.4)

If n > N,, we use (2.3) as a change of variable and put
San = 9= (Aan,1)-

In Figure 2 we have glued together g and reflected ¢g_ into one spline.

After applying the changes of variables g or g_, the characteristic equation transforms
to certain equations for z4, ; Or Sqn, respectively. Those equations, stated in the forth-
coming Theorem 2.2, will be written in terms of the following functions 7, and ¢4 ,. We
define 7, [0,7] — R by

No(z) == 2arctan (%a tan g) — 7 = —2arctan (%;1 cot g) . (2.5)

This function strictly increases and takes values in [—m, 0]. Define ¢q 5 : [0,00) = R by
Ya,n(x) == 2arctanh (%;1 tanh %) . (2.6)
This function strictly increases on [0,00) and takes values from 0 to
wq = log(1 — 2a). (2.7)

Notice that g_(wa) = Qq and tanh(w,/2) = 5, L.
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Figure 2: Plot of g (blue), plot of z — g_(—z) (green), points z,;j and sqp, and the
corresponding values of Ay p j, for & = —1/2 and n = 8. The red labels on the horizontal
axis are jm/n.

Theorem 2.2 (main equations). Let n > N,. Then sq, is the unique solution on (0,wq)
of the equation

T = Pan(T). (2.8)

For every even j with 4 < j < n, the number zopn ; is the unique solution on [0, 7] of the
equation

v = dy; + 128 (2.9)
n

For n > N,, the main equations from Theorem 2.2 can be solved by the fixed point
method and Newton’s method, see details in Theorems 4.2, 4.4, 5.2, 5.4. For n < N, we
only guarantee the convergence of the bisection method, see Remark 4.5.

Using equations from Theorem 2.2 we derive asymptotic expansions for Ao, ; as
n — oo. The expansion of A, 1 is drastically different from the expansion of the in-
ner eigenvalues. Therefore, we state the corresponding results in two separate theorems.

We define Ay, : [0, 7] = R by

g (@)na(@)  g'(@)na(x)n6(z) + %g”(w)na(ﬂf)a

Ronl@) = (o) + L) &
A . mpt
For all even j with 2 < j <n, we define \;"}"2"" by
t
Namg = Ban(dng). (2.10)



Theorem 2.3 (asymptotic expansion of inner eigenvalues). There exists Cy(a) > 0 such
that for every n > N,

Ci(a)
asympt 1
max )\a’nvj - )\anj < 3
4<j<n . n

J even

(2.11)

To state the asymptotic formula for A, , 1, we introduce the following numbers:

By 1602 (a — 1)? By 64a3(a — 1)3 Bus = 320%(1 — a)?(202 — 2a+ 1)
(0% A 9 [6% - —~ a2 o — .
’ (1 —2a)? ’ (1-2a)3 ’ (1-—2a)3
(2.12)
Equivalently,
16522 643 3252 (52 +1
/Ba,l = ﬁa 5a,2 = ﬁ; /Ba,?: = (}(:2(_'11)3) (2-13)
« « «
We define ASY"P" by
Aij%ﬁpt = Qq + Ba1e” "™ + Byone 2o — B, gem 2, (2.14)

Theorem 2.4 (asymptotic expansion of the first eigenvalue). As n — oo, the extreme
eigenvalue Aon1 Of Loy, converges exponentially to €,. More precisely, there exists
Ca(a) > 0 such that for every n > N,

Aot — APt < Co(a)n?e 2. (2.15)

Since e~“> = 1/(1 + 2|a]), the expression e~ "> can be written as 1/(1 + 2|a|)".

So, if @ < 0 and n is large enough, the minimal eigenvalue goes out of [0,4] and
converges rapidly to the negative number (2, and the situation with the other eigenvalues
is similar to the case 0 < a < 1, but there is no eigenvalue in the interval (0, g(27/n)).
The “left spectral gap” equals Aq 5.2 —Aan,1 = |Aa,n,1| and converges exponentially to [, |
as n goes to infinity.

In particular, we conclude that Definitions 1.1 and 1.2 make sense for our matrix
sequence: (), is an outlier adherent point for (Lap)n>3, and Agpn1 for n > N, is an
outlier eigenvalue for L, ;.

Finally, we focus our attention on the eigenvectors. In general, for complex values of
a, the eigenvectors depend on «, not only on Re(«).

Theorem 2.5 (eigenvectors for Re(a) < 0). Let a € C with Re(a) <0 and n > Ne(q)-
Then Ly has the following eigenvectors.

1. [1,..., l]T is an eigenvector associated to the eigenvalue Mg pn2 = 0.

