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The eigenvalues of Toeplitz matrices Tn(f) with a real-valued 
generating function f , satisfying some conditions and tracing 
out a simple loop over the interval [−π, π], are known to admit 
an asymptotic expansion with the form

λj(Tn(f)) = f(σj,n) + c1(σj,n)h + c2(σj,n)h2 + O(h3),

where h = 1/(n + 1), σj,n = πjh, and ck are some bounded 
coefficients depending only on f . The numerical results pre-
sented in the literature suggest that the effective conditions 
for the expansion to hold are weaker and reduce to a fixed 
smoothness and to having only two intervals of monotonicity 
over [−π, π].
In this article we investigate the superposition caused over this 
expansion, when considering the following linear combination

λj

(
Tn(f0) + βn,1Tn(f1) + βn,2Tn(f2)

)
,
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where βn,1, βn,2 are certain constants depending on n and the 
generating functions f0, f1, f2 are either simple loop or satisfy 
the weaker conditions mentioned before.
We formally obtain an asymptotic expansion in this setting 
under simple-loop related assumptions, and we show numeri-
cally that there is much more to investigate, opening the door 
to linear in time algorithms for the computation of eigenvalues 
of large matrices of this type including a multilevel setting.
The problem is of concrete interest, considering spectral fea-
tures of matrices stemming from the numerical approximation 
of standard differential operators and distributed order frac-
tional differential equations, via local methods such as Finite 
Differences, Finite Elements, and Isogeometric Analysis.

© 2024 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY-NC-ND license 

(http://creativecommons .org /licenses /by -nc -nd /4 .0/).

1. Introduction and preliminaries

The current section is divided into three parts, all of introductory type. In Subsec-
tion 1.1, we introduce notations, definitions, and preliminary results concerning Toeplitz 
structures, which are essential for the mathematical formulation of the problem and its 
technical solution.

In Subsection 1.2, we present a standard introduction to the considered problem and 
we consider its connections with the previous literature, with special attention to the 
simple loop method (see [1,2]) and to the matrix-less solvers. Indeed, beside the techni-
cal results, which are mathematically non trivial, the new findings have application to 
the design of fast eigensolvers of matrix-less type (see [3,4] and references therein) for 
the computation in linear time of the eigenvalues of large matrices, stemming e.g. from 
the numerical approximation via local methods, like Finite Differences, Finite Elements, 
and Isogeometric Analysis (see [5–7] and references there reported), of coercive differ-
ential equations like diffusion-advection, or from distributed order fractional differential 
equations again approximated using local methods (see [8–10] and references therein). 
The same info can be used, in connections with the notions of GLT/Toeplitz momentary 
symbols [11,12] including in a multilevel setting.

In Subsection 1.3, we also present a brief account on the theory of Generalized Lo-
cally Toeplitz (GLT) matrix-sequences [13–17] and on the notion of GLT momentary 
symbols [12,18], which are of support in interpreting our findings from a different per-
spective.

The rest of the paper is organized as follows. In Section 2 we present the main re-
sults, while in Section 3 the related proofs are given. Section 4 is devoted to numerical 
experiments, showing the potential of the given matrix-less eigensolvers. Finally, in Sec-
tion 5, conclusions, open problems, and future promising developments are illustrated, 
emphasizing the challenging connections with the notion of GLT momentary symbols 
(see [12,18]).

http://creativecommons.org/licenses/by-nc-nd/4.0/
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1.1. Preliminaries

For a complex or real sequence (aj)∞j=−∞, we consider the Toeplitz matrix

[ai−j ]ni,j=1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 a−1 a−2 · · · · · · a−(n−1)

a1
. . . . . . . . .

...

a2
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . a−2
...

. . . . . . . . . a−1
an−1 · · · · · · a2 a1 a0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

which is characterized from the fact to show constant entries along each diagonal parallel 
to the main one. When taking a function f : [−π, π] → C belonging to L1([−π, π]), 
the nth Toeplitz matrix generated by f is formally expressed as

Tn(f) ≡
[
ai−j(f)

]n
i,j=1,

where the quantities ak(f) are the Fourier coefficients of f ,

ak(f) ≡ 1
2π

π̂

−π

f(σ)e−ikσdσ, k ∈ Z.

In order to fix the terminology, we refer to {Tn(f)}n as the Toeplitz sequence generated 
by f , which in turn is called the generating function of {Tn(f)}n: we remind that the 
notion of symbol is a different notion recalled in Definition 1.1 and the classical results 
for Toeplitz matrix-sequences are reported in Theorem 1.1. If the generating function f
is real-valued, then all the matrices Tn(f) are Hermitian and their spectral properties 
are known in detail, from the localization of the eigenvalues to the asymptotic spectral 
distribution in the Weyl sense; see Definition 1.1, Theorem 1.1, [16,19] and the references 
therein.

In the current work, we focus on the case where f is simple-loop or real-valued and 
showing an infinite cosine expansion, that is, a function of the form

f(σ) = f0 + 2
m∑

k=1

fk cos(kσ), f0, f1, . . . , fm ∈ R, m ∈ N ∪ {∞},

so that f(2π − s) = f(s). We say that a cosine expansion function is monotone if it 
is either increasing or decreasing over the interval [0, π]. The banded Toeplitz matrix 
generated by f is the real symmetric matrix given by
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Tn(f) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0(f) a1(f) · · · am(f)

a1(f)
. . . . . . . . .

...
. . . . . . . . . . . .

am(f)
. . . . . . . . . . . .

. . . . . . . . . . . . . . .

am(f) · · · a1(f) a0(f) a1(f) · · · am(f)
. . . . . . . . . . . . . . .

. . . . . . . . . . . . am(f)
. . . . . . . . . . . .

...
. . . . . . . . . a1(f)

am(f) · · · a1(f) a0(f)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

with m � n − 1, and we emphasize that our analysis will be not restricted to banded 
matrices, as done mainly in some of the previous works (see for instance [3,4,20]).

The so-called simple-loop method (SLM), was introduced for the first time in [1] but 
the seminal paper is [21]. Then it was investigated further in a number of articles includ-
ing [2,22–25]. For a constant α � 0, let Wα be the weighted Wiener algebra given by all 
the functions f that can be written as f(σ) =

∑∞
j=−∞ aj(f) eiσj , defined in [0, 2π], and 

satisfying 
∑∞

−∞ |aj(f)|(1 +|j|)α < ∞. It is well–known that Wα ⊂ C�α�[0, 2π]. In partic-
ular, with SLM the subsequent results were proven: if f is a real-valued and 2π-periodic 
function belonging to the weighted Wiener algebra Wα for some α � 2, there is a point 
σ0 ∈ (0, 2π) such that f is increasing in (0, σ0) and decreasing in (σ0, 2π), f ′(σ0) = 0, 
f ′′(σ0) < 0, f(0) = 0, f ′(0) = 0, and f ′′(0) > 0. Let λ1(Tn(f)) � · · · � λn(Tn(f)) be 
the eigenvalues of Tn(f). Then for every sufficiently large n, and every j = 1, . . . , n, the 
representation

λj(Tn(f)) = f(σj,n) +
�α�∑
k=1

ck(σj,n)hk + E(σj,n), (1.1)

is true, where the related asymptotic expansion has the following features:

• the coefficients ck are functions from [0, π] to R depending only on f ;
• h = 1/(n + 1) and σj,n = jπh;
• E(σj,n) = O(hα) is the remainder (error) term, satisfying |E(σj,n)| � κhα for some 

constant κ depending only on f .
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When approximating the operator (−1)q d2q

dx2q , q = 0, 1, 2, . . ., on a given interval with 
proper boundary conditions and a uniform griding, we end up with structures either as 
Tn(fq) with fq being a monotone, real-valued cosine polynomial of the form

fq(σ) = (2 − 2 cos(σ))q, q = 0, 1, 2, . . . , (1.2)

if one uses centered Finite Differences of precision order 2 [7], or as Tn(gq) with gq being 
a real-valued cosine polynomial of the form

gq(σ) = (2 − 2 cos(σ))qpq(σ), q = 0, 1, 2, . . . , (1.3)

where pq is a strictly positive cosine polynomial, when using Isogeometric Analysis with 
maximal regularity [6,26]. We recall that the considered Finite Differences are character-
ized by O(h2) precision and minimal bandwidth, while in the case of (1.3) the bandwidth 
is larger, but a much higher precision is obtained as described in [6].

Unfortunately, for these generating functions the requirement that f ′′(0) > 0 is not 
satisfied if q �= 1. Recently, in [27] the SLM was extended for a generating function with 
f ′′(0) = ∞ but with an expansion valid only for the inner eigenvalues. Actually, based 
on numerical experiments, it was conjectured that an expansion similar to (1.1) holds 
at least for the inner eigenvalues and all monotone cosine trigonometric polynomials f . 
Moreover, Barrera, Böttcher, Grudsky, and Maximenko [28,29] formally studied the case 
q = 2. In [30] the authors extended SLM to the case where the generating function has 
a minimum of order 4.

In [1, Ch 7], Böttcher briefly mentioned that the asymptotic expansion (1.1) can be 
used to compute an accurate approximation of λj(Tn(f)) for every sufficiently large n, 
provided the values λj1(Tn1(f)), λj2(Tn2(f)), λj3(Tn3(f)) are available for moderately 
sized n1, n2, n3 with σj1,n1 = σj2,n2 = σj3,n3 = σj,n. The idea has evolved in [3,4,20] and 
highly accurate matrix-less methods of optimal linear cost have been developed. A wide 
set of numerical experiments has been reported, accompanied by an appropriate error 
analysis. It should be stressed that in essence the matrix-less algorithms are completely 
analogous to the extrapolation procedure, which is employed in the context of Romberg 
integration for obtaining high precision approximations of an integral from a few coarse 
trapezoidal approximations [31, Ch 3.4]. In this regard, the asymptotic expansion (1.1)
plays here the same role as the Euler–Maclaurin summation formula [31, Ch 3.3].

To give an idea of the extrapolation process in this setting, consider the expansion (1.1)
and fix r, s ∈ [0, π] such that r < s and

r = j0,rπ

n0 + 1 = j1,rπ

n1 + 1 = jrπ

n + 1 ,

s = j0,sπ

n0 + 1 = j1,sπ

n1 + 1 = jsπ

n + 1 ,

h1 = 1
h0, h0 = j0,r

, h1 = j1,r
,
2 n0 + 1 n1 + 1
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h 	 h1, h = jr
n + 1 ,

that is n 
 n1 > n0. We show with a basic example how to use formula (1.1) at sizes 
n0, n1, for getting an improved approximation of all the eigenvalues at size n 
 ni, 
i = 0, 1. We first compute λj0,u(Tn0(f)) and λj1,u(Tn1(f)), u = r, s, with sufficient high 
precision. Then use the formula for canceling out terms and approximating c1(u), c2(u)
for u = r, s, namely we compute

q1(u) = 2
h2

0

[
λj0,u(Tn0(f)) − 2λj1,u(Tn1(f))

]
= c2(u) + O(h0),

q2(u) = 2
h0

[
λj0,u(Tn0(f)) − λj1,u(Tn1(f))

]
− 3h0

4 q1(u) = c1(u) + O(h2
0).

