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TOEPLITZ OPERATORS ON THE FOCK SPACE:

RADIAL COMPONENT EFFECTS∗

S. M. GRUDSKY† and N. L. VASILEVSKI

The paper is devoted to the study of specific properties of Toeplitz operators with
(unbounded, in general) radial symbols a = a(r). Boundedness and compactness
conditions, as well as examples, are given. It turns out that there exist non-zero
symbols which generate zero Toeplitz operators. We characterize such symbols,
as well as the class of symbols for which Ta = 0 implies a(r) = 0 a.e. For each
compact set M there exists a Toeplitz operator Ta such that spTa = ess-sp Ta =
M . We show that the set of symbols which generate bounded Toeplitz operators
no longer forms an algebra under pointwise multiplication.

Besides the algebra of Toeplitz operators we consider the algebra of Weyl pseu-
dodifferential operators obtained from Toeplitz ones by means of the Bargmann
transform. Rewriting our Toeplitz and Weyl pseudodifferential operators in terms
of the Wick symbols we come to their spectral decompositions.

1 Introduction

Let L2(C, dµ) be the Hilbert space of square-integrable functions on C with the Gaussian

measure
dµ(z) = π−1 e−z·zdv(z),

where dv(z) = dxdy is the usual Lebesgue plane measure on C = R2. The Fock [4, 9] (or
Segal–Bargmann [2, 18]) space F 2(C) is the subspace of L2(C, dµ) consisting of all analytic

functions in C. Denote by P the orthogonal Bargmann projection of L2(C, dµ) onto the
Fock space F 2(C). Given function a = a(z), the Toeplitz operator Ta with the symbol a is

defined as follows
Ta : ϕ ∈ F 2(C) 7−→ Paϕ ∈ F 2(C).

Toeplitz operators on the Fock space have been studied intensively last years. We mention,
for example, the following papers [6, 7, 8, 16, 15, 17, 19, 21].

∗This work was partially supported by CONACYT Project 27934-E, México.
†The first author acknowledges the RFFI Grant 98-01-01023, Russia.
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The present paper is devoted to the study of specific properties of Toeplitz operators
with pure radial symbols a = a(r), with r = |z|. Note that for bounded symbols a(r) having

limit at infinity a(∞) = limr→∞ a(r) corresponding Toeplitz operators are quite trivial,
nothing but compact perturbations of the scalar operator Ta(r) = a(∞)I +K.

At the same time the theory becomes very interesting and rich for symbols having
irregular behavior and even being unbounded near infinity. A key feature of Toeplitz op-

erators with radial symbols is that they are unitary equivalent to multiplication operators,

more precisely: given symbol a = a(r), the Toeplitz operator Ta is unitary equivalent to the
multiplication operator γaI, acting on one-sided l2. The sequence γa = {γa(n)}n∈Z+

, where

Z+ = N ∪ {0}, is given by

γa(n) =
1

n!

∫

R+

a(
√
r) rne−rdr, n ∈ Z+. (1.1)

Thus to guarantee the existence of the above integrals, it is natural to consider the class of

symbols denoted in the paper by L∞
1 (R+, e

−r2

), which consists of all measurable functions
a(r) on R+ for which the following integrals are finite:

∫

R+

|a(r)| e−r2

rn dr <∞, n ∈ Z+.

A number of conditions which guarantee the boundedness or compactness of Toeplitz opera-

tors with L∞
1 (R+, e

−r2

)-symbols, as well as corresponding examples are given. In particular,
we give an example of a symbol unbounded at infinity for with the corresponding Toeplitz

operator is compact.
An interesting and unpredictable feature of our symbols is that there exist non-zero

symbols which generate zero Toeplitz operators. We characterize such symbols, as well as the
class of symbols for which the uniqueness theorem holds, i.e., if Ta = 0, then a(r) = 0 a.e.