2. For every j, 3 < j <mn, the vector vanj = [Van,jklie; with the following components
is an eigenvector associated to Ao j:

Vanjk = sin(kzan;) — (1 —@)sin((k — 1)zam,;) +asin((n — k)zapn).  (2.16)

7



3. The vector Van,1 = [Van,1klf—; with the following components is an eigenvector
associated t0 Agpn1:

Van1k = sinh(ksqn) — (1 — @) sinh((k — 1)sq,n) + asinh((n — k)sapn).  (2.17)

If n < 3Re(q), then [1,...,1]7 is an eigenvector associated to Aan,1 = 0, and the
components of an eigenvector associated to Ay, 2 can be computed by (2.16).

If « <0and n =2, (ie, a=—1/(n—1)), then the eigenvalue 0 has two orthogonal
eigenvectors: [1,...,1]" and [-(n —1),—(n —3),...,n—3,n—1]T.

To approximate the norms of the eigenvectors, we define

Re(a) —|of®

_ 1= Rela) 901re(e) (@) + 5@ —Re(e) (@) +2lal*, (2.18)

vol) = T4 g gy A
) o |

24/2(Re(a)? — Re(a))
Theorem 2.6 (norms of eigenvectors for Re(a) < 0). Let o € C with Re(a) < 0 and
n > NRe(a)'

(2.19)

fho :

1. If 5 > 3 is odd, then

n
lamillz =1 = aly/ S Aam;- (2.20)

2. If j > 4 is even, then

[va,n,jll2 = \/er Oa <\}ﬁ> : (2.21)

with Oy, (ﬁ) uniformly on j.
3. Asn — oo,

lvanill2 = pa €™ +0(n) = pa(l —2Re(a))™ + O(n). (2.22)

In Propositions 6.1 and 6.2 we state exact formulas for the eigenvectors, but they are
more complicated.

3 The characteristic polynomial and eigenvalues’ localiza-
tion
In this section, we repeat some formulas for Dg (\) == det(A] — Ly, ) established in [11]

and prove Theorem 2.1. Propositions 3.1, 3.2 and Lemmas 3.3, 3.4 were proved in [11,
Section 4]. Proposition 3.1 also follows from [5, Corollary 2.4].



For every m in {0}UN, we denote by T}, and U,, the mth degree Chebyshev polynomials
of the first and second kind, respectively. They are determined by the following properties:

t t*l tm tfm t t*l tm+1 _ tfmfl
T, () g () - S (3.1)
2 2 2 t—t1

Proposition 3.1 (characteristic polynomial of L, ,, for complex «). Forn >3 and a € C,

A—2 A—2
Dan(N) = (A — 2Re(@))Up_1 (2> — 2Re(a)Up_s (2> +2(=1)"" Re(a).
In the rest of the section, we suppose that a < 0.
Proposition 3.2. Forn > 3,
Dt 12) = o -1y PrlDden®) (32
where
t t t t
W(t) = (2 —D)Up_q (=), wn®) =1 —a)T, | = “Unp1 | =]. 3.3
Pl =@ =001 (5). aan0=0-an (5) +aguia (5] 63
The polynomials (3.3) after the change of variable ¢ = 2 cos(z/2) read as
pn(2cos(x/2)) = —4sin g sin %, dan(2cos(x/2)) = (1 — a) cos % + acos 288121:2 :
Taking into account that g(x) = 4 — (2cos(x/2))?,
4sin £ sin &F nx x sin &F
Dan = (-1t 2" "2 ((1- — —2 ). 4
o)) = () IEREREE (- ajeos T pacos UL ) ()

Analogously, after the change of variable ¢t = 2 cosh(x/2), (3.2) transforms to

ivh Z qinh 2E
n4smh251nh 5

Don(g—(z)) = (1) <(1 — «) cosh ? + a.cosh Esinh an) . (3.5)

T : X
cosh 3 2 sinh 3

Lemma 3.3. For every j with1 <j<n-—1,

q (2cos j”) -, if J is even,
— | = i—1 .
o 2n (=1)"7 acot =, if j is odd.
Moreover,
0, if n s odd,
0) = n 2)=(1—«)+ an.
Gan (0) {(—1)2(1 — a), if n is even, Gan(2) = ( )



Lemma 3.4. Ifn is odd, then

. 2qu n(t) n—1
lim ———= = (—1) 2 <a—i— 1—an>,
-0+t =1 1=
and if n is even, then
2pn(t n
lim Pa(t) =4(-1)2n.
t—0t+ 1

Proposition 3.5 (trivial eigenvalues of L, ). For every n > 3 and every even j with
0 <j<n-—1, the number g(jm/n) is an eigenvalue of Lq .

Proof. Follows from (3.3) or (3.4). O

For every j with 1 < j < n, we define

Lo, = ((J' —2)m (G- 1)7T> — (djor, ).

n n

Proof of Theorem 2.1. From Lemmas 3.3 and 3.4 we obtain the following facts.