Now we replace these approximations of c1(u), c2(u), u = 1, 2, in relation (1.1) for the 
large value n, obtaining an approximation of

λju(Tn(f)),

with an error of the form O(h2
0h + h0h

2 + h3). For the inner eigenvalues, that is, those 
with j such that jr < j < js, interpolation can be used and this gives a clear under-
standing of the reason why Ekström and Garoni called the corresponding matrix-less 
algorithm of “extrapolation-interpolation” type [3].

Here we are interested in extending the machinery, both theoretically and compu-
tationally, to the more involved case of linear combinations of matrix-order depending 
generating functions, see (1.4), with the following two targets:

• proving formally the asymptotic expansions;
• giving related matrix-less procedures.

1.2. The problem and the literature

As already mentioned in Subsection 1.1, we investigate the superposition caused over 
the expansion (1.1), when considering the following linear combination

λj

(
Tn(f0 + βn,1f1 + βn,2f2)

)
, (1.4)

where βn,1, βn,2 are certain constants depending on n, and the generating functions 
f0, f1, f2 are either of simple-loop type or satisfy some weaker conditions. More specifi-
cally, when βn,1 = h, hh, βn,2 = 0, and fj (j = 0, 1) are simple-loop, we formally extend 
the simple-loop method to this setting obtaining an asymptotic expansion in the same 
fashion of (1.1): we emphasize that the case βn,1 = hh is related to the approximation of 
distributed fraction equations (see [9,10] and references therein). When βn,1 = α1h

2 and 
βn,2 = α2h

4, α1, α2 ∈ R, and fj (j = 1, 2, 3) are certain real-valued cosine polynomials, 
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we show numerically that (1.1) still works. As a consequence, our findings show that 
there is much more to investigate, opening the door to linear in time algorithms for the 
computation of eigenvalues of large matrices of this type.

The problem is of great interest in applications, when considering spectral features 
of matrices stemming from the numerical approximation of standard differential op-
erators [12,32] and distributed order fractional differential equations [9,10,33,34]. In 
particular, for standard differential operators, our approach could be very promising 
for any local approximation technique of integro-differential operators, giving rise to 
GLT matrix-sequences (see [14–17] and references therein), with special attention to the 
case of Finite Elements [5] and Isogeometric analysis, both with maximal regularity and 
intermediate regularity [6].

Furthermore, from a theoretical viewpoint, it is worth stressing that it is the first time 
that an eigenvalue expansion is theoretically obtained for a Toeplitz matrix-sequence with 
a generating function depending on n.

In the next steps we introduce the essentials of the GLT theory (see [13–17] and 
references therein) and of the new concept of GLT momentary symbols [18], related to 
matrix structures as those appearing in (1.4).

1.3. GLT theory and GLT momentary symbols

In this technical part we give the essentials of the GLT theory. We start with the 
definition of spectral symbol and of symbol (in the singular value sense). Then we give 
part of the axioms that characterize the GLT matrix-sequences and we spend a few words 
on the new concept of GLT momentary symbols.

Definition 1.1. Let f : D → C be a measurable function defined on the Lebesgue measur-
able set D of positive and finite measure. Assume that {An}n is a sequence of matrices 
such that An is of size dn × dn, dn → ∞, as n → ∞ and with eigenvalues λj(An) and 
singular values σj(An), j = 1, . . . , dn.

• We say that {An}n is distributed as f over D in the sense of the eigenvalues, and we 
write {An}n ∼λ (f, D), if

lim
n→∞

1
dn

dn∑
j=1

F (λj(An)) = 1
μ(D)

ˆ

D

F (f(t))dt, (1.5)

for every continuous function F with compact support. In this case, we say that f is 
the spectral symbol of {An}n.

• We say that {An}n is distributed as f over D in the sense of the singular values, and 
we write {An}p ∼σ (f, D), if
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lim
n→∞

1
dn

dn∑
j=1

F (σj(An)) = 1
μ(D)

ˆ

D

F (|f(t)|)dt, (1.6)

for every continuous function F with compact support. In this case, we say that f
is the symbol of {An}n in the sense of the singular values. In the case where f ≡ 0, 
i.e. {An}n ∼σ 0 for any admissible domain D, the related matrix-sequence is called 
zero-distributed matrix-sequence.

Throughout the paper, when the domain can be easily inferred from the context, we 
replace the notation {An}n ∼λ,σ (f, D) with {An}n ∼λ,σ f . A noteworthy result due to 
Tilli [35] and Tyrtyshnikov and Zamarashkin [36] is the following.

Theorem 1.1. Let f ∈ L1([−π, π]), then {Tn(f)}n ∼σ (f, [−π, π]). If f is a real-valued 
function almost everywhere, then {Tn(f)}n ∼λ (f, [−π, π]).

It is worth mentioning that historically Toeplitz finite sections were studied since the 
beginning of the twentieth century (see e.g. the book by Böttcher and Silbermann [19]
and its predecessors), with special emphasis on the case where the generating function f
is essentially bounded, then Tilli defined the much larger space of the Locally Toeplitz 
matrix-sequences [37], which includes banded variable Toeplitz matrix-sequences and 
standard Toeplitz matrix-sequences with L2 generating functions. The extension to the 
GLT class [38,39] defines a maximal ∗-algebra of matrix-sequences, as proven by Bar-
barino et al. [14,15], which includes the Toeplitz matrix-sequences with L1 generating 
functions, and which turns out to be isometrically equivalent to the measurable functions 
on [0, 1] × [−π, π] [40]. Finally the notion of GLT momentary symbols is useful especially 
in a computational framework for fast eigenvalue solvers.

In the sequel, we introduce the GLT class, a ∗-algebra of matrix-sequences containing 
Toeplitz matrix-sequences. The formal definition of GLT matrix-sequences is rather tech-
nical and can be found in the scalar unilevel, scalar multilevel, block unilevel, and block 
multilevel in the following books and review papers [14–17], respectively. The original 
construction is involved and needs a whole coherent set of definitions and mathematical 
objects; see [37–39]. However, in the writing of the books and the reviews, the authors re-
alized that the mathematical construction is equivalent to a set of operative axioms that 
can be used conveniently, in practice, for deciding if a given matrix-sequence is of GLT
type and for computing the related symbol. The current formulation is taken from [16, 
Ch 9], where 9 axioms are listed representing a definition of the GLT class alternative to 
that in [38,39]. Here, we just give and briefly report and discuss four of these axioms of 
the GLT class, which are sufficient for our purposes.

Throughout, we use the following notation

{An}n ∼glt κ(x, σ), κ : [0, 1] × [−π, π] → C,

to say that the sequence {An}n is a GLT sequence with GLT symbol κ(x, σ).
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Here we list four main features of GLT sequences.

(1) Let {An}n ∼glt κ with a function κ : G → C, where G is the set [0, 1] × [−π, π], 
then {An}n ∼σ (κ, G). If the matrices An are Hermitian, then it also holds that 
{An}n ∼λ (κ, G).

(2) The set of GLT sequences forms a ∗-algebra, i.e., it is closed under linear combina-
tions, products, conjugation, but also inversion when the symbol is invertible a.e. In 
formulae, let {An}n ∼glt κ1 and {Bn}n ∼glt κ2, then

• {αAn + βBn}n ∼glt ακ1 + βκ2, α, β ∈ C;
• {AnBn}n ∼glt κ1κ2;
• {A∗

n}n ∼glt κ
∗
1;

• {A−1
n }n ∼glt κ

−1
1 provided that κ1 is invertible a.e.

(3) Any sequence of Toeplitz matrices {Tn(f)}n generated by f ∈ L1([−π, π]) is a GLT
matrix-sequence with symbol κ(x, σ) = f(σ). For a Riemann integrable function a
defined on [0, 1], the corresponding diagonal sampling matrix-sequence

{Dn(a)}n

is a GLT matrix-sequence with symbol κ(x, σ) = a(x) and entries [Dn(a)]j,j given 
by a(j/n), j = 1, . . . , n.

(4) According to the last part of Definition 1.1, every zero-distributed matrix-sequence is 
a GLT sequence with symbol 0 and viceversa, i.e., {An}n ∼σ 0 ⇐⇒ {An}n ∼glt 0.

Item (1) can be viewed as a generalization of Theorem 1.1 to a much wider, indeed 
maximal, ∗-algebra of matrix-sequences. Items (2) and (3) show that the Toeplitz fi-
nite section algebra generated (via adjoints, products, sums, and limits) by all sequences 
{Tn(f)}n with continuous symbol (studied e.g. in [19]) and with essentially bounded sym-
bols (studied e.g. in [41]) is contained in the GLT class. The matrix-sequences {Dn(a)}n
are the basic blocks for considering variations along the diagonals, so going outside the 
Toeplitz setting. The zero-distributed matrix-sequences considered in item (4) contain 
e.g. as a proper subset any matrix-sequence obtained via finite sections of any given 
compact operator.

Finally, we stress that the axioms in [16, Ch 9] not reported here, essentially con-
tain limit operations via the a.c.s. metric and more eigenvalue distribution results on 
GLT matrix-sequences, which can be viewed as perturbations of Hermitian GLT matrix-
sequences.

If f is smooth enough, an informal interpretation of the limit relation (1.5) (resp. (1.6)) 
is that when n is sufficiently large, then the eigenvalues (resp. singular values) of An can 
be approximated by a sampling of f (resp. |f |) on a uniform equispaced grid of the do-
main D, up to at most few outliers. Often this approximation is good enough: the notion 
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of GLT momentary symbols has been introduced for obtaining a more accurate approx-
imation of the singular values and, under certain circumstances, also of the eigenvalues. 
In essence the GLT momentary symbols represent an extension of the GLT theory in 
which a hierarchy of symbols is present, the first one being the GLT symbol. Taking 
into account these non-unique hierarchies of symbols (the first one being unique), we 
can obtain more precise spectral approximations as shown in [12,18].

Definition 1.2 (GLT momentary symbols). Let {Xn}n be a matrix-sequence and assume 
that there exist matrix-sequences {A(r)

n }n, {Rn}n, scalar sequences c(r)n , r = 0, . . . , �, and 
measurable functions fr defined over [−π, π] × [0, 1], � nonnegative integer independent 
of n, such that {Rn}n is zero-distributed in accordance with the last part of Definition 1.1,

{A
(r)
n

c
(r)
n

}
n
∼glt fr,

c(0)n = 1, c(s)n = o(c(r)n ), � � s > r,

{Xn}n = {A(0)
n }n +

�∑
r=1

{A(r)
n }n + {Rn}n.