Given a symbol a(r) ∈ L∞
1 (R+, e

−r2

), it is clear that the Toeplitz operator Ta is
bounded if and only if the corresponding sequence (1.1) belongs to l∞. Surprisingly it turns

out that every l∞ - sequence is originated by a Toeplitz operator with L∞
1 (R+, e

−r2

) - symbol.
This leads to a number of important consequences. First, for each compact set M there exists

a Toeplitz operator Ta such that spTa = ess-sp Ta = M . Moreover one can predefine the
system of eigenvalues for a Toeplitz operator. The C∗-algebra generated by bounded Toeplitz

operators with L∞
1 (R+, e

−r2

) - symbols is commutative and consists only of Toeplitz operators
with L∞

1 (R+, e
−r2

) - symbols; contrary to commonly known cases when starting with Toeplitz

operators and generating a C∗-algebra one normally gets more complicated operators. At

the same time the set of L∞
1 (R+, e

−r2

) - symbols which generate bounded Toeplitz operators
neither forms an algebra (under pointwise multiplication), nor admits any natural norm. We

give an example of two symbols which generate bounded Toeplitz operators, yet the Toeplitz
operator associated with the product of these symbols is unbounded.

Besides the algebra of Toeplitz operators we consider the algebra of Weyl pseudod-
ifferential operators obtained from the Toeplitz ones by mean of the Bargmann transform.

Both algebras are commutative, for both types of operators we calculate their Wick (or
Berezin) symbols, which appear to be radial as well. It is worth mentioning that rewriting
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our Toeplitz and Weyl pseudodifferential operators in terms of the Wick symbols we come
to the spectral decomposition of operators. In a sense the Toeplitz and pseudodifferential

operators under consideration are functions of the harmonic oscillator, written in Toeplitz
or differential form, correspondingly.

2 Fock space over C

Consider the space L2(C, dµ) of square-integrable functions on C with the Gaussian measure

dµ(z) = π−1 e−z·zdv(z),

where dv(z) = dxdy is the usual Lebesgue plane measure on C = R2, and its Fock [4, 9]
(or Segal–Bargmann [2, 18]) subspace F 2(C), consisting of all analytic functions in C. The

orthogonal Bargmann projection

P : L2(C, dµ) → F 2(C)

is given by the formula [4]

(Pϕ)(z) =

∫

C

ϕ(ζ)eζ·zdµ(ζ).

The Fock space F 2(C) can be described alternatively as the closure in L2(C, dµ) of
the set of all smooth functions satisfying the equation

∂

∂z
ϕ =

1

2
(
∂

∂x
+ i

∂

∂y
)ϕ = 0,

where z = x+ iy.

Introduce the unitary operator

U1 : L2(C, dµ) → L2(R
2) = L2(R

2, dxdy),

by the rule

(U1ϕ)(z) = π− 1

2 e−
z·z
2 ϕ(z),

or

(U1ϕ)(x, y) = π− 1

2 e−
x2

+y2

2 ϕ(x+ iy).

Then the image F (1) = U1(F
2(C)) of the Fock space F 2(C) is the closure of the set of all

smooth functions in L2(R
2) which satisfy the equation

D(1)f = U1
∂

∂z
U−1

1 f =

(
∂

∂z
+
z

2

)
f

=
1

2

(
∂

∂x
+ i

∂

∂y
+ x+ iy

)
f = 0.
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Passing to polar coordinates in R2 we have

L2(R
2) = L2(R

2, dxdy) = L2(R+, rdr) ⊗ L2([0, 2π), dα)

= L2(R+, rdr) ⊗ L2(S
1,
dt

it
) = L2(R+, rdr) ⊗ L2(S

1),

where S1 is the unit circle, and
dt

it
= |dt| = dα

is the element of length; in addition

∂

∂z
+
z

2
=

cosα + i sinα

2

(
∂

∂r
+ i

1

r

∂

∂α
+ r

)
=
t

2

(
∂

∂r
− t

r

∂

∂t
+ r

)
.