1. If n < (o —1)/cv, then gqn(2cos(z/2)) changes its sign in the interval I, o.

2. If n=(a—1)/c, then go,(2) = 0.

3. If n > (a — 1)/a, then g, (t) changes its sign in the interval (2,7, + 7, !) where
To = /1 — 2a. Indeed, by (3.1) and the equalities 1 —a = (1+72)/2, a = (1-72)/2
it follows that

1 1 2\,.—n
Gan | Ta+— | = 5(1 + Ta)ra > 0.

Ta

Lemma 3.3 and assumption n > s, imply that ¢o,(2) < 0. Finally, a simple
computation shows that
Qo =4 — (1o +1,1)2

Hence, we obtain the statements of the theorem about A, 1 and A, 2. For the rest of
the eigenvalues, the proof is similar to the proof of [11, Theorem 1]. In particular, for odd
J, we use Proposition 3.5. 0

4 Inner eigenvalues

In this section, we suppose that o < 0. If A € (0,4), we use the change of variable
A = g(z), with € (0,7), in (3.2). Then, D (g(z)) = 0 reduces to gon(2cos(z/2)) =0,
which is equivalent to

nx x
tan — = s, tan —.

2 2
In particular, for even j with 4 < j < n, the solution z, , ; belonging to I, ; satisfies (2.9).
Thereby we obtain the second part of Theorem 2.2.

10



Figure 3: Plot of 7, (blue) and the left-hand side of (4.1) (green) for a« = —1/2, n = 8
(left) and o = —3, n = 9 (right).

Equation (2.9) from Theorem 2.2 can be rewritten in the form

nx — (j — 1)m = na(x). (4.1)

Figure 3 shows 7, and the left-hand side of (4.1) for a couple of examples.
Proposition 4.1 and Theorem 4.2 follow directly from the properties of 7, similarly
to [11, Propositions 21 and 22]. The first two derivatives of 7, are

o (14 tan? 2) 1 w2 -1

' (x) = = —+ , 4.2
a(7) 1+ 52 tan? & Ko A (1+%§tan2%) (4.2)

2-1)(1 Z2) tan %
ng(x):_%a (%a )( + tan g) an2‘ (4.3)
(1 + 52 tan? Z)

Proposition 4.1. Each derivative of no is a bounded function on (0,7). In particular,

2
x, —1

sup | ()] = >, sup_[r(w)] < =5
0<z<m O<z<m

Theorem 4.2. Let n > N,, j be even, 4 < j < n. Then the function x — d; + no(x)/n
is a contraction on cl(Iy ;), and its fixed point is zqp ;.

Due to Theorem 4.2, z, 5 ; can be computed by the simple iteration method. Figure 4
shows the functions from Theorem 4.2 for a couple of examples.

In the upcoming Proposition 4.3 we recall some sufficient conditions for the convergence
of Newton’s method for convex functions and provide an upper bound for the linear
convergence. The corresponding proofs appear in [11], or in [18, Section 22, Problem
14] and [1, Theorem 2.2].

11
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Figure 4: Plots of the functions from Theorem 4.2 and their fixed points, for « = —1/2,
n =8 (left) and a = —3, n =9 (right).

Proposition 4.3. Let a,b € R with a < b, F is differentiable and F' > 0 on [a,b], F is
convez on [a,b], ¢ € [a,b], F(c) =0, y© € [¢,b]. Define the sequence (y™)_, by the

m=0
recurrence relation
F (y(m))

(m+1) - \Jd )
P ()

(m)

Y =Y

o0

o decreases and converges

Then y™) belongs to [c,b] for every m > 0, the sequence (y™)

to c, with
F/(a) m
Yy c< (b a)(l F’(b)) .

For every n > 4 and every even j with 4 < j < n, we define hqp;: cl(f,;) = R by

han,j(2) = nx — (j = D7 = 1a(z).
Recall that N, is defined by (2.4).

Theorem 4.4 (convergence of Newton’s method). Let n > N, j be even, 4 < j <n and
(0) (m)

Yan; = dn,j- Define the sequence (y, . ;)yr—o by the recursive formula
hen.j <y(m_,1))
-1 )T a,n,j
y((ﬁ)] = yfffu - (m—1) (m > 1). (4.4)
o ()
a7n7] a7n7j
Then (yglr,’;?,j)%ozo is well defined and converges to zap j, and the convergence is at least
linear: , .
(m) w [ xi—1
Yan,j — “anjg < E (%:;’L — 1) . (45)

12



Moreover, if n > 2N, then the convergence is quadratic, and

2N\ 2Mm—-1
w [T
- <t (52) (46)
Proof. Formulas for 7, and 7, ((4.2) and (4.3)) imply that hg, ,, ; > 0 and hg,, ; > 0 on
cl(Z,, ;). Moreover, dp j—1 < Zanj < yg;)m = dy,j. So, the assumptions of Proposition 4.3

are satisfied. Here are rough estimates of the derivatives of h, ;, ; at the extremes of I, ;:

1
n— = h:x,n,j(o) < h/oc,n,j(dn,jfl) < h/a,n,j(dn,j) < hix,n,j(ﬂ-) =n- o
Therefore,
_ Ia,n,j(dn»j—l) <1_ ;,n,j(o) _ %gl -1
h/a,n,j(dnvj) B h/a,n,j(ﬂ—) KoM — I
and we obtain (4.5).
Finally, if n > 2N,, then
" 1
r 022X o (@) 3 T max |ng ()| T2 1)  m »
n 2 min |k, ()] S dn(n — ) 202
" 202;6127r|h0"”’9($)| 2n <n— max n;(x)|> n(n = xa) "
0<z<m

which implies the quadratic convergence with upper estimate (4.6); see, e.g., [1, Section 2.2]
or [11, Proposition 26]. O
The initial condition yg?zm = d,, j assures that we start from the correct side of the
root. Otherwise, the rule (4.4) can yield a point greater than (j — 1)m/n or even than .
For m large enough, yfﬁ) ; approaches to zq,n j, and the convergence in Theorem 4.4
becomes quadratic, according to the general theory of Newton’s method.

Remark 4.5. For —% < a < 0, we have that s, > 3. Let us explain the situation with
the eigenvalues for 3 < n < ,.

e For every even j with 2 < j < n (except for n = s, and j = 2), 24, ; satisfies
equation hq p j(2) = 0 and can be computed by the bisection method.

e Since ||n),||lco/n > 1, we cannot guarantee the convergence of fixed point method for
all j.

o i

o J(3:) can vanish for some j and x, and we cannot guarantee the convergence of
b I
Newton’s method.

13



Now we pass to the asymptotic analysis of the eigenvalues A, 5 ; with even j such that
4<j<n,asn— oo.
By Theorem 2.2, for every n > N, and every even j with 4 < 57 < n,

™
= dp | <~
‘Zayn:.] nv.]| — n

The proofs of the next Propositions 4.6 and 4.7 are very similar to the proofs given
in [11, Propositions 29 and 30].

Proposition 4.6. Let n > N, and j be even with 4 < j <n. Then

(e dn ) «
Za,n,j - (dn,] + 0 (’I’L J))’ S 71—%2 . (47)

n

Proposition 4.7. There exists C3(a) > 0 such that for every n > N, and every even j
with 4 < j <mn,

na(dn,j) + na(dn,j)n(/l(dn,j)

n n2 + Tan,j (48)

Zan,j = dn,j +

where 1o j| < CZ—(?,O‘)

Proof of Theorem 2.3. Substituting (4.8) into g and using Taylor expansion of g around
dy,j, we obtain the asymptotic expansion (2.10) with error bound (2.11). O

5 First eigenvalue

In this section, we suppose that & < 0 and n > N,, and we analyze the behavior of Ay 1
as n — oo. Recall that s, @qn, and N, are defined respectively by (2.1), (2.6), and (2.4).

Proof of Theorem 2.2. Let n > N,. If A < 0, we use the change of variable A = g_(x) with
z € (0,00), and obtain (3.5). Then, Dq (g (z)) = 0 takes the form g, (2 cosh(z/2)) = 0,
ie.,
tanh " = o tanh . (5.1)
2 2
By Theorem 2.1, there is a unique solution in (0, 00) of (5.1), namely s, . Dividing both

sides of (5.1) by », and applying arctanh, we rewrite this equation in the form (2.8). The
second part of Theorem 2.2 is proved in the beginning of Section 4. 0

The main advantage of equation (5.1) is that ¢, is a “very slow function” for big
values of n. A straightforward computation yields

. Ny na(a —1)
2) _ , 5.2
Pan(®) (52 — tanh? %) cosh® & a2 + (1 — 2a) cosh? ¢ (5:2)
na(a — 1)(1 — 2a) cosh % sinh %

(02 + (1 - 2a)cosh?2z)® (5.3)

(Pgm,(l') - -
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Recall that Q, and w, are defined by (2.2) and (2.7). Define

2 —1)—a?
fon = — arccosh \/na(a )—a .
’ n 1 -2«

Proposition 5.1. Let n > N,. Then ¢, has the following properties.
1. pan 1s strictly increasing and strictly concave.
Oonlan) = 1; moreover, ¢, ,, > 1 on [0,4a,) and oy, , <1 on (Lo, +00).
limy s 4 oo Pan(T) = wa.
Sa,n 15 the unique fized point of Yoy on (0,+00).

Pan(x) > x for every x in (0,lqn].

SO N R

lon < Sanm-

Proof. Properties 1 and 2 follow from (2.6), (5.2), and (5.3). The limit in 3 is easy to com-
pute taking into account that tanh(ws/2) = s, *. Property 4 follows from Theorem 2.2.

To prove 5, we apply the mean value theorem to ¢, , on the segment [0, z], taking into
account property 2.