Then, with a slight abuse of notation

fn = f0 +
�∑

r=1
c(r)n fr

is defined as a GLT momentary symbol for Xn and {fn}n is a sequence of GLT momen-
tary symbols for the matrix-sequence {Xn}n.

Of course, in line with [14,15], the momentary symbols could be matrix-valued with the 
number of variables equal to 2d and domain [−π, π]d×[0, 1]d if the basic matrix-sequences 
appearing in Definition 1.2 are, up to proper scaling, matrix-valued and multilevel GLT
matrix-sequences.

Clearly there is an immediate link with the GLT theory stated in the next result, but 
many other connections should be investigated; see the proofs in [12,18].

Theorem 1.2. {Xn}n ∼glt f0 and limn→∞ fn = f0 uniformly on the definition domain.

Here by making reference to the approximations by Finite Differences, for a fixed 
positive integer �, we could consider operators of the form

�∑
(−1)rαr

d2r

dx2r (1.7)

r=0
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which, by linearity of the approximation technique of the involved operators, and by (1.2), 
give rise to Toeplitz structures of the type in (1.4) with the expression

Tn

( �∑
r=0

αrh
2(�−r)fr

)
.

In perfect analogy, in the case where the approximation is obtained via Isogeometric 
Analysis, for a fixed positive integer �, we find

Tn

( �∑
r=0

αrh
2(�−r)gr

)
,

taking into account (1.3) and again the linearity of the approximation technique and of 
the considered operators. In both cases it is evident that the related matrix-sequences 
have 

∑�
r=0 αrh

2(�−r)Fr as GLT momentary symbols in the sense of Definition 1.2, with 
Fr being either fr or gr, r = 0, 1, . . . , �. In both cases we are interested in using the 
related GLT momentary symbols in terms of a superposition effect for computing the 
eigenvalues in a fast way

λj

(
Tn

( �∑
r=0

αrh
2(�−r)Fr

))
. (1.8)

Notice again that the problem indicated in (1.4) is a special instance of (1.8).

2. Main results

For a constant α � 0, the well-known weighted Wiener algebra Wα is the collection 
of all functions f : [0, 2π] → C, that can be written as f(σ) =

∑∞
j=−∞ aj(f) eiσj , and 

whose Fourier coefficients aj(f) satisfy

‖f‖α ≡
∞∑

j=−∞
|aj(f)|(|j| + 1)α < ∞.

We address real-valued symbols f in Wα, tracing out a simple loop, precisely satisfying 
the following conditions.

(i) The range of f is a segment [0, μ] with μ > 0.
(ii) f(0) = f(2π) = 0, f ′(0) = f ′(2π) = 0, and f ′′(0) = f ′′(2π) > 0.
(iii) There is a σ0 ∈ (0, 2π) such that f(σ0) = μ, f ′(σ) > 0 for 0 < σ < σ0, f ′(σ) < 0

for σ0 < σ < 2π, f ′(σ0) = 0, and f ′′(σ0) < 0.



498 M. Bogoya et al. / Linear Algebra and its Applications 697 (2024) 487–527
The collection of all these symbols is called the simple loop class and is denoted by 
SLα. In this paper we consider even symbols in SLα, that is f(s) = f(2π − s) for each 
s ∈ [0, π]. Obviously, it is enough to study such symbols in the interval [0, π].

For every λ ∈ [0, μ] there exists a unique s ∈ [0, π] satisfying f(s) = λ, and the symbol 
f − λ has 2 zeros: ±s, implying that the Toeplitz operator T (f − λ) is not invertible 
(see [42, Sc.1]). For α � 2 and f ∈ SLα, we define the operator B as follows

Bf (σ, s) ≡ f(σ) − f(s)
4 sin

(
σ−s

2
)
sin

(
σ+s

2
)

= f(σ) − f(s)
2(cos(s) − cos(σ)) (σ ∈ [0, 2π], s ∈ [0, π]). (2.1)

According to [2], SLM tells us that Bf is a real-valued and continuous function in Wα−1, 
which is also bounded away from zero. The resulting operator T (Bf(·, s)) is invertible and 
therefore, since the finite section method can be applied (see [19] for example), the related 
finite Toeplitz matrices Tn(Bf (·, s)) are also invertible for every sufficiently large n. 
Moreover, since Bf is bounded away from zero, we can say the same for every n > 0. Note 
that Bf can be thought of as the quotient between f−λ and 4 sin((σ−s)/2) sin((σ+s)/2), 
which is similar to the preconditioning process of the ill-conditioned matrix Tn(f − λ)
used for example in [43,44]; for a general account on preconditioning in a Toeplitz setting 
see [16,45] and references therein.

For a function u with a singularity at some point in the interval I, let 
ffl
I
u(x)dx be the 

Cauchy principal value of the singular integral 
´
I
u(x)dx. Since the function Bf belongs 

to Wα−1 and Bf (t, s) �= 0 for every t ∈ T and every s ∈ [0, π], it admits the so called 
Wiener–Hopf factorization Bf = [Bf ]−[Bf ]+ (index zero) where

[Bf ]±(t, s) ≡ exp
{1

2 logBf (t, s) ± 1
2πi

 

T

logBf (τ, s)
τ − t

dτ
}
,

t = eiσ, and σ ∈ [0, 2π]. The Wiener–Hopf factorization (also called method or decom-
position) was introduced by N. Wiener and E. Hopf in 1931. What we call Wiener–Hopf 
factorization has its origin in the work of Gakhov [46], but Mark Krein [47] was the 
first to understand the operator theoretic essence and its algebraic background, and to 
present it in a clear way. For a nice and modern explanation see [48, Ch 1.4].

For f ∈ SLα and s ∈ [0, π], we define the operator H as follows

Hf (s) ≡ 1
4π

2π 

0

logBf (σ, s)
tan

(
σ−s

2
) dσ − 1

4π

2π 

0

logBf (σ, s)
tan

(
σ+s

2
) dσ

= sin(s)
2π

2π logBf (σ, s)
cos(s) − cos(σ)dσ. (2.2)
0
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The function Hf can be understood as the continuous argument of the map

s �→ [Bf ]+(eis, s)[Bf ]−(e−is, s)
[Bf ]+(e−is, s)[Bf ]−(eis, s) ,

playing a key role in SLM.
SLM tells us, in particular, that the eigenvalues of Tn(f) are given by

λj(Tn(f)) = f(σj,n) +
�α�∑
�=1

c�(σj,n)h� + E(σj,n), (2.3)

where

• the eigenvalues of Tn(f) are arranged in nondecreasing order;
• h ≡ 1/(n + 1) and σj,n ≡ πjh;
• the coefficients c� depend only on f and can be found explicitly, for example

c1 = −f ′Hf , c2 = 1
2f

′′H2
f + f ′HfH

′
f ; (2.4)

• E(σj,n) = O(hα) is the remainder (error) term, which satisfies the inequality 
|E(σj,n)| � κhα for some constant κ depending only on f .

For f, g ∈ SLα and a constant β ∈ R+, we now investigate the relationship between 
the eigenvalues λj(Tn(f)), λj(Tn(g)), and λj(Tn(f + βg)). From (2.3) we easily obtain

λj(Tn(f + βg)) = f(σj,n) + βg(σj,n) + O(h).

Indeed, as a challenge in the field, we are looking for a more detailed result involving a 
complete expansion and a real positive constant βn depending on n. The (momentary) 
symbol f + βng depends on n, and as a consequence SLM cannot be applied. However, 
under proper adjustments, the quoted technique can be used when βn is h or hh, see 
Theorems 2.2 and 2.3.

Remark 2.1. The condition βn → 0 as n → ∞ can be implemented in both cases by 
simply writing

f + hhg = f + g + (hh − 1)g,

and noticing that hh − 1 → 0 as n → ∞. Moreover, we believe that our results can be 
extended to any symbol with the form f0 + βn,1f1 + · · · + βn,�f�, where f0 ∈ SLα with 
α � 2, for every k = 1, . . . , �, fk is a differentiable function with f ′

k(0) = f ′
k(π), βn,k → 0

as n → ∞, and n is sufficiently large. It will be the topic of a future investigation.
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We start with the symbol f + hg, that is βn = h. Consider the function

ψ(s) ≡ sin(s)
2π

2π 

0

Bg(σ, s)
Bf (σ, s)(cos(s) − cos(σ))dσ.

Theorem 2.2. Let f and g be two even symbols in SLα with α � 2. Then

λj(Tn(f + gh)) = f(σj,n) +
�α�∑
�=1

r�(σj,n)h� + E(σj,n),

where r� are bounded functions from [0, π] to R depending only on f, g that can be ex-
plicitly determined. For instance

r1 = g − f ′Hf ,

r2 = 1
2f

′′H2
f + f ′HfH

′
f − f ′ψ − g′Hf .

The remainder E(σj,n) = O(hα) satisfies the inequality |E(σj,n)| � κhα for some con-
stant κ depending only on f and g.

For the next result we will study the eigenvalues corresponding to the symbol f+hhg, 
that is βn = hh. Consider the function

ϕ(s) ≡ sin(s)
2π

2π 

0

Bg(σ, s)
(Bf (σ, s) + Bg(σ, s))(cos(s) − cos(σ))dσ.

Theorem 2.3. Let f and g be two even symbols in SLα with α � 2. Then

λj(Tn(f + hhg)) = f(σj,n) + g(σj,n) +
�α�∑
�=1

�∑
k=0

s�,k(σj,n)h� logk(h) + Ê(σj,n),

where s�,k are bounded functions from [0, π] to R depending only on f, g that can be 
explicitly determined. For instance

s1,1 = g,

s1,0 = −Hf+g(f ′ + g′),

s2,2 = 1
2g,

s2,1 = −ϕ(f ′ + g′) − g′Hf+g,

s2,0 = 1
H2

f+g(f ′′ + g′′) + Hf+gH
′
f+g(f ′ + g′).
2
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The term Ê(σj,n) = O(hα| logα(h)|) plays the role of a remainder or error and satisfies 
the inequality |Ê(σj,n)| � κhα| logα(h)| for some constant κ depending only on f and g.

3. Proof of the main results

Let χm(t) ≡ tm and consider the polynomial

Θk(t, s) = [T−1
k (Bf (·, s))χ0](t).

The following theorem contains the SLM results which are relevant to the present work. 
The proofs can be found in [2].

Theorem 3.1. Let h = 1/(n + 1), α � 2 and u be an even function in ∈ SLα.

(i) Bu(·, s) belongs to Wα−1 uniformly in s ∈ [0, π], is real-valued, positive, bounded, 
and bounded away from zero.