Introduce the unitary operator

U2 = I ⊗ F : L2(R+, rdr) ⊗ L2(S
1) −→ L2(R+, rdr) ⊗ l2 = l2(L2(R+, rdr)),

where the discrete Fourier transform F : L2(S
1) → l2 is given by

F : f 7−→ cn =
1√
2π

∫

S1

f(t) t−n dt

it
, n ∈ Z, (2.1)

and its inverse F−1 = F∗ : l2 → L2(S
1) is given by

F−1 : {cn}n∈Z 7−→ f =
1√
2π

∑

n∈Z

cn t
n.

Calculate

(I ⊗ F)
t

2

(
∂

∂r
− t

r

∂

∂t
+ r

)
(I ⊗F−1) : {cn(r)}n∈Z 7−→ 1√

2π

∑

n∈Z

cn(r) tn

7−→ 1√
2π

∑

n∈Z

t

2

(
∂

∂r
− n

r
+ r

)
cn(r) tn

7−→ {dn}n∈Z =

{
1

2

(
∂

∂r
− n− 1

r
+ r

)
cn−1(r)

}

n∈Z

,

or

(I ⊗ F)
t

2

(
∂

∂r
− t

r

∂

∂t
+ r

)
(I ⊗ F−1){cn(r)}n∈Z =

{
1

2

(
∂

∂r
− n− 1

r
+ r

)
cn−1(r)

}

n∈Z

.

Thus the image F (2) = U2(F
(2)) of the space F (1)) can be described as the subspace of

L2(R+, rdr) ⊗ l2 = l2(L2(R+, rdr)) which is the closure of all sequences {cn(r)}n∈Z with
smooth components satisfying the equations

1

2

(
∂

∂r
− n

r
+ r

)
cn(r) = 0, n ∈ Z. (2.2)
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The equations (2.2) are easy to solve, and their general solutions have the form

cn(r) = c′n r
n e−

r2

2 = cn

√
2

|n|! r
n e−

r2

2 , n ∈ Z.

But each function cn(r) has to be in L2(R+, rdr), which implies that cn(r) ≡ 0, for each

n < 0. Thus the space F (2) (⊂ L2(R+, rdr) ⊗ l2 = l2(L2(R+, rdr))) coincides with the space
of all two-sided sequences {cn(r)}n∈Z with

cn(r) =

{
cn

√
2
n!
rn e−

r2

2 , if n ∈ Z+

0, if n ∈ Z−
,

where Z+ = {0} ∪ N, Z− = Z \ Z+, and

‖{cn(r)}n∈Z‖ =



∑

n∈Z+

|cn|2



1/2

= ‖{cn}n∈Z+
‖l2.

For each n ∈ Z+ introduce the unitary operator

un : L2(R+) = L2(R+, dr) −→ L2(R+, rdr)

by the rule
(unf)(r) = ωn(r)f(αn(r)),

where

ωn(r) =

√
2

n!
rn

(
n∑

k=0

r2k

k!

)− 1

2

,

αn(r) = r2 − ln

n∑

k=0

r2k

k!
. (2.3)

Finally, define the unitary operator

U3 : l2(L2(R+, rdr)) −→ l2(L2(R+)) = L2(R+) ⊗ l2

as follows
U3 : {cn(r)}n∈Z 7−→ {(u−1

|n|cn)(r)}n∈Z.

Then the space F (3) = U3(F
(2)) coincides with the space of all sequences {dn(r)}n∈Z, where

dn = u−1
n

(
cn

√
2

n!
rn e−

r2

2

)
= cne

− r
2 ,

for n ∈ Z+, and dn(r) ≡ 0, for n ∈ Z−.
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We introduce some notation. Let ℓ0(r) = e−
r
2 ; we have ℓ0(r) ∈ L2(R+) and ‖ℓ0(r)‖ = 1.

Denote by L0 the one-dimensional subspace of L2(R+) generated by ℓ0(r), then the one-

dimensional projection P0 of L2(R+) onto L0 has the form

(P0f)(r) = 〈f, ℓ0〉 · ℓ0 =

∫

R+

f(ρ) e−
r+ρ
2 dρ. (2.4)

Denote by l+2 the subspace of (two-sided) l2, consisting of all sequences {cn}n∈Z, such that
cn = 0 for all n ∈ Z−, and denote by p+ the orthogonal projection of l2 onto l+2 . Introduce

the sequences χ+ = {χ+(n)}n∈Z ∈ l∞, where χ+(n) = 1 for n ∈ Z+, and χ+(n) = 0 for
n ∈ Z−. Then obviously p+ = χ+I.

