INTEGRAL EQUATIONS AND
OPERATOR THEORY
v. 40, no. 1, 2001, p. 16 — 33

BERGMAN-TOEPLITZ OPERATORS:
RADIAL COMPONENT INFLUENCE*

S. GRUDSKY' and N. VASILEVSKI

We analyze the influence of the radial component of a symbol to spectral, com-
pactness, and Fredholm properties of Toeplitz operators, acting on the Bergman
space. We show that there exist compact Toeplitz operators whose (radial) sym-
bols are unbounded near the unit circle D. Studying this question we give several
sufficient, and necessary conditions, as well as the corresponding examples. The
essential spectra of Toeplitz operators with pure radial symbols have sufficiently
rich structure, and even can be massive .

The C*-algebras generated by Toeplitz operators with radial symbols are com-
mutative, but the semicommutators [T,,7}) = T, - T, — T,.;, are not compact in
general. Moreover for bounded operators T, and T}, the operator 7T,., may not
be bounded at all.

1 Introduction

Let D be the unit disk in C, and introduce the space Ly(ID) with the usual Lebesgue plane
measure du(z) = dxdy, 2 = x + iy, and its subspace A?(D), the Bergman space, consisting
of all functions analytic in ID. The Bergman orthogonal projection Bp of Ly(D) onto A*(D)

is given by

1 / (C) du(C)

™ (1—-20)?
For a function (symbol) a(z) defined in D, as usual, we will denote by 7, the Toeplitz
operator, acting on functions ¢ € A*(D) as follows

(Bow)(2) =

T,o = Bpap.
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A first rough look of the theory of Toeplitz operators gives an impression that this
theory is quite similar to one of Toeplitz operators, acting on the Hardy space on the unit
circle 0. Indeed, say for bounded symbols with continuous extension onto the boundary 9D
of the unit disk, all essential information about the compactness and Fredholm properties of
these operators is given by the restriction of their symbols a|sp onto the unit circle. For such
symbols a Toeplitz operator T, is compact if and only if a|sp = 0, its essential spectrum
coincides with the image of a|sp; both the commutator [T,,7,] = T, - T, — T, - T, and
semicommutator [T,,Ty) = T, - T, — T,., are compact, and the quotient algebra, generated
by these Toeplitz operators, modulo the ideal of compact operators is isomorphic to C'(9D).

In this context Toeplitz operators with radial symbols a(r) are quite trivial, nothing
but compact perturbations of scalar operators, Ty = a(1)I + K.

At the same time one of the principal differences between the Bergman and Hardy
space settings is that in the first case there is an additional direction: “inside the domain”.
As a consequence symbols with quite a nice behaviour with respect to the circular direction
may have very complicated irregular behaviour with respect to the radial direction. In
particular this reflects that Toeplitz operators with radial symbols may have, and as we will
see, do have interesting and rich structure.

The aim of this paper is to analyze the influence of the radial component of a
symbol to spectral, compactness, and Fredholm properties of Toeplitz operators, acting on
the Bergman space.

To analyze the impact of the radial component itself we devoted Section 3 to the
study of Toeplitz operators having pure radial symbols. Note that this topic is not absolutely
new. In [2], studying the Toeplitz operators with bounded radial symbols, B. Korenblum and
K. Zhu found out their two important properties: the diagonal form of Toeplitz operators
with respect to the standard polynomial basis in A?(D), and the criterium of compactness
of such operators. The methods used in [2] did not permite them to consider unbounded
symbols, which was left as an open problem. Let us mention as well the papers [3, 4, 5, 6],
where the compactness of Toeplitz operators with bounded radial symbols were studied in
different settings.

Our approach is based on, and continues the results of [8], permitting to consider
both bounded and unbounded symbols. Therefore in Section 2 we recall necessary facts from
8].