Let us prove 6. Due to property 5, we have that ¢, (z) > « for every z in (0,44 ).
Hence, the fixed point of ¢, , cannot belong to (0,44 ,]. On the other hand, the function
T — & — Pan(z) is continuous and changes its sign on [¢y , +00). Therefore, ¢, , has a
fixed point on (£q y, +00). O

Figure 5 shows ¢, together with the identity function.
Theorem 5.2. Let n > N,. Then @qn is a contraction on [pan(lan),Wal-

Proof. As we have already mentioned in Proposition 5.1, ¢, , strictly increases, and 4,0’0[7”
strictly decreases. Moreover, by property 5 from Proposition 5.1, o n < @an(a,n). There-
fore, for every z in [pa.n(la,n), Wals

Spa,n(ea,n) < @a,n(@a,n(ga,n)) < @a,n(w) < Wa,

and
0< ‘P,a (r) < @a n(Pa n(ga,n)) < ‘Pix,n(ﬁa,n) =1

S0, Ya.n([Panlan);wal) € [Pan(lan),wal, and ¢g, ,(Ya,n(fan)) is a Lipschitz coefficient
for Pa,n OI [(Pa,n(ga,n) W ] Il

For every n > N,, we define f,,: [0,400) = R by

fan(z) =2 — @pan(x).
Figure 6 shows fq 5.
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Wa
Sa,n

Za,n Sa,n Wa

Figure 5: Plot of ¢, (blue), tangent line to the graph of ¢4, at ¢, (purple), and plot
of z — x (green), for « = —1/2 and n = 6.

Zoc,n Sa,n

Figure 6: Plot of f,, (blue) and tangent line to the graph of f,, at {n, (purple), for
a=—1/2and n =6.
Proposition 5.3. Let n > N,. Then fo, has the following properties.

1. fan >0 o0nl0,400), and fa, is strictly conver.

!/

an 15 strictly negative on [0,€y,,) and strictly positive on (Lo pn, +00).

2
3. limy o0 fan(z) = +00.

4. San is the only root of fon in (0,+00).

5. fam 1s strictly negative on (0,sq,n) and strictly positive on (Sqn,+00).

Proof. Properties 1-4 follow from Proposition 5.1. To prove property 5, we also apply the
intermediate value theorem. O
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Theorem 5.4 (convergence of Newton’s method applied to fo,). Let n > N,. Then the

sequence defined (ygz));’,f:o by

s - ) Eyimg
, ’ (/)z,n yo:)}b_

takes values in [sqn,wq| and converges to Sq.n.

y

(m

21 = W, Yo (m>1),

Proof. Theorem 2.1 and Proposition 5.1 yield fn, < San < wo. By Proposition 5.3,
an > 0and fJ >0 on [sqn,ws). The conclusion now follows from Proposition 4.3. [

The convergence in Theorem 5.4 is at least linear convergence, but it becomes quadratic
after a finite number of steps.

Proposition 5.5. The sequence (san)n>N, s strictly increasing: if n > m > N, then

Samn > Sa;m-

Proof. 1t follows directly from (2.5) that ¢qam(z) strictly increases with respect to m.
Thereby, for n > m > N, and for every = > 0,

Jan(®) < fam(x).

In particular,
foz,n(sa,m) < fa,m(sa,m) =0.

Property 5 from Proposition 5.3 implies that sq,n > Sa,m. O
Corollary 5.6. For every n > Nu, San > fa,N, -

Proof. Indeed, sqn > Sa,N, > fa,n, Dy property 6 from Proposition 5.1 and Propos-
tion 5.5. O]

Proposition 5.7. If n > N,, then
0 <wa — San < Cyla)e™ ", (5.4)

where

4 cosh? “a 4 cosh? “a 43¢ 4
Ca(a) ::2exp< 2)2( al)exp<e( = )

2y, el N, #a 2 — 52 — 1)y N,

Proof. By the mean value theorem applied to tanh(z/2) on [Sqn,wa], there exists £ in
(Sa,n,wq) such that

Samn 1

2 2cosh2g

tanh % — tanh (Wa — San)-

17



Notice that cosh(£/2) < cosh(wa/2). Hence, we can estimate wq — Sq,n, from above:

Wa — Sa,n < 2COSh2 % (tanh % — tanh 86;%) )

Since s, satisfies (5.1) and tanh(w,/2) = 5 !,

2 cosh? Lo ns 4 cosh? Yo
Wo — Saum < ———2- (1 — tanh a’n) < 2 pMSan, (5.5)

Ao Ao

By Corollary 5.6, e "$an < e~ ™a.Na . We also have the elementary inequality ze ™ < 1/e
for every x > 0. By these inequalities and (5.5),

4 cosh? «a 4 cosh? “a 4 cosh? o
n(wa — SO:,TL) S 727167”6&7]\]& = ﬁQnga’NaeineaﬁNu S 672
Ao a,Nqo Za €L, N, X

Now we combine this inequality with (5.5):