Now F (3) = L0⊗ l+2 , and the orthogonal projection P (3) of l2(L2(R+)) = L2(R+)⊗ l2
onto F (3) has obviously the form

P (3) = P0 ⊗ p+.

The above work leads to the following theorem.

Theorem 2.1 The unitary operator U = U3U2U1 is an isometric isomorphism of the space
L2(C, dµ) onto L2(R+) ⊗ l2 under which

1. the Fock space F 2(C) is mapped onto L0 ⊗ l+2

U : F 2(C) −→ L0 ⊗ l+2 ,

where L0 is the one-dimensional subspace of L2(R+), generated by ℓ0(r) = e−
r
2 ,

2. the Bargmann projection P is unitary equivalent to

U P U−1 = P0 ⊗ p+,

where P0 is the one-dimensional projection (2.4) of L2(R+) onto L0.

Introduce the isometric imbedding

R0 : l+2 −→ L2(R+) ⊗ l2

by the rule

R0 : {cn}n∈Z+
7−→ ℓ0(r){χ+(n)cn}n∈Z.

The image of R0 is obviously coincides with the space F (3). The adjoint operator R∗
0 :

L2(R+) ⊗ l2 → l+2 is given by

R∗
0 : {cn(r)}n∈Z 7−→

{
χ+(n)

∫

R+

cn(ρ)e−
ρ
2 dρ

}

n∈Z+

,

and

R∗
0R0 = I : l+2 −→ l+2

R0R
∗
0 = P (3) : L2(R+) ⊗ l2 −→ F (3) = L0 ⊗ l+2 .
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Now the operator R = R∗
0U maps the space L2(C, dµ) onto l+2 , and the restriction

R|F 2(C) : F 2(C) −→ l+2

is an isometric isomorphism. The adjoint operator

R∗ = U∗R0 : l+2 −→ F 2(C) ⊂ L2(C, dµ)

is an isometric isomorphism of l+2 onto the subspace F 2(C) of the space L2(C, dµ).

Remark 2.2 We have

RR∗ = I : l+2 −→ l+2

R∗R = P : L2(C, dµ) −→ F 2(C).

Theorem 2.3 The isometric isomorphism

R∗ = U∗R0 : l+2 −→ F 2(C)

is given by

R∗ : {cn}n∈Z+
7−→

∑

n∈Z+

cn√
n!
zn.

Proof. Calculate

R∗ = U∗
1U

∗
2U

∗
3R0 : {cn}n∈Z+

7−→ U∗
1U

∗
2U

∗
3

(
{cn e−

r2

2 }n∈Z+

)

= U∗
1U

∗
2

(
{cn
√

2

n!
rn e−

r2

2 }n∈Z+

)

= U∗
1


 1√

2π

∑

n∈Z+

cn

√
2

n!
(rt)n e−

r2

2




=
∑

n∈Z+

cn√
n!
zn.

�

Corollary 2.4 [2] A function

ϕ(z) =
∑

n∈Z+

anz
n

belongs to the Fock space F 2 if and only if
∑

n∈Z+

| an|2 n! < +∞,

and in this case

‖ϕ(z)‖ =



∑

n∈Z+

| an|2 n!




1

2

.
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Corollary 2.5 The inverse isomorphism

R : F 2(C) −→ l+2

is given by

R : ϕ(z) 7−→
{

1√
n!

∫

C

ϕ(z) zn dµ(z)

}

n∈Z+

.

3 Toeplitz operators with radial symbols

Denote by L∞
1 (R+, e

−r2

) the linear space of all measurable functions a(r) on R+ for which
the following integrals are finite

∫

R+

|a(r)| e−r2

rn dr <∞, (3.1)

for all n ∈ Z+.