It appears that Toeplitz operators with radial symbols possess many interesting
properties. In particular there exist compact Toeplitz operators whose (radial) symbols are
unbounded near the unit circle 0. Studying this question we give several sufficient, and
necessary conditions, as well as the corresponding examples. It appears that the essential
spectra of Toeplitz operators with pure radial symbols have sufficiently rich structure, and
even can be massive (i.e., have positive plane measure).

In Section 4 we study C*-algebras generated by Toeplitz operators. First we con-
sider the C*-algebra generated by bounded Toeplitz operators with pure radial symbols.
This algebra is commutative;, i.e., the commutators [T,, T},] are always equal to zero. At the
same time the semicommutators [T,,T;) are not compact in general. Moreover for bounded
operators 1, and T, whose symbols are unbounded, the operator 1,., may not be bounded



at all. That is, contrary to commonly known cases the set of symbols, for which corre-
sponding Toeplitz operators are bounded, neither forms an algebra (under the pointwise
multiplication), nor admits any natural norm.

Finally we consider the C*-algebra generated by Toeplitz operators whose symbols
are continuous in the circular direction and quite arbitrary in the radial one.

2 Preliminaries
Recall here necessary facts from [8]. Passing to polar coordinates in the unit disk we have

Lo(D) = Lo(D, du(z)) = La((0,1),rdr) ® Ly([0,27), dev)

= Ly([0.1), rdr) @ Ln(S', %) = ([0, 1), rdr) ® Lo(S"),

where St = 9D is the unit circle, and

dt

it

is the element of length.
Introduce the unitary operator

Uy =1®F: Ly([0,1), 7dr) ® Ly(S) — Lo([0,1), rdr) @ Iy = lo(La([0, 1), rdr)).

where the Fourier transform F : Ly(S') — Iy is given by

1 dt
— 1)t " —,
vV 21 . S1 f( ) it

and its inverse F~! = F* : [y — Ly(S') is given by

F:fr—¢,= n € 7,

1
F_l : {CH}HEZ — f = \/—2771_ ch t".

neL

For each n € Z, = NU {0} introduce the unitary operator
Up : Lo([0,1), rdr) — Ly([0, 1), rdr)

by the rule
1

then the inverse operator u, ' = u? : Ly([0,1),rdr) — Ly([0, 1), rdr) is given by

n

(u, ' )(r) =vn+1r" f").

P (),

Finally, define the unitary operator

Us : Iy(Ls([0, 1), rdr)) — lo(L2([0, 1), rdr)) = La([0, 1), rdr) ® Lo



as follows:
Uy : {en(r)Yner = {(tn)cn) (1) }nez-

Let (o(r) = v/2; we have ly(r) € Ly([0,1),7dr) and ||¢y(r)|| = 1. Denote by L, the one-
dimensional subspace of Ly([0, 1), rdr) generated by ¢y(r), then the one-dimensional projec-
tion Py of Ly([0,1),rdr) onto Ly has the form

(Pf)(r) = (f.bo) - by = 2 / 1) pdp. (2.1)

Denote by I3 the subspace of (two-sided) Iy, consisting of all sequences {c;, }nez, such that
¢cp, =0foralln € Z_ =7\ Z,, and introduce the sequence x; = {x+(n)}nez € ls, where
X+(n)=1forn € Z,, and x4 (n) = 0 for n € Z_. Then the orthogonal projection of I, onto
I has obviously the form yI.

Theorem 2.1 The unitary operator U = UsU; gives an isometric isomorphism of the space
Ly(D) onto Lo([0, 1), rdr) @ Iy under which

1. the Bergman space A*(D) is mapped onto Lo ® 1,
U:A*D) — Ly ® 1,
where Ly is the one-dimensional subspace of Ly([0,1),rdr), generated by £o(r) = /2,
2. the Bergman projection Bp s unitary equivalent to the following one,
UBpU ' = Py® x4 1,
where Py is the one-dimensional projection (2.1) of Ls([0,1),rdr) onto Ly.
Introduce the isometric imbedding
Ro: 15 — Ly([0,1),rdr) @ Iy

by the rule
Ry : {entnez, = Lo(r){xs+(n)entnez.
The adjoint operator Rf : Ly([0,1),rdr) ® l, — I3 is given by