(ii) Bu(·, s) admits a Wiener–Hopf factorization with index zero, moreover the factors 
[Bu(·, s)]±1

± belong to Wα−1
± uniformly in s ∈ [0, π], where Wα−1

± are the subalge-
bras of Wα−1 given by

Wα−1
± ≡

{
u(t) =

∞∑
j=0

a±j(u)t±j : ‖u‖α−1 < ∞
}
.

(iii) The number λ = f(s) is an eigenvalue of Tn(u) if and only if

e−2i(n+1)sΘn+2(eis, s)Θn+2(e−is, s) = Θn+2(e−is, s)Θn+2(eis, s). (3.1)

Our specific aim is to recreate SLM working with the momentary symbol f + βng for 
two particular values of βn. Suppose that α � 2, f, g ∈ SLα, and take βn = h or βn = hh. 
If f and g are even, the function f+βng belongs to SLα. Then the results in Theorem 3.1
can be applied to u = f +βng. From (2.1) we easily get Bf+βng = Bf +βnBg. Moreover, 
the polynomial Θk becomes

Θk(t, s) = [{Tk(Bf (·, s)) + βnTk(Bg(·, s))}−1χ0](t). (3.2)

Then part (iii) of Theorem 3.1 tells us that the number λ = f(s) + βng(s) is an eigen-
value of Tn(f + βng) if and only if (3.1) is true. This an exact implicit equation for 
the eigenvalues of Tn(f + βng) and the theoretical base for our individual asymptotic 
expansions.

We now find an expansion for the polynomial Θn in terms of Bf and Bg. Suppose 
that u(t) =

∑∞
j=−∞ ujt

j (t ∈ T ) belongs to L2(T ) and recall the usual operators
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[Pnu](t) ≡
n−1∑
j=0

ujt
j , [Qnu](t) ≡

∞∑
j=n

ujt
j , [Pu](t) ≡

∞∑
j=0

ujt
j .

For u ∈ L∞(T ), it is well-known that the Toeplitz operator T (u) : L2(T ) → L2(T ) is 
defined as T (u) ≡ PuP while the (finite) Toeplitz matrix Tn(u) coincides with PnuPn.

Lemma 3.2. For α � 2, let f, g be even functions in SLα. Take βn as h or hh. Then we 
have

Θn(t, s) = [Bf + βnBg]−1
+ (t, s) + Rn(t, s),

where sup{|Rn(t, s)| : (t, s) ∈ T × [0, π]} = o(hα−1) as n → ∞.

Proof. Let βn be h or hh. From part (i) of Theorem 3.1 with u = f + βng, we know 
that for every s ∈ [0, π], Bf+βng(·, s) = Bf (·, s) + βnBg(·, s) is positive and bounded 
away from zero, hence the matrix Tn(Bf (·, s)) is invertible for every n � 1, uniformly in 
s ∈ [0, π].

According to [48, p. 10], for a function a ∈ L∞(T ), the inverse of the operator T (a) is 
T−1(a) = [Ba]−1

+ (·, s)P [Ba]−1
− (·, s). To simplify the notation, in this proof write B(t, s)

instead of Bf+βng(t, s). Then, the relation

T−1(B(·, s))χ0 = B−1
+ (·, s)PB−1

− (·, s)χ0 = B−1
+ (·, s),

is a consequence of PB−(t, s) = B−(∞, s) = 1 and PB−1
− (t, s) = B−1

− (∞, s) = 1, where, 
by part (ii) of Theorem 3.1, the Wiener–Hopf factors B−1

± belong to Wα−1
± uniformly in 

s ∈ [0, π].
From (3.2) we obtain

Θn(t, s) = [T−1
n (B(·, s))χ0](t)

= [T−1(B(·, s))χ0](t) + [{T−1
n (B(·, s)) − T−1(B(·, s))}χ0](t)

= B−1
+ (t, s) + Rn(t, s),

where Rn(t, s) = [{T−1
n (B(·, s)) −T−1(B(·, s))}χ0](t). Since Pn converges strongly to P , 

Tn converges strongly to T , and hence Rn is expected to be “small” as n → ∞. Omitting 
the argument (·, s) the calculation continues as follows,

Rn = T−1
n (B){T (B) − Tn(B)}T−1(B)χ0 −QnT

−1(B)χ0

= T−1
n (B){PBP − PnBPn}B−1

+ PB−1
− χ0 −QnB

−1
+ PB−1

− χ0,

which by the identities PBP = PnBPn + PnBQn +QnBP and QnBB−1
+ = QnB− = 0, 

becomes
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Rn = T−1
n (B)PnBQnB

−1
+ −QnB

−1
+ .

To find a bound for the norm of T−1
n (B) = T−1

n (Bf+βng(·, s)), as n → ∞, we note 
that its operator norm in the Wiener algebra Wα−1 equals its largest eigenvalue (which 
must be real and positive) times a positive constant, and which is naturally bounded by 
inf{Bf+βng(s) : 0 � s � π}−1. Then there exists a positive constant k such that

‖T−1
n (Bf+βng(·, s))‖α−1 � k inf{Bf (s) + βnBg(s) : 0 � s � π}−1.

If βn takes the value h, the last infimum is greater than inf{Bf (s) : 0 � s � π}, while if 
βn = hh it is greater than

inf{Bf (s) : 0 � s � π} + inf{Bg(s) : 0 � s � π}.

In both cases the provided bound is positive, finite, and independent of n, that is 
‖T−1

n (B)‖α−1 � κ for some κ > 0.
Using the inequalities ‖ · ‖L∞ � ‖ · ‖0 � ‖ · ‖α−1 and

‖Qna‖0 �
∞∑
j=n

|aj(a)|(1 + j)α−1hα−1 = ‖Qna‖α−1h
α−1 = o(hα−1),

as n → ∞, we reach

‖Rn‖L∞ � ‖Rn‖0

� ‖T−1
n (B)PnBQnB

−1
+ ‖0 + ‖QnB

−1
+ ‖0

= ‖T−1
n (B)‖0{‖PnB‖0 + 1}‖QnB

−1
+ ‖0

� κ{‖PnB‖α−1 + 1}o(hα−1) = o(hα−1),

uniformly in s ∈ [0, π], completing the proof. �
The following theorem is a consequence of Theorem 3.1 and Lemma 3.2. Since the 

proof can be found in [2] we present it here without a proof.

Theorem 3.3. Let h = 1/(n + 1), α � 2 and u be an even function in ∈ SLα.

(i) For every sufficiently large natural number n there exists a real-valued function 
R̂n ∈ C[0, π] such that a number λ = u(s) is an eigenvalue of Tn(u) if and only if

(n + 1)s + Hu(s) − R̂n(s) = jπ, (3.3)

for some j ∈ Z, and R̂n(0) = R̂n(π) = 0, sup{|R̂n(s)| : s ∈ [0, π]} = o(hα−1) as 
n → ∞.
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(ii) For every sufficiently large n there exists pairwise disjoint intervals Ij,n (j =
1, . . . , n) such that (3.3) and its truncated version

(n + 1)s + Hu(s) = jπ,

have unique solutions sj,n and ŝj,n in Ij,n, respectively, for every j = 1, . . . , n. 
Moreover, |sj,n − ŝj,n| = o(hα).

(iii) For each j = 1, . . . , n, the function

Φj,n(s) ≡ σj,n −Hu(s)h,

is a contraction on [0, π], and the sequence defined by

ŝ
(0)
j,n ≡ σj,n and ŝ

(�)
j,n ≡ Φj,n(ŝ(�−1)

j,n ), � � 1,

satisfies |ŝj,n − ŝ
(�)
j,n| = O(h�+1).

It is clear that Bf+βng = Bf +βnBg but the situation with H is more delicate. Hence 
we decided to expand Hf+βng into factors with coefficients not involving n. We continue 
with the following technical result.

Lemma 3.4. For α � 2, let f, g be even functions in SLα. As n → ∞, we have

(i) Hf+hg(s) = Hf (s) + ψ(s)h + O(h2),
(ii) Hf+hhg(s) = Hf+g(s) + ϕ(s)h log(h) + O(h2 log2(h)),

where ψ, ϕ are �α� − 1 times continuously differentiable functions, given by

ψ(s) ≡ sin(s)
2π

2π 

0

Bg(σ, s)
Bf (σ, s)(cos(s) − cos(σ))dσ,

ϕ(s) ≡ sin(s)
2π

2π 

0

Bg(σ, s)
(Bf (σ, s) −Bg(σ, s))(cos(s) − cos(σ))dσ.

Proof. From part (i) of Theorem 3.1 we know that s �→ Bf (·, s) and s �→ Bg(·, s) act 
continuously from [0, π] to Wα−1, which combined with the fact that the singular integral 
operator is continuous over the weighted Wiener algebra Wα−1, implies that ψ, ϕ are 
�α� −1 times continuously differentiable functions. For the part (i), we use the expansion

log(Bf + hBg) = log(Bf ) + log
(
1 + Bg

Bf
h
)

= log(Bf ) + Bg

B
h−

B2
g

2B2 h
2 + O(h3).
f f
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Then, the function Hf in (2.2) becomes

Hf+hg(s) −Hf (s) = sin(s)
2π

2π 

0

log(Bf (σ, s) + Bg(σ, s)h) − logBf (σ, s)
cos(s) − cos(σ) dσ

= ψ(s)h + O(h2),

proving the first part.
For the part (ii), as n → ∞, we use the expansion

hh = eh log(h) = 1 + h log(h) + 1
2h

2 log2(h) + O(h3| log3(h)|)

and we easily arrive at

Bf + hhBg = Bf + Bg + h log(h)Bg + 1
2h

2 log2(h)Bg + O(h3| log3(h)|).

Note that for every n the functions Bf + hhBg and Bf +Bg are positive, bounded, and 
bounded away from zero. Thus we can apply the logarithm to the former and expand 
around the latter, obtaining

log(Bf + hhBg) = log(Bf + Bg) + Bg

Bf + Bg
h log(h)

+ Bf Bg

2(Bf + Bg)
h2 log2(h) + O(h3| log3(h)|).

Finally, the second part is a direct consequence of the last expression in combination 
with (2.2). �
Proof of Theorem 2.2. Assume that 2 � α < 3 and let βn = h, and for simplicity write 
σ instead of σj,n. Taking u = f +hg and combining Lemmas 3.2 and 3.4, and part (i) of 
Theorem 3.3, we infer

Gn(s) = jπ, (3.4)

where Gn(s) ≡ (n + 1)s + Hf (s) + ψ(s)h − R̂n(s). The function Gn is continuous on 
the interval [0, π] with Gn(0) = 0 and Gn(π) = π(n + 1). By the Intermediate Value 
Theorem, for each j ∈ {1, . . . , n} (3.4) has at least one solution in (0, π). The uniqueness 
is given by part (ii) of Theorem 3.3 and its denoted by sj,n. Hence we know that

(i) the eigenvalues of Tn(f + hg) are all distinct:

λ1(Tn(f + hg)) < · · · < λn(Tn(f + hg));
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(ii) the numbers sj,n given by [f + hg](sj,n) = λj(Tn(f + hg)) for j = 1, . . . , n, satisfy 
the relation (3.4) with R̂n(sj,n) = o(hα−1) as n → ∞, uniformly in j.