In this section we will study Toeplitz operators with symbols from L∞
1 (R+, e

−r2

),
acting on the Fock space F 2(C).

Theorem 3.1 Let a = a(r) belong to L∞
1 (R+, e

−r2

). Then the Toeplitz operator Ta acting

on the Fock space F 2(C) is unitary equivalent to the multiplication operator γaI acting on
l+2 . The sequence γa = {γa(n)}n∈Z+

is given by

γa(n) =
1

n!

∫

R+

a(
√
r) rne−rdr, n ∈ Z+. (3.2)

Proof. The operator Ta is obviously unitary equivalent to the operator

RTa R
∗ = RPaPR∗ = R(R∗R)a(R∗R)R∗

= (RR∗)RaR∗(RR∗) = RaR∗

= R∗
0U3U2U1a(r)U

−1
1 U−1

2 U−1
3 R0

= R∗
0U3(I ⊗ F)a(r)(I ⊗ F−1)U−1

3 R0

= R∗
0U3{a(r)}U−1

3 R0

= R∗
0{a(α−1

|n| (r))}R0,

where the function αn(r) is given by (2.3). Now

R∗
0{a(α−1

|n| (r))}R0{cn}n∈Z+ =

{∫

R+

a(α−1
n (r)) cn e

−rdr

}

n∈Z+

= {γa(n) · cn}n∈Z+
,

where

γa(n) =

∫

R+

a(α−1
n (r)) e−rdr =

∫

R+

a(r) e−αn(r)α′
n(r) dr

=
2

n!

∫

R+

a(r) r2n+1e−r2

dr =
1

n!

∫

R+

a(
√
r) rne−rdr.

�
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Theorem 3.2 The Toeplitz operator Ta with radial symbol a = a(r) ∈ L∞
1 (R+, e

−r2

) is
bounded on F 2(C) if and only if

γa = {γa(n)}n∈Z+
∈ l∞,

and
‖Ta‖ = sup

n∈Z+

|γa(n)|.

The Toeplitz operator Ta is compact if and only if

lim
n→∞

γa(n) = 0.

Proof. Follows directly from the previous theorem. �

We comment on the last two theorems. First of all a Toeplitz operator Ta with
symbol a ∈ L∞

1 (R+, e
−r2

) is a well defined linear operator (unbounded, in general) with a

dense domain. In fact, the set F 2
0 (C) of all polynomials on z forms a dense subset on the

Fock space. For p(z) =
∑m

n=0 cnz
n ∈ F 2

0 (C) and a(r) ∈ L∞
1 (R+, e

−r2

) we have

(Tap)(z) =
1

π

∫

C

a(|ξ|)p(ξ)eξze−|ξ|2dv(ξ)

=
1

πi

∫

R+

(∫

S1

(
m∑

n=0

cnr
ntn

)
e(rz)t−1 dt

t

)
a(r) e−r2

rdr

=
m∑

n=0

1

π
cn

∫

R+

∫

S1

tn

( ∞∑

k=0

rkzkt−k

k!

)
dt

t
a(r)e−r2

rn+1dr

=
m∑

n=0

cnz
n

(
2

n!

∫

R+

a(r) r2n+1e−r2

dr

)

=

m∑

n=0

cnz
nγa(n). (3.3)

Thus

Tap ∈ F 2
0 (C) ⊂ F 2(C),

and the set F 2
0 (C) is a domain for each Toeplitz operator Ta with symbol a(r) which satisfies

the condition (3.1). That is, by (3.3) the operator Ta has a bounded extension to the whole
space F 2(C) if and only if the sequence γa(n) is bounded.

Corollary 3.3 The spectrum of a bounded Toeplitz operator Ta is given by

sp Ta = {γa(n) : n ∈ Z+},

and its essential spectrum ess-sp Ta coincides with the set of all limit points of the sequence
{γa(n)}n∈Z+

.
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For bounded symbols a(z) ∈ L∞(C) Berger and Coburn [6] proved that Ta = 0 if
and only if a = 0 almost everywhere. Folland [10], p. 140, extends this uniqueness result for

the class of unbounded symbols which satisfy the inequality (in our notations)

|a(z)| ≤ const eδ|z|2 , for some δ < 1. (3.4)

Surprisingly it turns out that for our class of symbols there exist nontrivial ones for which

Ta = 0. Let us describe such symbols.
Denote by Π̇+ the one point compactification of the upper half plane Π+ ⊂ C.