Ry Aea(r)hen — {X+<n) / 1cn<p>¢§pdp}

neZ4

Now the operator R = R{U maps the space Ly(ID) onto l5, and the restriction
Rlaxm) : A(D) — 13
is an isometric isomorphism. The adjoint operator
R*=U*Ry: 1y — A*(D) C Ly(D)

is an isometric isomorphism of I onto the subspace A?(ID) of the space Ly(D).



Remark 2.2 We have
RR =1 : I — 1
R*'R=DBp : LyD) — A*(D).
Theorem 2.3 The isometric isomorphism
R*=U*Ry : Iy — A*(D)

s given by

Rt {ctnen, — \/% S V20t 1) e, 2

neZy
Corollary 2.4 The inverse isomorphism
R:A*D) — I

s given by

R:p(z) o {Vz(j_;” / so(Z)E"du(Z)}

Theorem 2.5 Let a = a(r) be a measurable function on the segment [0,1]. Then the
Toeplitz operator T, acting on A*(D) is unitary equivalent to the multiplication operator
Yol = RT,R*, acting on Iy . The sequence v, = {7a(n)}nez, is given by

nez 4

1 1
Ya(n) = / a(rze+0)dr, neZ,. (2.2)
0

Corollary 2.6 The Toeplitz operator T, with measurable radial symbol a = a(r) is bounded
on A*(D) if and only if

Ya = {7a(n) }nez, € loo,
and
|Tall = sup |va(n)|.

neZy
The Toeplitz operator T, is compact if and only if v, € ¢o that is

lim v,(n) = 0.

n—o0

3 Toeplitz operators with radial symbols

To study the Toeplitz operators with radial symbols it is useful first to understand the
behaviour of sequences of the type (2.2). We have

1 X 1
Ya(n) = / a(r2e ) dr = (n + 1)/ bu)u" du, n€Z,,
0 0



with b(u) = a(y/u). Tt is natural to assume that

1
/ |b(u)|du < oo,
0

or equivalently
1
/ la(r)|rdr < oo.
Jo

That is the sequence
1
n) =——v,n
i) = —— ()
forms the sequence of the power momentums of the function b(u).
The following uniqueness result is standard in the momentum theory, and is impor-

tant for us.

Theorem 3.1 Let
m(ne) =0, k€Zy,

where ng = ng + dk, ng € Z,, d € N. Then b(u) = 0 almost everywhere.

PrOOF. We have .
/ b(u)u™udu = 0.
Jo

Changing the variable u¢ = s, we obtain

1
/ [b(s]/d)s 7 d] sfds =0, k=0,1,2,...
0

Now the function in the square brackets belongs to L;(0, 1), and is orthogonal to all poly-
nomials. Thus this function is equal to zero almost everywhere, so the function b(u) = 0
almost everywhere as well. O

Corollary 3.2 There is no function b(u) € Ly(0,1) for which ny(n) # 0 only at a finite
number of points.

The behaviour of a sequence ~,(n), when n — oo, is completely determined by the
behaviour of a function a(r) (or a function b) in a neighborhood of the point » = 1. Given
b€ Li(0,1), introduce the function



Theorem 3.3 If the function B(s) when s — 1 has the form

B(s)| = O(1 - 5), (3.1)
then

sup [7e(n)| < oo.

neziy
If

B(s)| = o(1 - ) (3.2)
then

le Ya(n) = 0.