Let Fn(s) ≡ (n + 1)s + Hf (s) + ψ(s)h. Hence, by parts (ii) and (iii) of Theorem 3.3
with u = f+hg we know that Fn(s) = πj has a unique solution ŝj,n for each j = 1, . . . , n, 
satisfying the inequality |sj,n − ŝj,n| = o(hα), and that the function

Φj,n(s) ≡ σ −Hf (s)h− ψ(s)h2,

is a contraction on [0, π]. In addition, the sequence defined by

ŝ
(0)
j,n ≡ σ and ŝ

(�)
j,n ≡ Φj,n(ŝ(�−1)

j,n ) (� � 1),

satisfies |ŝj,n − ŝ
(�)
j,n| = O(h�+1).

Write (3.4) as s = Φj,n(s) +Δn(s) where Δn(s) = o(hα) +O(h3) as n grows to infinity. 
We will iterate over the relation s = Φj,n(s). We have ŝ(0)

j,n = σ and ŝ(1)
j,n = Φj,n(ŝ(0)

j,n) =
σ −Hf (σ)h − ψ(σ)h2. To evaluate ŝ(2)

j,n first note that

Hf (ŝ(1)
j,n) = Hf (σ) −H ′

f (σ){Hf (σ)h + ψ(σ)h2}

+1
2H

′′
f (σ){H2

f (σ) + ψ2(σ)h2 + 2Hf (σ)ψ(σ)h}h2 + O(h3)

= Hf (σ) −Hf (σ)H ′
f (σ)h +

{1
2H

2
f (σ)H ′′

f (σ) −H ′
f (σ)ψ(σ)

}
h2 + O(h3),

and that

ψ(ŝ(1)
j,n) = ψ(σ) − ψ′(σ){Hf (σ)h + ψ(σ)h2}

+1
2ψ

′′(σ){H2
f (σ) + ψ2(σ)h2 + 2Hf (σ)ψ(σ)h}h2 + O(h3)

= ψ(σ) − ψ′(σ)Hf (σ)h + O(h2).

Now by the Taylor theorem we obtain

ŝ
(2)
j,n = σ −Hf (σ −Hf (σ)h− ψ(σ)h2)h− ψ(σ −Hf (σ)h− ψ(σ)h)h2

= σ −Hf (σ)h + {Hf (σ)H ′
f (σ) − ψ(σ)}h2 + O(h3),

which combined with |sj,n − ŝ
(2)
j,n| = o(hα) + O(h3) proves the theorem for the case 

2 � α < 3. The remaining cases can be proved, essentially in the same manner. �
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Proof of Theorem 2.3. Taking βn = hh, mimicking the proof of Theorem 2.2 we obtain

Gn(s) ≡ (n + 1)s + Hf+g(s) + ϕ(s)h log(h),

Fn(s) ≡ (n + 1)s + Hf+g(s) + ϕ(s)h log(h),

Φj,n(s) ≡ σ −Hf+g(s)h− ϕ(s)h2 log(h).

The remainder function Δn now has order o(hα) + O(h3 log2(h)) as n → ∞, ŝ(0)
j,n = σ, 

and ŝ(1)
j,n = Φj,n(ŝ(0)

j,n) = σ −Hf+g(σ)h − ϕ(σ)h2 log(h). To evaluate ŝ(2)
j,n first note that

Hf+g(ŝ(1)
j,n) = Hf+g(σ) −H ′

f+g(σ){Hf+g(σ)h + ϕ(σ)h2 log(h)}

+1
2H

′′
f+g(σ){H2

f+g(σ) + ϕ2(σ)h2 log2(h)

+2Hf+g(σ)ϕ(σ)h log(h)}h2 + O(h3| log3(h)|)
= Hf+g(σ) −Hf+g(σ)H ′

f+g(σ)h

+
{1

2H
2
f+g(σ)H ′′

f+g(σ) −H ′
f+g(σ)ϕ(σ) log(h)

}
h2 + O(h3| log3(h)|),

and that

ϕ(ŝ(1)
j,n) = ϕ(σ) − ϕ′(σ){Hf+g(σ)h + ϕ(σ)h2 log(h)}

+1
2ϕ

′′(σ){H2
f+g(σ) + ϕ2(σ)h2 log2(h) + 2Hf+g(σ)ϕ(σ)h log(h)}h2

+O(h3| log3(h)|)
= ϕ(σ) − ϕ′(σ)Hf+g(σ)h + O(h2| log(h)|).

Now by the Taylor theorem we obtain

ŝ
(2)
j,n = σ −Hf+g(σ)h + {Hf+g(σ)H ′

f+g(σ) − ϕ(σ) log(h)}h2 + O(h3| log3(h)|),

which combined with |sj,n − ŝ
(2)
j,n| = o(hα) + O(h3| log3(h)|) give us the theorem for the 

case 2 � α < 3. The remaining cases can be readily proved. �
4. Numerical tests and an algorithm proposal

The purpose of our main results is to provide asymptotic expansions revealing the 
fine structure of the eigenvalue behavior in a matrix-less fashion, that is, without the 
need of any matrix inversion, multiplication by vectors, or even the storage of its entries. 
Such an expansion has proved to be useful in several applications. In [3,4] the authors 
exploited those expansions and provided a clever and fully numerical algorithm that 
calculates the eigenvalues of arbitrarily large matrices within machine precision. More 
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specifically they devised an extrapolation algorithm for computing the eigenvalues of 
banded symmetric Toeplitz matrices with a high level of accuracy and low computation 
cost, starting from the computation of the eigenvalues of small size matrices, in the same 
spirit of the classical extrapolation procedures for the summation of smooth functions.

As in previous works, the purpose of this section is to show the performance of our 
asymptotic expansions and to prove that they deliver good approximations even for 
values of n in the early hundreds. The numerical calculation of the involved singular 
integrals is very difficult, therefore we opted to use a standard regularization trick (see [1, 
Ch 7]), which works as follows. For an integral of the form

I(v) =
δ 

γ

f(u, v)
h(u, v)

du,

where for some u0 ∈ [γ, δ], we have h(u0, v) = 0 and f(u0, v) �= 0. We can write

I(v) =
δ 

γ

f(u, v) − f(u0, v)
h(u, v)

du + f(u0, v)
δ 

γ

du
h(u, v)

,

and in most cases, the above integrals are easier to tackle than I itself. For the case of 
Hf , the value of 

ffl 2π
0 cot

(
σ−s

2
)
dσ is 0, and hence we obtain

Hf (s) = sin(s)
2π

2π 

0

logBf (σ, s) − logBf (s, s)
cos(s) − cos(σ) dσ,

where Bf (s, s) can be calculated with the L’Hôpital rule as

Bf (s, s) = f ′(s)
2 sin(s) , Bf (0, 0) = f ′′(0)

2 , and Bf (π, π) = −f ′′(0)
2 .

Let f be a generating function and let λsl(k)
j (Tn(f)) be the kth term approximation 

of λj(Tn(f)) given by our Theorems 2.2 and 2.3. For the numerical experiments, we 
consider the individual error

Esl(k)
j,n ≡ λj(Tn(f)) − λ

sl(k)
j (Tn(f)),

and the corresponding individual and maximal absolute errors

AEsl(k)
j,n ≡ |Esl(k)

j,n |, AEsl(k)
n ≡ max{|Esl(k)

j,n | : j = 1, . . . , n}.

We introduce also the individual relative errors
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Fig. 1. The generating function f(σ) = (1+ρ)2

2 · 1−cos(σ)
1−2ρ cos(σ)+ρ2 , see (4.1), and its first two derivatives for 

ρ = 1/2. The blue, red, and black curves are f/‖f‖∞, f ′/‖f ′‖∞, and f ′′/‖f ′′‖∞, respectively. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

REsl(k)
j,n ≡

|λj(Tn(f)) − λ
sl(k)
j (Tn(f))|

|λj(Tn(f))| =
AEsl(k)

j,n

|λj(Tn(f))| ,

which are useful when measuring the approximation of “small” eigenvalues.

4.1. The simple-loop case

For a constant 0 < ρ < 1, consider the simple-loop function given by

f(σ) ≡ (1 + ρ)2

2 · 1 − cos(σ)
1 − 2ρ cos(σ) + ρ2 (0 � σ � 2π). (4.1)

The respective Fourier coefficients can be exactly calculated as ak(f) = 1
4 (ρ2−1)ρ|k|−1

for k �= 0 and 1
2 (1 + ρ) for k = 0. This symbol was inspired in the Kac–Murdock–Szegő 

Toeplitz matrices introduced in [49] and subsequently studied in [50,51], which are usually 
present in important physics models. We have

‖f‖α = 1 + ρ

2 + ρ2 − 1
2ρ

∞∑
k=1

ρk(k + 1)α,

which is finite for every α > 0, the remaining simple-loop conditions are easily verified 
(see Fig. 1). Then f ∈ SLα for any α > 0.

In this case it is possible to deduce elementary expressions for the factors of the 
Wiener–Hopf factorization of Bf , indeed

[Bf ]+(t, s) = (1 − ρ2)2

4(1 − ρt)(1 − 2ρ cos(s) + ρ2) , [Bf ]−(t, s) = 1
1 − ρt−1 .

The function Hf from (2.2) is therefore nicely given by
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Fig. 2. The generating function g(σ) = 4 sin2(σ
2 ), see (4.2), and its first two derivatives. The blue, red, and 

black curves are g/‖g‖∞, g′/‖g′‖∞, and g′′/‖g′′‖∞, respectively.

Hf (s) = 2 arctan
( ρ sin(s)

1 − ρ cos(s)

)
.

Our second simple-loop function is given by

g(σ) ≡ 4 sin2
(σ

2

)
= 2 − 2 cos(σ). (4.2)

The respective Fourier coefficients can be calculated as ak(g) = −1 for k = ±1, ak(g) = 2
for k = 0, and ak(g) = 0 in any other case. We remind that the quoted symbol is related 
to the classical discrete Laplacian in one dimension. Hence ‖g‖α < ∞ for any α > 0
and the remaining simple-loop conditions are easily verified (see Fig. 2). Then g ∈ SLα

for any α > 0. In this case we obtain Bg(σ, s) = 1 and Hg(s) = 0, and the eigenvalues 
of Tn(g) can be explicitly determined as λj(Tn(g)) = g(σj,n) (a well-known fact for any 
tridiagonal Toeplitz matrix [48, Sc.2]).