Introduce the class H∞
1 (R, e−r2

) of functions f(x) which admit an analytic continuation to
the upper half plane Π+, continuous on Π̇+, and which admit the following representation

f(x) = (F−1a(r)e−r2

)(x) =
1√
2π

∫

R+

eirxa(r) e−r2

dr,

where a(r) ∈ L∞
1 (R+, e

−r2

). Here F−1 is the inverse Fourier transform of a function supported

on R+. By the condition (3.1) the function f(z) which is the analytic continuation of
f(x) ∈ H∞

1 (R, e−r2

) tends to zero at infinity, has the derivatives of all orders which are

analytic in Π+, continuous on Π̇+, and tend to zero at infinity as well.
Let now H∞

1,0(R, e
−r2

) be the subclass of H∞
1 (R, e−r2

) which consists of all functions

having the property
f (2n+1)(0) = 0, n ∈ N.

Finally, let L∞
1,0(R+, e

−r2

) = er2

F (H∞
1,0(R, e

−r2

)).

Theorem 3.4 For a symbol a(r) ∈ L∞
1 (R+, e

−r2

) the Toeplitz operator Ta = 0 if and only if

a(r) ∈ L∞
1,0(R+, e

−r2

).

Proof. Follows immediately from the well known in the theory of Fourier transform fact,
that

f (2n+1)(0) =
i2n+1

√
2π

∫

R+

a(r) e−r2

r2n+1dr =
n!

2

i2n+1

√
2π

γa(n).

�

Theorem 3.5 The class L∞
1,0(R+, e

−r2

) is not trivial, i.e., contains non identically zero func-
tions.

Proof. To prove the theorem we start with an example of a non trivial function from

H∞
1,0(R, e

−r2

). Namely, let
f(x) = exp(c0x

−ρ + c0x
ρ),

where 0 < ρ < 1, and c0 = ei π
2
(2−ρ). Define the functions z±ρ as follows: for z = |z|eiϕ with

−π
2
≤ ϕ < 3π

2
we set

z±ρ = |z|±ρe±ρϕ.
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Now for ϕ ∈ [0, π] we have

f(z) = exp(|z|−ρ exp(−i(π
2

(2 − ρ) + ρϕ)) + |z|ρ exp(i(
π

2
(2 − ρ) + ρϕ)))

= exp(−(|z|−ρ + |z|ρ) cos(−πρ
2

+ ρϕ) − i(|z|−ρ − |z|ρ) sin(−πρ
2

+ ρϕ)).

From 0 ≤ ϕ ≤ π it follows that

−π
2
< −πρ

2
≤ −πρ

2
+ ρϕ ≤ πρ

2
<
π

2
.

It is easy to see now that the function f has zero derivatives of all orders at the origin:
f (n)(0) = 0, for all n ∈ Z+. Furthermore the function f(x) belongs to the class S of

infinitely differentiable functions rapidly decreasing at infinity. The class S in invariant with
respect to the Fourier transform, thus the function (Ff)(r) belongs to S as well, and its

support is in R+. Finally, a(r) = (Ff)(r) er2 ∈ L∞
1 (R+, e

−r2

). �

Let us describe now the subclass of symbols for which the uniqueness theorem (i.e.,
if Ta = 0, then a = 0 a.e.) holds. Note, that for radial symbols our class, described by the

condition (3.5) bellow, is wider that one given by the Folland condition (3.4).
Given ε > 0, denote by Eε(R+, e

−r2

) the subclass of L∞
1 (R+, e

−r2

) which consists of

all functions a(r) satisfying at +∞ the following estimate

|a(r)| ≤ const er2−εr. (3.5)

Theorem 3.6 For a symbol a(r) ∈ Eε(R+, e
−r2

) the Toeplitz operator is equal to 0 if and
only if a(r) = 0 a.e.