PrOOF. Let b(u) = a(y/u) € L;(0,1). Integrating by parts we have for n > 1

1
Ya(n) = (n + 1)77/ B(s)s" ds.
0

Let £ = e(n) = n~2/3. Then assuming (3.1) estimate

a(n)] < (n+1)n/1 |B(s)|s”1ds+(n+1)n/0 IB(s)|s" s

1

(1—3s)s" 'ds+ (n+1)n(1l—e)"! /0 |B(s)|ds

1

< (n+ 1)nce/

J1—e

n

< (n+1)nec <Sn — ;7:1> . + const (n + 1)nexp((n — 1) In(1 —¢))
1 exp((n+1)In(1 —¢))

< cE(n+1)n<(n+1)n ] >

+ const (n + 1)n(exp(—(n — 1)e + (n — 1)O(£?)))

< (1 +nexp(—(n+1)e+ 0(c?))) + const n? exp(—n'/?)

< ¢, +constn?exp(n /%),

where “const” denotes a quantity uniformly bounded in . Having (3.1), the quantity c. is
uniformly bounded on &, and thus 7, € [.
Having (3.2), the quantity c. can be chosen in such a way that

lime, = lim c.,) =0,
e—0 n—o0

and thus v, € ¢. O

In fact Theorem 3.3 says that the behaviour near the boundary of a certain average
of symbols, rather than the behaviour of the symbols themselves, is responsable for the
boundedness and compactness properties of corresponding Toeplitz operators. That is, in
spite of bad behaviour of a symbol, which can be even unbounded near the boundary, the
corresponding Toeplitz operator can be bounded and even compact.



EXAMPLE 1. Let
a(r) = (1 - 7"2)75 sin(1 — 7'2)7“, (3.3)

where o > 0, and 8 < 1. Consider the corresponding function
1
B(v) = / (1 —u) Psin(1 — u) “du.

Changing variables
s=1—-u)" u=1-s"

we have | oo .
B(v) = —/ s Vsinsds, 0= 5 + 1.
@ J(1—p)-a @
Integrate by parts twice:
_ l )@ _\ad é * —0—1
B(v) = —(cos(1—v)"*)(1 —0v)* + s cos s ds
8% Q (1—v)—
1

= o loos(1 o) )10 = D sin(1 — ) (1 - 0)e 0

5(5+1) /°° y
J

s 9 2gin s ds.
Q 1—v)—

This implies that

B() = L= " — L Y (3.4)

Thus considering the Toeplitz operator T, with the radial symbol a of the form (3.3) we have

— for a > [ the sequence 7,(n) is bounded, and thus the Toeplitz operator is bounded
on A?(D);

— for a > (3 the sequence v,(n) belongs to ¢y and thus the Toeplitz operator is compact

on A%(D).

Moreover for f < 0 the symbol (3.3) is bounded, while for 5 > 0 the symbol (3.3) is
unbounded near the boundary oD.

The conditions (3.1) and (3.2) are sufficient for boundedness and compactness of
an operator T,, in general. It is known [2], that for bounded symbols a(r) € L (0,1) the
condition (3.2) is necessary and sufficient for compactness of T, on A*(D).

A case when conditions (3.1) and (3.2) are necessary for L; symbols describes the
following theorem.

Theorem 3.4 Let b(u) € L1(0,1), and b(u) > 0 almost everywhere. Then the conditions
(5.1) and (3.2) are necessary and sufficient for vy, € loe and v, € ¢y, respectively.



PrROOF. Let n=[(1— s)7!], then
Ya(n) > (n+ 1)/ b(u)u™du > const (n + 1) / b(u)du = const (n + 1) B(s).

Thus
B(s) < const (1 — s)7y4(n).

ExAMPLE 2. Consider the following family of radial symbols
ag(r) = (1 —7r)*""', where >0,

which scales the (polynomial) growth of symbols near the boundary. We have

) = (0 +1) [ (1= Ve

and
B _/1 \/_)d_g(l_)a+L
o(s) = s ao(\/r)dr = i s ao T 1)
By Theorem 3.4 the operator 7, is bounded if and only if @ > 1, and compact if and only
if @ > 1. That is, in this scale unbounded symbols generate unbounded Toeplitz operators.
Moreover, as it will follow from Corollary 3.5, to generate bounded or compact Toeplitz

operator its unbounded symbol must necessarily have sufficiently sophisticated oscillating

(1 . S)a+1.

behaviour near the unit circle oD.
For a non negative symbol a(r) introduce the function

ma(u) = inf a(r)

which is obviously always monotone.