2 we 2 wy 2 we
o — s < 4 cosh %e—n(wa—sa,n)e—nwa < 4 cosh” % exp (4cosh “2) o—mwa [
’ Ao Ao eéa,Na%oz
Define ( ) )
45z, 4ot (225 + 1
= = 5.6
71,0& %gé _ 17 72,0& (%g[ _ 1)2 ( )
Lemma 5.8 (asymptotic expansion of ¢, 1). Ast tends to infinity,
Pai(t) = wa =Ml + y20e”F +0(e™), (5.7)

Proof. Since tanh(t/2) = (1 —e7%)/(1+e7Y),

a1(t) =v(e™"), where (u):= arctanh (%;11 _T_Z) :

We start with the Taylor-Maclaurin expansion of the rational function u — (1—u)/(14u)

around O:
1—wu 2u

=1- =1-2u+2u®+ O(u?).
T a T+ u u+ 2u” 4+ O(u°)

Then, we apply the Taylor expansion of arctanh around s !:

v sty

O(y®).
I—s? a—s?p )

arctanh(s¢, ' +y) = arctanh (s, ') +

18



In the last expansion we substitute y = 23, 1(—u + u? + O(u?®)) and use the relation

O(y) = O(u):
¥ (u) = 2arctanh (%,;1 + 2 (—u +u? + O(ug)))

1 4%;1 2 3
= 2arctanh(s, ") + = (—u+u?+0?))
—
+ % (—u+ u® + O(us))2 + O(u?).
(1= 5")

Simplifying and taking into account that tanh(w,/2) = !, we obtain the Taylor—

Maclaurin expansion of ¥ around 0:
P(u) = wa — V0t + Y2,0u” + O(u?).
Finally, we put « = e~ and obtain (5.7). O
Theorem 5.9 (asymptotic expansion of s, ). As n tends to infinity,
San = Wa — V1,08 " — 'yiane_%”“ + Yo.a€ 2 4 O(n?e 3, (5.8)

Proof. By formula (5.4) from Proposition 5.7, we have an asymptotic expansion of s,

with one exact term:
804777/ — wa + O(einwa). (5'9)

Therefore,
e M = g MWwatOMmeT) _ mnwa (] 4 O(nem™e)) = e e 4 O(ne ™). (5.10)
This also implies a rough upper bound for e="%«n:
e Man = O ). (5.11)

The main idea of the following proof is to combine (5.9) with (2.8) and Lemma 5.8. We
apply the asymptotic expansion (5.7) with two exact terms and with ns, , instead of ¢:

San = @a,n(sa,n) = @a,l(nsa,n) = Wq — 'Yl,ae_nsa’n + O(€_2n8a’n)-
We simplify this expression using (5.10) and (5.11):

Sam = Wa — Va0 4+ O(ne 2™  O(e™ )

)

=Wq — Y1,a€ "+ O(ne_%“’a).

Now, we use this expansion to improve (5.10):

72nwa)

—NSa,n —NWa 6'71704716’"“’& +0(n2%e

e =€
—_ efnwa (1 +’Yl,an€72nwa + O(n2672nwa))

— e—nwa +’Yl,ane_2nwa + O(TLQG_STMO‘).

19



Next, we combine this expansion with (5.7):

San = Soa,n(soz,n) = Spa,l(nsa,n) = Wa — ’Yl,ae_nsa’n + 'Y2,oze_2ma’n + 0(6_3%&’”)

= Wa — VM, (67"““ + ’Y1,an672nw”‘ + O(n2673"w”‘))

+ 2,0 (€7 + Y1 ,ame 2 + 0(712673”&)&))2 + O(e3™e),
Simplifying this expression we get (5.8). u

Remark 5.10. For n large enough, Theorem 5.9 provides a more precise localization of
Sa,n than in Theorem 5.2 and Proposition 5.7. Namely, there exists M, such that for
n > Mg,

nwa __ A2

- —2nw,
Wa — V1,a€ Y,aM€ ¢ < San < Wq-

Proof of Theorem 2.4. We expand g_ by Taylor formula around wq:

9+ ) = g-0) + o () + 22 1 o),

Then we substitute the expansion (5.8) of sqp:

)\a,n,l = g— (Sa,n)
=g (Wa — V1,06 — ’yiane_zm’" + y2,0€ e O(n26_3”“’0))
— 0 () + 9 () (— 1€ — AR eI 4 e 4 (2 Snen)

g” (WC\!) —nw 2 —2nw, —2nw, 2 —3nw,
3 ) (o e 2 meme 4 e~ 1 O(nte o))

+ O(e—3nwa)

= g (wa) = Nad. (Wa)e ™ =] 1" (wa)ne

2 N
_ (W
+ ('yagg’_ (wa) + W) e—2nwa +0 (n2€—3nwa) .

2

—2nwq

2

Recall that g_(wa) = 2. Hence we obtain (2.14) and (2.15), with the following coeffi-
cients:

1
Bag = —0-(Wa)V,as  Baz =—9-(Wa)1lar Bas=—9-(Wa)Va2 — §gﬁ(wa)via-

Calculate the derivatives of g_ at wq:

gi(wa) = —2sinh(w,) = 1(_ o ) — _%(% _011’
2(2a% — 2+ 1) 2(32 +1)
" _ _ B
g" (wa) = —2cosh(wy) = — o _ %ga_ =
Combining with formulas (5.6), we write 8q 1, Ba,2, and B3 as (2.12) or (2.13). O
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6 Eigenvectors

We recall that Aanj = ARe(a),n,j- Nevertheless, it turns out that if Im(a) # 0, then the
eigenvectors associated to L, , have complex components. So, in this section we suppose
that « belongs to C and Re(a) < 0. To simplify subindices, we put

Ko = HRe(a)> Ny = NRe(a)7 Wa = WRe(a)» Qo = QRe(oz)v

Mo = MRe(a)y  Ra,n,j = ZRe(a),n,j>  Sa,n = SRe(a),n-
Proof of Theorem 2.5. Formulas (2.17), (2.16) are consequences of [11, Proposition 8]. [

Recall that v, is defined by (2.18). For every x € [0, 7], we define

_1—af |af?
a(T) = 5 g(x) cos(na(r)) + — 9(Ma(z)) cos(z)
T M( (z) + _ _ 9ln |2
5 9(x) + g(x + na(r)) — g(na(r))) — 2|al” cos(z).

Proposition 6.1 (exact formulas for the inner eigenvectors). Let n > 3 and 3 < j < n.
If j is odd, then ||van ;|2 is given by (2.20). If j is even, then

sin(7a (za,n,j )

e () (61)

Va3 = nva(zam) +

Proof. These formulas are similar to [11, (66), (69)] and are proved in the same manner.

O
In this section, we use several identities for hyperbolic functions:

sinh(z) + sinh(y) = 2sinh L :;: Y cosh Z :5 y, (6.2)
2 cosh(z) cosh(y) = cosh(x — y) + cosh(z + y), (6.3)

2 cosh?(z) = 1 + cosh(2z),

- inh h 1
Z cosh(2kz +y) = sinh(na) CO,S nt b+ y) (6.5)
sinh(x)
k=1
Define
. Aantl sinh(2n5q,n)

Ylam = 2 <n + 2sinh(sq,p) > ’ (6.6)

_ —1)s sinh(nsqa.n)

an = 2|a|? sinh? (7= Dsan R——— .
U2« |O[| Sin 2 n+ Sinh(sam) ’ (6 7)
-1 a,n a,n . a,n inh a,n

u3,a.n = 4Re(a) sinh (n 2)8 — cosh ns27 sinh 82’ <n + S:?Dh(zﬁin))) . (6.8)
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Proposition 6.2 (exact formula for the norm of the first eigenvector). Let n > N,. Then
Ivanall3 = w1,0m + U200 + U3.00- (6.9)

Proof. We transform (2.17) using (6.2):

v = 2sinh S5 cosh 28 = Dsan | o gjup (27 Ddan o, (011 _22k)5a,”.
Then,
[Van,1,%|> = 4sinh? S‘;’” cosh? ¥ _21)5a,n
+ 4|a|* sinh® ("_;)Sa“ cosh2 (11 —22k)sa,n
+ 8 Re(a) sinh 305" sinh (n — ;)Sa,n osh (2k —21)3a,n cosh (n+1 —22]{)3&7”.

Applying (6.3) and (6.4), we simplify some products or squares containing ksq :

a,n,l

A
Wan1kl® = - (14 cosh(2ksan — Sam))

+ 2|r|? sinh? (n—;)san (1 + cosh(2ksamn — (n+ 1)san))
+ 4Re(a) sinh = ;)S“’” sinh 52’” X
X <cosh Nan + cosh <2ksa7n — (n+2) 3a7n>> )
2 2
Finally, we sum over k, use (6.5), and obtain (6.9). O

Lemma 6.3. Asn tends to infinity, expressions (6.6), (6.7), and (6.8) have the following
asymptotic behavior:

QOé 2nw
= %W | O(nee 6.10
Ul,a,m 3 sinh (g e + O(ne™?=), (6.10)
‘a‘Qeiwa 2nw
= e O(nee 6.11
UZ,OZ,H 4 Sinh(wa) € + (ne )7 ( )
Qa 2nw
= — o« + O(ne™™*). 6.12
U3,a,n 3 sinh(wa) € + (ne ) ( )

Proof. We are going to prove (6.10); the proofs of (6.11) and (6.12) are similar. Asn — oo,
by Theorem 2.4,
Aoz,n,l =0+ O(einwa) (613)
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By (5.9),

e2nsan — exp(2nwq + O(ne™ ")) = e2nwa (14 O(ne ™)) = e2nwe 4 O(ne"*=),

1 1
= O(e ).
sinh(San)  sinh(wy) +O(e )
Therefore inh(2 ) )
S NSan 2nw nw,
= = @ “). .14
2sinh(sq,n) 4sinh(wa)e +0ne™) (6.14)
We conclude the proof by substituting (6.13) and (6.14) into (6.6). O