Example 4.1. For the numerical implementation of Theorem 2.2, we consider the gen-
erating function f + hg. We need to calculate the singular integral in ψ, which for this 
example can be simplified to

ψ(s) = sin(s)
π

2π 

0

1
f(σ) − f(s)dσ.

For the kth term approximation we obtain

λ
sl(1)
j = f(σj,n),

λ
sl(2)
j = f(σj,n) + r1(σj,n)h,

λ
sl(3)
j = f(σj,n) + r1(σj,n)h + r2(σj,n)h2.
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Fig. 3. [Example 4.1] Asymptotic expansion for the eigenvalues of Tn(f + hg). The light thick gray curve 
is the term rk in Theorem 2.2, and the green dots are the normalized errors NEsl(k)

j,n for j = 1, . . . , n, and 
n = 64. The left graphic corresponds to the first term k = 1 and the right one to the second k = 2.

Table 1
[Example 4.1] The maximum absolute errors AEsl(k)

n and maximum normalized errors NEsl(k)
n for k = 1, 2, 3, 

and different values of n, corresponding to the asymptotic expansion for the eigenvalues of Tn(f + hg) in 
Theorem 2.2.

n AEsl(1)
n NEsl(1)

n AEsl(2)
n NEsl(2)

n AEsl(3)
n NEsl(3)

n

32 1.2092 × 10−1 3.9905 × 100 1.1114 × 10−3 1.2103 × 100 8.9892 × 10−5 3.2305 × 100

64 6.1501 × 10−2 3.9976 × 100 2.9830 × 10−4 1.2603 × 100 1.2316 × 10−5 3.3823 × 100

128 3.1003 × 10−2 3.9994 × 100 7.7394 × 10−5 1.2879 × 100 1.6228 × 10−6 3.4836 × 100

256 1.5564 × 10−2 4.0000 × 100 1.9728 × 10−5 1.3030 × 100 2.0796 × 10−7 3.5301 × 100

512 7.7972 × 10−3 4.0000 × 100 4.9765 × 10−6 1.3096 × 100 2.6386 × 10−8 3.5623 × 100

1024 3.9024 × 10−3 4.0000 × 100 1.2498 × 10−6 1.3130 × 100 3.3384 × 10−9 3.5950 × 100

2048 1.9522 × 10−3 4.0000 × 100 3.1315 × 10−7 1.3147 × 100 4.2375 × 10−10 3.6453 × 100

4096 9.7632 × 10−4 4.0000 × 100 7.8377 × 10−8 1.3156 × 100 5.6220 × 10−11 3.8662 × 100

8192 4.8822 × 10−4 4.0000 × 100 1.9605 × 10−8 1.3160 × 100 8.3189 × 10−12 4.5750 × 100

According to the results in Theorem 2.2, we must have Esl(k)
j,n = O(hk) uniformly in j

for k = 1, 2, 3, more specifically the normalized errors

NEsl(k)
j,n ≡ (n + 1)k Esl(k)

j,n ,

for k = 1, 2, are expected to be “close” to r1 and r2, respectively. Let NEsl(k)
n be 

max{NEsl(k)
j,n : j = 1, . . . , n}. Fig. 3 and Table 1 show the data.

Example 4.2. For the numerical implementation of Theorem 2.3, we consider the gener-
ating function f + hhg. We need to calculate the singular integral in ϕ, which for this 
example can be simplified to

ϕ(s) = sin(s)
π

2π 

0

1
f(σ) − f(s) + 2 cos(s) − 2 cos(σ)dσ.

Taking into account that the logarithm is relatively small for the matrix sizes consid-
ered, this time we arrange the kth term approximation in a different way

λ
sl(1)
j = f(σj,n) + g(σj,n),
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Fig. 4. [Example 4.2] Asymptotic expansion for the eigenvalues of the Toeplitz matrix Tn(f +hhg). The light 
thick gray curve is the term s1,1 +s1,0

1
log(h) (left) and s2,2 +s2,1

1
log(h) +s2,0

1
log2(h) (right) in Theorem 2.3, 

and the green dots are the normalized errors NEsl(k)
j,n for j = 1, . . . , n, and n = 64. The left graphic 

corresponds to the first term k = 1 and the right one to the second k = 2.

Table 2
[Example 4.2] The maximum absolute errors AEsl(k)

n and maximum normalized errors NEsl(k)
n for different 

values of n, and k = 1, 2, 3, corresponding to the asymptotic expansion for the eigenvalues of Tn(f + hhg)
in Theorem 2.3.

n AEsl(1)
n NEsl(1)

n AEsl(2)
n NEsl(2)

n AEsl(3)
n NEsl(3)

n

32 4.0125 × 10−1 3.7870 × 100 2.1631 × 10−2 1.9268 × 100 7.7105 × 10−4 6.4822 × 10−1

64 2.4867 × 10−1 3.8720 × 100 8.0703 × 10−3 1.9567 × 100 1.7371 × 10−4 6.5583 × 10−1

128 1.4787 × 10−1 3.9250 × 100 2.8028 × 10−3 1.9748 × 100 3.5309 × 10−5 6.6038 × 10−1

256 8.5438 × 10−2 3.9570 × 100 9.2570 × 10−4 1.9856 × 100 6.6746 × 10−6 6.6307 × 10−1

512 4.8362 × 10−2 3.9757 × 100 2.9474 × 10−4 1.9919 × 100 1.1963 × 10−6 6.6465 × 10−1

1024 2.6962 × 10−2 3.9865 × 100 9.1280 × 10−5 1.9955 × 100 2.0621 × 10−7 6.6654 × 10−1

2048 1.4858 × 10−2 3.9926 × 100 2.7663 × 10−5 1.9975 × 100 3.4466 × 10−8 6.6877 × 10−1

4096 8.1128 × 10−3 3.9959 × 100 8.2384 × 10−6 1.9986 × 100 5.6243 × 10−9 6.7206 × 10−1

8192 4.3970 × 10−3 3.9978 × 100 2.4184 × 10−6 1.9993 × 100 9.0135 × 10−10 6.7748 × 10−1

λ
sl(2)
j = f(σj,n) + g(σj,n) + s1,1(σj,n)h log(h) + s1,0(σj,n)h,

λ
sl(3)
j = f(σj,n) + g(σj,n) + s1,1(σj,n)h log(h) + s1,0(σj,n)h

+s2,2(σj,n)h2 log2(h) + s2,1(σj,n)h2 log(h) + s2,0(σj,n)h2.

According to the results in Theorem 2.2, we have the bound Esl(k)
j,n = O(hk| logk(h)|)

uniformly in j = 1, . . . , n, for k = 1, 2, 3; more specifically this time the normalized errors 
are given by

NEsl(k)
j,n = (n + 1)k

logk(n + 1)
Esl(k)
j,n (k = 1, 2),

and are expected to be “close” to the functions s1,1 + s1,0
1

log(h) and s2,2 + s2,1
1

log(h) +
s2,0

1
2 , respectively. Fig. 4 and Table 2 show the data.
log (h)
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Fig. 5. [Example 4.3] The momentary symbol Fn(σ) = f2(σ) + α1f1(σ)h2 + α0f0(σ)h4 with fk(σ) ≡
(2 −2 cos(σ))k, and its first two derivatives for α1 = 3, α2 = 2, and n = 32. The blue, red, and black curves 
are Fn/‖Fn‖∞, F ′

n/‖F ′
n‖∞, and F ′′

n /‖F ′′
n ‖∞, respectively.

4.2. A substantial improvement of the algorithm in [3]

Example 4.3. For k ∈ Z+ let fk(σ) ≡ (2 − 2 cos(σ))k and αk ∈ R. Consider the (momen-
tary) symbol

Fn(σ) ≡ f2(σ) + α1f1(σ)h2 + α0f0(σ)h4, (4.3)

see Fig. 5. The related Toeplitz matrices Tn(Fn) appear when discretizing differential 
equations with the Finite Differences method.

The functions fk with k �= 2, do not belong to SLα for any α, thus Fn do not 
fully satisfy our hypothesis and we cannot apply our theoretical results. Nevertheless, 
according to [28,30] we can expect an expansion of the form

λj(Tn(Fn)) = f2(σj,n) +
3∑

�=1

c�(σj,n)h� + O(h4). (4.4)

Moreover, the first few eigenvalues have order O(h4) (coinciding with the classical results 
of Parter [52]).

As a consequence, for those eigenvalues (4.4) will produce an approximation with an 
error comparable to the eigenvalue itself. To appreciate this phenomenon, we consider 
the respective relative errors

REsl(k)
j,n ≡

|λj(Tn(Fn)) − λ
sl(k)
j (Tn(Fn))|

|λj(Tn(Fn))| =
AEsl(k)

j,n

|λj(Tn(Fn))| .

Hence, according to [28,30] we expect that the expansion (4.4) produces acceptable 
relative errors only for j > log(n).
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We now proceed to determine the continuous functions c� following the algorithm 
proposed in [3,4,20]. This algorithm is a clever interplay between extrapolation and 
interpolation.

For given natural numbers m and n0, the extrapolation step, gives us a numerical 
approximation of c� (� = 1, . . . , m − 1) at the regular mesh πjh0 (j = 1, . . . , n0) of the 
interval [0, π], where h0 ≡ 1/(n0 + 1). Then, in the interpolation step, we use certain 
polynomial interpolation to obtain the value of c� at any point in the interval [0, π].

We noticed that this algorithm can produce large errors when evaluating c� close to 
the extreme points {0, π}, i.e. 103 bigger that the rest. As we can see in Theorems 2.2
and 2.3, the functions c� are a sum of products of Hf , the symbol, and its derivatives, 
and we must have Hf (0) = Hf (π) = 0 (see (2.2)). Therefore, taking into account the 
nature of the symbol (4.3) we have

c2(0) = α1f1(0) = 0, c2(π) = α1f1(π) = 4α1,

c4(0) = α0f0(0) = 0, c4(π) = α0f0(π) = α0,

while c�(0) = c�(π) = 0 for � �= 2, 4. Hence we propose here to include those values in 
the interpolation step and to look for an optimal number of interpolated points. Our 
numerical results reveal that the errors in the extreme points almost disappear and that 
the approximation of the functions c� improves in such a way that the respective errors 
behave better when � increases (see Figs. 6, 7, and Tables 3, 4). We emphasize that this 
contribution represents a substantial improvement to the algorithm presented in [3] and 
it is a general idea to be used in various contexts.