Corollary 3.5 If lim, ,; m,(u) = 400 (which is equivalent to lim, 1 a(r) = +oc), then the
Toeplitz operator T, is unbounded.
PrOOF. Estimate .

B(s) = / b(u)du > inf a(r)-(1—s),

re(s?,1]

then lim (B(s)/(1 —s)) = +oo. Thus according to Theorem 3.4 the operator 7, is un-

t—o00

bounded. [l

Note that for general L; symbols the conditions (3.1) and (3.2) fail to be necessary.
EXAMPLE 3. Let

a(r) = —(1 )1 —r?) "sin(1 — 3"+ a(l — %) * Vcos(1 — )" (3.5)



Then
B(u) = (1 —u)' 7sin(1 — u) .

Suppose that
0<v<a (3.6)

and
a+y <1

Then b(r)(= a(y/r)) € L1(0,1) but conditions (3.1) and (3.2) are not realized. However we
can show that operator T, is bounded and compact in A*(D). Indeed

Ya(n) = (n + 1)/0 b(r)rdr = (n + l)n/o B(r)r"dr.

Integrating by parts once more we have

Ya(n) = (n+ Dnn — 1) / O(r)r-2dr,

where

Setting /=~ — 1 from (3.4) it follows

cos(l —r)~@

Cr) = (1= )2 4 O((1— r)2* 7).

«
Thus

!
3 o a—y+2, n—2
“ < :
|7a(n)| < const - n / (1—r) ™ dr
0

Integrating by parts two times we have
1
[7a(n)| < const - (n+1) / (1—r)* 7r"dr,
Jo

and due to (3.6) from Theorem 3.3 we have
lim 7,(n) = 0.

n—oo

In the above example we have used the following fact: second “antiderivative” of
the function b(r) in a neighborhood of the point 7 = 1 has the following asymptotic

C(r) =o((1 —1)*).
This observation hints the following generalization of Theorem 3.3.
Given b(u), introduce the functions

1
b(j)(u)—/ WG (g)ds, j=1,2,.. .,

where b(=% (s) = b(s).
Note, that B(u) = b (u), and C(u) = b2 (u).



Theorem 3.6 Let a function b~7)(s), j € N, has the following asymptotic, when s — 1,

B (s)| = O((1 — 5)),

then
sup |vq(n)| < oo.
HEZ+
If
D)) = of(1 - 5))
then
g, () =0

PrROOF. The poof is analogous to one of Theorem 3.3. Note, that the function (3.5) of
Example 3 satisfies the hypothesis of Theorem 3.6 for j = 2. [

Another useful characterization of a sequence 7,(n) gives the following theorem.
Theorem 3.7 Let b(u) € L1(0,1). Then

lim (74(n) — a(n + 1)) = 0. (3.7)

n—0o0

Proor. Consider

Ya(n) = Ya(n+1) = (n+1) /0 (1 —w)u"b(u)du — ./0 u"b(u)du
= Ii(n)+ I(n).

To estimate the first summand find the point of maximum of the function s(u) = (1 — u)u".

This point is obviously ug =1 — n%rl, thus

(1- ﬁ)n const
sup. () = () = = < St
u€l0,1] n —+ n +

L) < (n+1)/1 (1u)u"b(u)|du+(n+1)/0 (1= ) b(w) | du

< Const/l |b(u)du+(n+1)(15)"./0 1b(u)|du.