Proof of Theorem 2.6. Formula (2.21) follows from the exact formula (6.9), using the ap-
proximation (4.7), similarly to [11, (19)]. To prove (2.22), we apply Proposition 6.2 and
Lemma 6.3. The principal terms in the expansions (6.10) and (6.12) mutually annihilate,
and

afer

2nw nw
« O ).
4sinh(wg) ‘ + One™)

[V, 1]13 =

By substituting w, = log(1 — 2Re(a)), we transform the coefficient into 2, where p, is
defined by (2.19). Finally, we take the square root and obtain (2.22). O

For n > N, and j = 1, we define
Wan,1(x) = sinh(zsqn) — (1 — @) sinh((x — 1)sq,n) + @sinh((n — x)sa.n)- (6.15)
For all other values of n and j,
Wan,j (@) = sin(xza,n;) — (1 — @) sin((x — 1)zan,j) + @sin((n — ) 2zan,j)- (6.16)
We notice that (6.16) can be written as
Wan,j(€) = Aan,jsin(Zan;€ + Ban,j),

for some coeflicients A, j and B j. Therefore, for a < 0 (here we suppose that « is
real), wa,pn; changes its sign approximately j — 1 times on [0, 7].
Figure 7 shows the behavior of the formula for the eigenvectors (2.16). Notice that
Va(dn,j) is an approximation of the quadratic mean of |vgp x|, 1 <k < n.
Figure 8 shows wq ,,1 defined by (6.15) and the components of v, 1. We observe that
the extreme components of the vector v, 5,1 are much bigger (in the absolute value) than
their central components.
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Va(dn,j)7
v V”(d"'j(? 16 . 16
I = - ~

VY

Figure 7: Plots of wq,n,; (green) and points (k, van jk) (blue), for a = —1/2, n = 16, and
j=4,8
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=

Figure 8: Plot of wa,n,1 (green) and points (K, v 1,%) (blue), for « = —1/2 and n = 16.

7 Numerical experiments

With the help of Sagemath [17], we have verified numerically (for many values of
parameters) the representations (3.2), (3.4), (3.5), for the characteristic polynomial, exact
formulas (2.20), (6.1), (6.9) for the norms of the eigenvectors, and many other exact
formulas appearing in this paper.

We introduce the following notation for different approximations of the eigenvalues and
eigenvectors. All computations are performed with 3322 binary digits (~ 1000 decimal
digits).

. )\i‘?; ; are the eigenvalues computed in Sagemath by its general algorithms. The

multi-precision arithmetic versions of these algorithms are recently added to Sage-
math, and they are not very accurate.

. zim ; is the numerical solution of the equation hq,p,;(7) = 0 computed by Newton’s

method, see Theorem 4.4.
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e Similarly, sY n
Theorem 5.4.

is the solution of f,,(z) = 0 computed by Newton’s method, see

o)

e \Y . is computed as g(z Cm]) or g(dn, ;) or g—(sy ), depending on the case.

a,n,j

bisec
Ao 1s similar to )\anj,

bisection method.

but now we solve the corresponding equations by the

° )\(ffn 4 is similar to )\a n,j» but now we solve the corresponding equations by the fixed

point method.

e Using zY . we compute v, ; by (2.16) and normalize it.

a,n,j
e Using sgm we compute Va1 by (2.17) and normalize it.

asympt
)\Oc n,j

is the approximation given by (2.10) and (2.14).

We have constructed a large series of examples including all rational values « in [—3,0)
with denominators < 3 and all n with N, < n < 256. In all these examples, we have
obtained

N 996 N —792

1I£1Ja<X HLO( nVa,n,j )‘an]UOé "%JHQ <10~ lrél]az( ‘)‘a ,n,J )‘04 n]‘ <10 ’
bisec —998 N —998
lgl]a<x ‘Aa maJ >\ ‘7‘ <10 llzlja<xn ‘ a,n,j Aavnv‘j‘ <10 :

For testing the asymptotic formulas, we have computed the errors

asyrnpt . yasympt N
Ra RN - )\a n,J )‘oz n,J

and their maximums ||RA3™"||co = max;<j<n |R

indeed can be bounded by O, (1/n3).
We have done similar tests for many other values of o and n. Numerical experiments
show that n3|| R&%™"||o are bounded by some numbers depending on a.

Since |st7y;?pt| is much smaller for the outlier eigenvalue (7 = 1), we show in Table 2

asympt

an,; |- Table 1 shows that these errors

asympt

some numerical experiments for this case only. We observe that |R | is bigger for

bigger values of | Re(«)|.
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