More specifically, let λna(k)
j (Tn(Fn)) be the kth-term numerical approximation of the 

eigenvalue λj(Tn(Fn)), given by (4.4), that is

λ
na(k)
j (Tn(Fn)) ≡ f2(σj,n) +

k−1∑
�=1

cna

� (σj,n)h�,

where the functions cna

� are obtained with the numerical algorithm. Let

Ena(k)
j,n ≡ λj(Tn(Fn)) − λ

na(k)
j (Tn(Fn)), AEna(k)

n ≡ max{|Ena(k)
j,n | : j = 1, . . . , n},

be the corresponding errors. According to [3, Th.3] we will have the bound AEna(k)
n =

O(hk
0h), thus let

NEna(k)
n ≡ (n0 + 1)k(n + 1)AEna(k)

n

be the respective normalized error. Figs. 6, 7, and Tables 3, 4, show the data.
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Fig. 6. [Example 4.3] The log-scaled eigenvalue relative errors log10(REna(k)
j,n ) for k = 4, n = 2048 (top), 

n = 4096 (middle), and n = 8192 (bottom). We worked with a regular mesh of size n0 = 100 and the 
momentary symbol Fn(σ) = (2 − 2 cos(σ))2 + 3(2 − 2 cos(σ))h2 + 2h4, see (4.3). The gray and blue curves 
correspond to the errors produced with the algorithm in [3,4,20] and to our modification, respectively.
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Fig. 7. [Example 4.3] The log-scaled eigenvalue relative errors log10(REna(k)
j,n ) for k = 4, n = 2048 (top), 

n = 4096 (middle), and n = 8192 (bottom). We worked with a regular mesh of size n0 = 100 and the 
momentary symbol Fn(σ) = (2 − 2 cos(σ))2 − 3(2 − 2 cos(σ))h2 + 5h4, see (4.3). The gray and blue curves 
correspond to the errors produced with the algorithm in [3,4,20] and to our modification, respectively.
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Table 3
[Example 4.3] The maximum eigenvalue errors AEna(k)

n and normalized errors NEna(k)
n for an expansion of 

k = 1, . . . , 4, terms, corresponding to the momentary symbol Fn(σ) = (2 −2 cos(σ))2+3(2 −2 cos(σ))h2+2h4, 
see (4.3), with different values of n and a regular mesh of n0 = 100 points.

n 256 512 1024 2048 4096 8192

AEna(1)
n 5.4089 × 10−3 2.8591 × 10−3 1.4689 × 10−3 7.4434 × 10−4 3.7466 × 10−4 1.8795 × 10−4

NEna(1)
n 1.4040 × 102 1.4814 × 102 1.5206 × 102 1.5404 × 102 1.5503 × 102 1.5553 × 102

AEna(2)
n 3.8731 × 10−5 9.8762 × 10−6 2.4925 × 10−6 6.2602 × 10−7 1.5686 × 10−7 3.9260 × 10−8

NEna(2)
n 1.0154 × 102 5.1683 × 101 2.6062 × 101 1.3085 × 101 6.5558 × 100 3.2812 × 100

AEna(3)
n 9.3695 × 10−8 1.1764 × 10−8 1.4767 × 10−9 1.8484 × 10−10 2.3122 × 10−11 2.8913 × 10−12

NEna(3)
n 2.4809 × 101 6.2178 × 100 1.5595 × 100 3.9021 × 10−1 9.7602 × 10−2 2.4406 × 10−2

AEna(4)
n 4.4299 × 10−9 3.0154 × 10−10 2.0443 × 10−11 1.2969 × 10−12 1.7757 × 10−13 1.6021 × 10−13

NEna(4)
n 1.1847 × 102 1.6097 × 101 2.1805 × 100 2.7653 × 10−1 7.5705 × 10−2 1.3659 × 10−1

Table 4
[Example 4.3] The maximum eigenvalue errors AEna(k)

n and normalized errors NEna(k)
n for an expansion of 

k = 1, . . . , 4, terms, corresponding to the momentary symbol Fn(σ) = (2 −2 cos(σ))2−3(2 −2 cos(σ))h2+5h4

(see (4.3)) with different values of n and a regular mesh of n0 = 100 points.

n 256 512 1024 2048 4096 8192

AEna(1)
n 5.4089 × 10−3 2.8591 × 10−3 1.4689 × 10−3 7.4434 × 10−4 3.7466 × 10−4 1.8795 × 10−4

NEna(1)
n 1.4040 × 102 1.4814 × 102 1.5206 × 102 1.5404 × 102 1.5503 × 102 1.5553 × 102

AEna(2)
n 3.8731 × 10−5 9.8762 × 10−6 2.4925 × 10−6 6.2602 × 10−7 1.5686 × 10−7 3.9260 × 10−8

NEna(2)
n 1.0154 × 102 5.1683 × 101 2.6062 × 101 1.3085 × 101 6.5558 × 100 3.2812 × 100

AEna(3)
n 9.3695 × 10−8 1.1764 × 10−8 1.4767 × 10−9 1.8484 × 10−10 2.3122 × 10−11 2.8913 × 10−12

NEna(3)
n 2.4809 × 101 6.2178 × 100 1.5595 × 100 3.9021 × 10−1 9.7602 × 10−2 2.4406 × 10−2

AEna(4)
n 4.4299 × 10−9 3.0154 × 10−10 2.0443 × 10−11 1.2969 × 10−12 1.7757 × 10−13 1.6021 × 10−13

NEna(4)
n 1.1847 × 102 1.6097 × 101 2.1805 × 100 2.7653 × 10−1 7.5705 × 10−2 1.3659 × 10−1

4.3. Multidimensional block setting: eigenvalue computation

In this subsection, we provide some useful background knowledge regarding multilevel 
block Toeplitz matrices.

We let L1([−π, π]k, Cm×m) be the Banach space of all m-by-m matrix valued Lebesgue 
integrable functions over [−π, π]k, equipped with the following norm

‖f‖L1 = 1
(2π)k

ˆ

[−π,π]k

‖f(θ)‖tr dθ < ∞,

where ‖A‖tr ≡
∑m

j=1 σj(A) denotes the trace norm of A ∈ Cm×m, σj(A), j = 1, . . . , m, 
being the singular values of A.

The multi-index n = (n1, n2, . . . , nk) is defined with each nj being a positive integer. 
When writing the expression n → ∞ we mean that every component of the vector n tends 
to infinity, i.e., min1�j�k nj → ∞. Furthermore, in the current multilevel context, it is 
convenient to use the Kronecker tensor product ⊗ for matrices, where A ⊗ B denotes 
the block matrix of the form (ai,jB) with A = (ai,j). In a function setting, writing 
f = f1 ⊗ f2 indicates a basic separable function f(x, y) = f1(x)f2(y) where x lies in the 
domain of f1 and y lies in the domain of f2.
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Let f : [−π, π]k → Cm×m be a function belonging to L1([−π, π]k, Cm×m), and pe-
riodically extended to Rk. We define T(n,m)[f ] the multilevel block Toeplitz matrix of 
dimensions mN(n) ×mN(n), with N(n) = n1n2 · · ·nk as follows

T(n,m)[f ] =
∑

|r1|<n1

. . .
∑

|rk|<nk

Jr1
n1

⊗ · · · ⊗ Jrk
nk

⊗A(r), r = (r1, r2, . . . , rk) ∈ Zk,

where

A(r) = 1
(2π)k

ˆ

[−π,π]k

f(θ)ei〈r,θ〉dθ,

with 〈 r, θ〉 =
∑k

t=1 rtθt, is the Fourier coefficient matrix of f and Jr
n is the n ×n matrix 

whose (�, s)-th entry equals 1 if � −s = r and 0 otherwise, that is, Jr
n is the n ×n Toeplitz 

matrix with entries 1 in the rth diagonal and zero elsewhere.
We indicate by {T(n,m)[f ]}n the matrix-sequence whose elements are the matrices 

T(n,m)[f ]. The function f is called the generating function of T(n,m)[f ].
If f is Hermitian-valued almost everywhere (a.e.), then T(n,m)[f ] is Hermitian for any 

choice of n and m. If f is Hermitian-valued and nonnegative a.e., but not identically 
zero a.e., then T(n,m)[f ] is Hermitian positive definite ∀n, m. If f is Hermitian-valued 
and even a.e., then T(n,m)[f ] is real and symmetric for any choice of n and m [45,53,54].

Example 4.4. With respect to the previous notation, we have

T(n,m)[f1 ⊗ f2] = T(n[1],m)[f1] ⊗ T(n[2],m)[f2],

with n = (n[1], n[2]), f1 being k1 variate and f2 being k2 variate, with n[r] being a 
multi-index of cardinality kr, r = 1, 2.

For the eigenvalue expansions in a multilevel setting, in this example we consider 
T(n,1)[fh] with n = (n1, n2), n1 = n2 = n, γ = 1, 3/2, 2,

fh(θ) ≡
2∑

r=1
[f0,r(θr) + hγf1,r(θr)], (4.5)

f0,r(θr) = (2 − 2 cos(θr))
γ
2 , f1,r(θr) = 20 + r cos(θr) + (r + 1) cos(2θr),

r = 1, 2. See Fig. 8. In such a setting, arising e.g. in the numerical approximation of 
operators of the form 

∑k
r=1

∂γ

∂γxr
, γ is an even positive integer or γ ∈ [1, 2) in the 

symmetric fractional case, owing to the tensor structure of the given matrices. Of course, 
with regard to equation (4.5), any parameter γ > 0 is of interest in concrete applications 
because standard Finite Difference approximations of any higher order operator also of 
fractional type are included in formula (4.5).
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Fig. 8. [Example 4.4] The generating function fh(θ1, θ2) in (4.5) plotted on [−π, π]2, for n = 64 and different 
values of γ.

The eigenvalues of T(n,1)[fh] take the form

λj1(Tn(q1)) + λj2(Tn(q2)), 1 � j1, j2 � n, (4.6)

where λj(Tn(qr)) is the jth eigenvalue of the unilevel Toeplitz matrix Tn(qr) with 
qr(θr) ≡ f0,r(θr) + hγf1,r(θr)), r = 1, 2, for which the asymptotical expansion has been 
worked out previously.

For m = 1 and n = (n, n), the resulting multilevel block Toeplitz matrix is

T(n,1)[fh] =
n−1∑

r1=−n+1

n−1∑
r2=−n+1

Jr1
n ⊗ Jr2

n ⊗A(r1,r2),

where the Fourier coefficient matrix A(r1,r2) turns out to be

A(r1,r2) = δr2,0ar1(f0,1) + δr2,0ar1(f1,1)hγ + δr1,0ar2(f0,2) + δr1,0ar2(f1,2)hγ ,

and δ·,· is the usual delta Kronecker function.
The functions q1, q2 do not belong to SLα for any α, thus we cannot apply our the-

oretical results, but as in the previous example, there is numerical evidence suggesting 
that, nevertheless we can expect an eigenvalue expansion of the form

λj(Tn(qr)) = f0,r(σj,n) +
m−1∑
�=1

u�(σj,n)h�β + O(hmβ), (4.7)

for r = 1, 2, σj,n = πjh, and some constants β ∈ (0, 1] and m ∈ N.
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According to (4.6) the eigenvalues of T(n,1)[fh] can be arranged in the n × n matrix 
λ(T(n,1)[fh]) given by

⎡
⎢⎢⎣

λ1(Tn(q1)) + λ1(Tn(q2)) λ1(Tn(q1)) + λ2(Tn(q2)) · · · λ1(Tn(q1)) + λn(Tn(q2))
λ2(Tn(q1)) + λ1(Tn(q2)) λ2(Tn(q1)) + λ2(Tn(q2)) · · · λ2(Tn(q1)) + λn(Tn(q2))

...
...