Now from .

lim b(u)|du=0

n—0o0 1—¢

(n+1) <1—\/Lﬁ>n—(n+1)exp<—n<%—%+0<#>>> 0

and



it follows that
lim [;(n) = 0.

n—00
Analogously splitting the integral Ir(n) on segments [1 —1/4/n, 1] and [0,1—1/+/n] one can
show that

lim Ir(n) =0,

n—00

which finishes the proof of the theorem. ]

Corollary 3.8 Let b(u) € L1(0,1). Then the set of all limit points of the sequence ~y,(n)
forms a closed connected subset of C. In particular the sequence v,(n) can not have a finite
or countable set of limit points.

PROOF. Suppose the set K of limit points is not connected. Then there exist two closed
subsets K and K, (intersecting K') with a positive distance between them such that K C
K, U K,. Without loss of generality we can assume that v,(n) € K; U K, for each n starting
from some N. Thus there exist infinitely many n; € N suth that ~,(n;) € K; but, at that
time, either v,(n; + 1) € K, or 7,(n; — 1) € K, which contradicts (3.7). O

Corollary 3.9 The essential spectrum of a bounded Toeplitz operator with a radial symbol
15 always connected.

That is, if an [ sequence 7,(n) does not have a limit, then the essential spectrum of
the corresponding Toeplitz operator may be either a compact connected curve, or a compact
connected subset of C having positive plain measure. Let us show that both these cases can
be realized.

EXAMPLE 4. Unit circle and unit interval.
Let a,(r) = a,(Inr2)"?, with a;, € C, and p € R. Then

1
Ya, (1) ap(n + 1)/ (Inu")Pu"du
0

1
_— / (In(s~ 1/ +D))igs
0 . 1 .
= (n+1)7" [ap/ (lns_l)“’ds} .
0

Select now ay, in such a way that the multiple in the square brackets is equal to 1, it is easy
to see that a;, = 1/T'(ip + 1). Then

Yap(n) = (n+1)7% = exp(—ipIn(n +1)).

Thus
spT,, = ess-spT,, = St



If ¢,(r) = Im a,(In772)", then
Ye,(n) = —sin(pIn(n + 1)), (3.8)

and
spTe, = ess-spT,, = [—1,1].

EXAMPLE 5. Square.
Let a(r) = ¢1(r) +ic s(r), then by (3.8) we have

Ya(n) = —(sinln(n + 1) + isinv21In(n + 1)).

Since the number v/2 is irrational, the points {7,(n)}nez, form a dense set in the square,
and thus

spT, =ess-spT, = [—1,1] x [-1,1].

ExXAMPLE 6. A more complicated curve.
Let a(r) = ¢1(r) + ico(r), then by (3.8) we have

Ya(n) = —(sinln(n + 1) + isin21In(n + 1)).
Now the points of this sequence are located on the curve

y? —4a® + 42t = 0.

On the basis of Examples 4 and 5 we describe a sufficiently wide class of sets in the
complex plane, which could be essential spectra of some bounded Toeplitz operators with
radial symbols.

Corollary 3.10 The following statements hold.

(i) Let p(t) = Z;':fm c;t!, ¢; € C, be a trigonometric polynomial on unit circle T. Then
there exists a symbol a(r) € Ly (0,1) for which the essential spectrum of the operator

T, coincides with the image of T under this polynomial

p(T) ={2€ C:z=p(t),teT} (3.9)

(i1) Let q(u) = Z?:o cjul, ¢; € C, be a polynomial. Then there exists a radial symbol
a(r) € Le(0,1) such that the essential spectrum of the operator T, is the following
positive plane measure subset of C

¢([-1,1] x [-1,1]) ={z € C: 2 = q(u),u € [-1,1] x [-1,1]}. (3.10)



Proor. To prove the first statement consider

n

a(r) = Y cay(inr?)7,

j=—m

where the constants a; are defined as in Example 4. Then due to results of this example
we have

Ya(n) = p((n+1)7").

But {(n + 1)}, .y = T, which finishes the proof of the first statement.
Passing to the second statement for a given polynomial ¢ consider

g(—sinln(n + 1) — isinvV2In(n + 1)) =

(n+1) = (n+1) (n+1)V% = (n+1) V% N
_ = N"di(n+ 1)V
q ( —(t 1), : > 17
where d; € C, and the real numbers \; are of the form m/ + m;’\/i for some m’;, m} € Z.
Then for the symbol

a(r) = Y dja(in(r )

we have
Ya = q(—sinln(n + 1) — isinv21In(n + 1)),

and due to Example 5 this gives the required result. O

4 Algebras of Toeplitz operators

We are going to consider now the C*-algebra generated by bounded Toeplitz operators with
radial symbols. First observe, that our class of symbols, as well as, corresponding Toeplitz
C*-algebra will have certain peculiarities. In particular, contrary to commonly known and
studied cases (see, for example [9]), the Toeplitz operator algebra is commutative, but the
semicommutators [T,,,T,,) = Ty, - Ty, — Ta,.q, are not compact in general. Moreover, the
symbols under study do not form an algebra (under the pointwise multiplication). That is,
having two radial symbols a;(r) and ay(r), for which the corresponding Toeplitz operators
Ty, () and T,,(,) are bounded, the Toeplitz operator Ty, .,,, which corresponds to the product
of these symbols, is not necessarily bounded. The natural permitted structure on the set of
symbols under consideration is a linear space (in the algebraic sense, i.e., no norm structure
assumed).

ExaMPLE 7. Let
a(r) = sin(1 —7?)"@



and
as(r) = (1 —r?)Psin(1 — )@

where 0 < f < 1 and 8 < . Then according to the Example 1 both operators 7;,, and T,
are bounded and compact.
The product a; - as has the form

(=) (1 =r?)FPeos2(1—r?)
(r)-aa(r) = LT : |

Let g =0, then T,,.,, = %I — T,,, where the operator 7, with the symbol
1 2\—«
az(r) = 50082(1—7‘ )7

is compact. The compactness of 7,, can be shown as in Example 1.
Now let 8 > 0. Then the operator T,, with the symbol

as(r) = 5(1 = 1)

according to Example 2 is unbounded . At the same time the operator 7}, with the symbol
1 2\—p3 2\ —a
a5(7“):§(1—7“ ) Peos2(1 — 1)

is compact (again analogously to Example 1).
That is

(i) for f = 0 the operators T,, and T,, are compact, the operator T,,.,, is bounded but
not compact; that is, the semicommutator [Ty, T,,) = Toy - Tay — Ty 0y 1S ot compact;

(ii) for 8 > 0 the operators T,, and T,, are bounded, but the operator 7T,,.,, is not bounded
at all.

Denote by M the linear space of measurable functions such that for each a(r) € M
the Toeplitz operator Ty, is bounded on L,(D), and denote by 7 (M) the C*-algebra,
which is generated by all Toeplitz operators T, with symbols a € M. Let [(M) be the
C*-subalgebra of [, generated by all sequences v, for a € M, that is, (M) = RT(A,)R*,
and let R

M) = HM)/(C A HM)) = LM /(e VM) C Lofeo.

Theorem 4.1 The C*-algebra T (M) is commutative and isomorphically isometric to the
algebra l(M). The isomorphism

v:T(M)— (M)
is generated by the following mapping

v:T, — Y,



where a(r) € M, and the sequence v, is given by (2.2).
The Fredholm symbol algebra of the algebra T (M), i.e. the image of T (M) in the
Calkin algebra:

SymT (M) =(TM)+K)/K=TM)/(KNT (M),

where K is the ideal of all compact on A*(D) operators, is isomorphic and isometric to the

~

algebra [(M). Under their identification the symbol homomorphism
sym : T(M) — Sym T(M) = [(M)
is generated by the following mapping

~

sym : T, — v, + ¢ N I(M) € (M).
ProoFr. Follows directly from Theorem 2.5 and Corollary 2.6. U

Note, that due to the first statement of Corollary 3.10 both the set of invertible
operators and the set of Fredholm operators in 7 (M) have non trivial homotopic structures.
Introduce now the linear space

A=M®oC(SY),

where the tensor product is understood in the algebraic sense.