. . .
...

λn(Tn(q1)) + λn(Tn(q2)) λ1(Tn(q1)) + λ2(Tn(q2)) · · · λn(Tn(q1)) + λn(Tn(q2))

⎤
⎥⎥⎦.

(4.8)
For the numerical experiments let λna(k)

j (Tn(qr)) be the kth-term numerical approxi-
mation of the eigenvalue λj(Tn(qr)), given by (4.7), that is

λ
na(k)
j (Tn(qr)) = f0,r(σj,n) +

k−1∑
�=1

una

� (σj,n)h�β ,

where the functions una

� are obtained with the numerical algorithm. The parameter β
must be determined for each example. Similarly, let

λ
na(k)
j (T(n,1)[fh]) = λ

na(k)
j1

(Tn(q1)) + λ
na(k)
j2

(Tn(q2)), j = (j1, j2),

be the respective kth-term approximation for the jth eigenvalue of T(n,1)[fh].
Note that the eigenvalues λna(k)

j (T(n,1)[fh]) are real-valued and can be arranged in 
non-decreasing order. For the linearly ordered eigenvalues, Fig. 9 shows the absolute 
individual errors

AEna(k)
(j,n) ≡ |λj(T(n,1)[fh]) − λ

na(k)
j (T(n,1)[fh])|,

for n = (8192, 8192) and different values of γ. Since in this case, the Toeplitz multilevel 
matrix T(n,1)[fh] has N(8192) = 81922 = 67 108 864 eigenvalues, its calculation is a real 
challenge. Fig. 10 shows the same as Fig. 9 but with the eigenvalues arranged in its 
matrix form λ(T(n,1)[fh]) given by (4.8).

Tables 5, 6, and 7 show the maximum absolute and normalized eigenvalue errors

AEna(k)
(n) ≡ max{AEna(k)

(j,n) : 1 � j1, j2 � n, j = (j1, j2)},

NEna(k)
(n) ≡ AEna(k)

(n) (n + 1)βk,

for different combinations of γ, β, and k. According to (4.7), we expect for NEna(k)
(n)

to be bounded with respect to n, a fact that can be nicely seen in the mentioned 
tables.
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Fig. 9. [Example 4.4] For the multilevel Toeplitz matrix T(n,1)[fh] with generating function fh(θ1, θ2) in (4.5)
and its linearly ordered eigenvalues, the figure shows the 10-base logarithm of the absolute individual 
eigenvalue errors AEna(k)

(j,n) for n = (8192, 8192) and different combinations of k, β, and γ. Top: γ = 1, β = 1, 
k = 5, middle: γ = 3/2, β = 1/2, k = 3, and bottom: γ = 2, β = 1, k = 3. The order of the matrix 
T(n,1)[fh] is N(n) = 81922 = 67 108 864.
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Fig. 10. [Example 4.4] For the multilevel Toeplitz matrix T(n,1)[fh] with generating function fh(θ1, θ2)
in (4.5) and its matrix arranged eigenvalues (see (4.8)), the figure shows the 10-base logarithm of the 
absolute individual eigenvalue errors AEna(k)

(j,n) for n = (8192, 8192) and different combinations of k, β, 
and γ. Top: γ = 1, β = 1, k = 5, middle: γ = 3/2, β = 1/2, k = 3, and bottom: γ = 2, β = 1, k = 3.
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Table 5
[Example 4.4] For the multilevel Toeplitz matrix T(n,1)[fh] with generating function fh(θ1, θ2) in (4.5), the 
maximum absolute and normalized eigenvalue errors AEna(k)

(n) and NEna(k)
(n) , respectively, for γ = 1, β = 1, 

and different values of k.

n 2562 5122 10242 20482 40962 81922

AEna(1)
(n) 1.8676 × 10−1 9.3566 × 10−2 4.6829 × 10−2 2.3426 × 10−2 1.1716 × 10−2 5.8587 × 10−3

NEna(1)
(n) 4.7998 × 101 4.8000 × 101 4.8000 × 101 4.8000 × 101 4.8000 × 101 4.8000 × 101

AEna(2)
(n) 1.5140 × 10−4 3.7999 × 10−5 9.5182 × 10−6 2.3819 × 10−6 5.9576 × 10−7 1.4898 × 10−7

NEna(2)
(n) 1.0000 × 101 1.0000 × 101 1.0000 × 101 1.0000 × 101 1.0000 × 101 1.0000 × 101

AEna(3)
(n) 2.7221 × 10−7 3.4139 × 10−8 4.2740 × 10−9 5.3466 × 10−10 6.6858 × 10−11 8.3589 × 10−12

NEna(3)
(n) 4.6207 × 100 4.6089 × 100 4.6027 × 100 4.5995 × 100 4.5978 × 100 4.5970 × 100

AEna(4)
(n) 3.5980 × 10−9 2.2690 × 10−10 1.4245 × 10−11 8.9231 × 10−13 5.5832 × 10−14 3.4913 × 10−15

NEna(4)
(n) 1.5696 × 101 1.5715 × 101 1.5724 × 101 1.5728 × 101 1.5731 × 101 1.5731 × 101

AEna(5)
(n) 2.0263 × 10−11 6.3952 × 10−13 2.0083 × 10−14 6.2912 × 10−16 1.9697 × 10−17 7.7531 × 10−19

NEna(5)
(n) 2.2718 × 101 2.2722 × 101 2.2722 × 101 2.2722 × 101 2.2736 × 101 2.8622 × 101

Table 6
[Example 4.4] The same as Table 5 for γ = 3/2 and β = 1/2.

n 2562 5122 10242 20482 40962 81922

AEna(1)
(n) 1.7841 × 10−2 7.5977 × 10−3 3.3323 × 10−3 1.5034 × 10−3 6.9661 × 10−4 3.2882 × 10−4

NEna(1)
(n) 4.5852 3.8976 3.4156 3.0805 2.8540 2.6940

AEna(2)
(n) 1.1651 × 10−2 4.1313 × 10−3 1.4628 × 10−3 5.1755 × 10−4 1.8305 × 10−4 6.4734 × 10−5

NEna(2)
(n) 4.8002 × 101 4.8002 × 101 4.8002 × 101 4.8003 × 101 4.8004 × 101 4.8006 × 101

AEna(3)
(n) 7.8495 × 10−6 1.6545 × 10−6 3.5619 × 10−7 7.2938 × 10−8 1.4523 × 10−8 3.2939 × 10−9

NEna(3)
(n) 8.3114 9.8618 1.1981 × 101 1.3861 × 101 1.5603 × 101 2.0013 × 101

Table 7
[Example 4.4] The same as Table 5 for γ = 2 and β = 1.

n 2562 5122 10242 20482 40962 81922

AEna(1)
(n) 3.3144 × 10−2 1.6468 × 10−2 8.2077 × 10−3 4.0972 × 10−3 2.0470 × 10−3 1.0231 × 10−3

NEna(1)
(n) 8.5180 × 100 8.4480 × 100 8.4129 × 100 8.3952 × 100 8.3864 × 100 8.3820 × 100

AEna(2)
(n) 7.3264 × 10−4 1.8392 × 10−4 4.6075 × 10−5 1.1531 × 10−5 2.8842 × 10−6 7.2123 × 10−7

NEna(2)
(n) 4.8390 × 101 4.8401 × 101 4.8407 × 101 4.8411 × 101 4.8412 × 101 4.8413 × 101

AEna(3)
(n) 6.7224 × 10−7 8.4589 × 10−8 1.0609 × 10−8 1.3283 × 10−9 1.6617 × 10−10 2.0780 × 10−11

NEna(3)
(n) 1.1411 × 101 1.1420 × 101 1.1424 × 101 1.1426 × 101 1.1428 × 101 1.1428 × 101

5. Conclusions, perspectives, and open problems

The eigenvalues of Toeplitz matrices Tn(f) with a real-valued symbol f , satisfying 
some conditions and tracing out a simple loop over the interval [−π, π], are known to 
admit an asymptotic expansion with the form

λj(Tn(f)) = f(σj,n) +
m−1∑

c�(σj,n)h�β + O(hmβ),

�=1
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for some natural number m, β ∈ (0, 1], h = 1/(n + 1), σj,n = πjh, and where c� are 
some bounded coefficients depending only on f . In practice, the latter expansion is 
numerically observed under the only condition of monotonicity and the even character 
of the generating function [4].

In this article we have investigated the superposition caused over this expansion, when 
considering a linear combination of symbols and, from a theoretical point of view, we 
stress that this is the first time that an eigenvalue expansion is theoretically obtained 
for a Toeplitz matrix-sequence with a symbol depending on n. As a further relevant 
contribution we have improved the precision of the algorithm in [3], by using analytic 
information obtained in our theoretical findings.

The problem has noteworthy applications in the differential setting, when the coeffi-
cients of the linear combination are given functions of h: in particular, by using the new 
expansions, we can give matrix-less eigensolvers for large matrices stemming from the 
numerical approximation of standard differential operators and distributed order frac-
tional differential equations. We notice that the present approach can be viewed also as 
a successful application of the notion of GLT momentary symbols, a quite new research 
line discussed in [12,18].

It remains the open question of determining the value of m as a function of the 
generating function. Indeed when considering distributed fraction differential equations, 
it is both of interest the case where m is fixed with respect to the matrix size n and the 
more difficult case where m = m(n) [8–10]. Given the technical work involved, especially 
when m = m(n), these generalizations will be considered in a near future.

As further developments we will consider

• a professional code in the spirit of matrix-less algorithms, also of highly parallel type;
• an extension of the theory to the case of Hermitian even matrix-valued symbols, using 

the basic study in [20], with the idea of treating in full generality matrix-sequences 
stemming from Finite Elements and IgA approximations of coercive differential prob-
lems (see also [32,55,56] and references therein);

• the case where the monotonicity is violated, which seems to be a very challenging 
setting, as widely discussed in [4];

• the case of variable coefficient differential operators, as a test of the notion of GLT
momentary symbols (Definition 1.2) in full generality: an example of interest in appli-
cations would be the extension of the techniques to the case of operators as those in 
equation (1.7) with αs(x) being Riemann integrable functions, for s = 0, 1, . . . , s. Un-
der these conditions the related matrix-sequences are not of Toeplitz type any longer, 
but they belong to the GLT class and admit GLT momentary symbols, in accordance 
with Definition 1.2.
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