We will study the C*-algebra 7 (A), generated by all Toeplitz operators T, with
symbols a € A. Note that each Toeplitz operator T, with continuous symbol a(z) € C(D)
belongs to T (A).

Denote by A; = C®C(S") the subclass of A consisting of functions depending only
on circular variable ¢.

Lemma 4.2 For each function ¢ = c(t) € A; the commutator [Bp,cI] is compact. The
Toeplitz operator algebra T (A;) is commutative modulo compact operators, and T (A;) /K =
C(S"). The (Fredholm) symbol homomorphism

7 T(A) — T(A)/K =2 C(Sh)
is generated by the following mapping of the generators of the algebra T (A;)
T: T, — c(t),
where ¢(t) € A;.

ProOOF. The proof is obvious. O

——

To describe the (Fredholm) symbol algebra Sym 7 (A) = T(A)/K = T(A) of the
algebra T (A) we will use the standard local principle (see, for example, [1], [7]). The algebra

L —

T(A) = T(A)/K = C(S") is obviously a central commutative subalgebra of T(A) =



—

Sym T (A). For each ¢, € C(S') denote by .J;, the maximal ideal of T (A;) corresponding to

to, and by J(ty) the closed two-sided ideal of the algebra 7T (A), generated by J;,. Then the
local algebra at the point #, is defined as 7 (¢y) = T (A)/J(to), and the natural projection

Ty + T(A) — Sym T(A) — T (to)

identifies elements of the algebra 7 (A) locally equivalent at the point .
Fix a point ¢, € S'. For each function a(z) = a(rt) € A introduce the function
b(r) € A, by
b(r) =a(rty), re€][0,1),
this implies that the Toeplitz operator T, is locally equivalent at the point ¢y to the Toeplitz
operator T,. Now we have obviously

T(to) = (T(M) + J(t))/ T (te) = T(M)/(J(to) N T(M)).
Further,
J(t)NT(M)=KNT(M),

thus
T(to) = T(M)/(I(to) N T(M)) = T(M)/(KNT(M)).

Thus by Theorem 4.1 we have the following lemma.

Lemma 4.3 Given t, € S, the local (symbol) algebra T (ty) is isomorphic to the C*-algebra
[(M). Under their identification the homomorphism

~

Ty » T(A) — Sym T (A) — T (to) = (M)
is generated by the following mapping of generators of the algebra T (A):

Tty Ta L aa(rtn):

~

where Ya(rtg) = Yarte) + €0 N U(M) € (M), a = a(z) € A, and the sequence Ya(r4,) 1S given
by (2.2).

Now pasting together all local algebras we have

Theorem 4.4 The (Fredholm) symbol algebra SymT (A) of the Toeplitz operator algebra
T (A) is isomorphic and isometric to the algebra C(S',1(M)). Under their identification the
symbol homomorphism

~

7t T(A) — Sym T (A) = O(S', (M)
is generated by the following mapping of generators of the algebra T (A):
sym :Ta’—>?a(rt)a tESl,

~

where a = a(z) € A, and for fized t € S Yy4y = Ya(re) + o N UM) € I(M).



~

Each element 7 = v + ¢y N (M) € [(M) defines uniquely a compact connected set
b(7) consisting of all limit points of an (arbitrary) sequence -, which belongs to the class 7.

Corollary 4.5 The essential spectrum of any operator T in the algebra T (A) is connected
and given by
ess-spT = U b((symT)(1)).
test

In particular, for any a(z) € A we have

ess-sp1, = U b(%(rt))-

teS!t
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