Proof. Let a(r) ∈ Eε(R+, e
−r2

). By property (3.5) the function f(x) = (F−1a(r)e−r2

)(x)
admits an analytic continuation (which we will denote by f(z)) not only to the upper half

plane Π+, but to a larger half plane

Π−ε = {z ∈ C : Im z > −ε}.

Thus the function f(z) is analytic at the point z = 0, and in a disk of a radius less then ε

can be represented as the absolutely convergent series

f(z) =

∞∑

n=0

f (n)(0)

n!
zn. (3.6)

Let now Ta = 0. Then by Theorem 3.4 all odd derivatives of f(z) vanish at the origin, and

the representation (3.6) reduces to

f(z) =
∞∑

n=10

f (2n)(0)

2n!
zn. (3.7)

Now the function f(−z) is analytic in the following half plane

Π−
ε = {z ∈ C : Im z < ε}.
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The functions f(z) and f(−z) are definitely coincide on the open disk having radius ε (the
domain of convergence of the series (3.7)), and therefore coincide in the strip

{z ∈ C : |Im z| < ε}.

Thus the function f(z) is analytic in the whole complex plane C, and tends to zero at infinity.
By the Liouville theorem f(z) has to be identically zero, which implies that a(r) = 0 a.e.

�

By Theorem 3.2 a bounded Toeplitz operator Ta with a radial symbol a ∈ L∞
1 (R+, e

−r2

)
is unitary equivalent to the multiplication operator γaI acting on the space l+2 , where the

l∞– sequence γa = {γa(n)}n∈Z+
is given by (3.2). The natural question appears: how wide

is the class of l∞– sequences which are originated by Toeplitz operators with radial symbols.

The next theorem gives a complete answer to this question.

Theorem 3.7 For each sequence γ = {γ(n)}n∈Z+
in l∞ there exists a symbol a(r) ∈ L∞

1 (R+, e
−r2

)

such that the Toeplitz operator Ta is unitary equivalent to the multiplication operator by this
sequence γ; i.e., γa = γ.

Proof. Consider a sequence γ = {γ(n)}n∈Z+
from l∞. Introduce the function

f1(x) =
1

2
√

2π

∞∑

n=1

γ(n)
(−i)2n+1 n!

(2n+ 1)!
x2n+1.

This series converges on the whole real line R (and even in C), and

f
(2n+1)
1 (0) =

(−i)2n+1 n!

2
√

2π
γ(n). (3.8)

Let χc(x) be an infinitely smooth function supported in an interval (−c, c), and identically
equal to 1 on a neighborhood of the point 0. Then for the function f2(x) = χc(x)f1(x) by

(3.8) we have

f
(2n+1)
2 (0) =

(−i)2n+1 n!

2
√

2π
γ(n).

Represent the function f2(x) in the form f2(x) = f+
2 (x) + f−

2 (x), where f±
2 (x) = (P±f2)(x),

and P± are the standard analytical projections on the real line:

P± =
1

2
(I + SR), where (SRf)(x) =

1

πi

∫

R

f(τ)

τ − x
dτ.

It is known (see, for example, [12]) that the class S is invariant with respect to the singular
integral operator SR, thus the functions f±

2 (x) belong to S. Moreover, it is easy to see that

both f+
2 (x) and f−

2 (−x) belong to H∞
1 (R, e−r2

).
Introduce now the function

f(x) = f+
2 (x) − f−

2 (−x).

21



For its odd derivatives we obviously have

f (2n+1)(0) = (f+
2 )(2n+1)(0) + (f−

2 )(2n+1)(0).

The property (see, for example, [11]) (P±f)(n)(x) = (P±f (n))(x) implies that

f (2n+1)(0) = f
(2n+1)
2 (0) =

(−i)2n+1 n!

2
√

2π
γ(n). (3.9)

Finally, introduce the function (symbol)

a(r) = er2

(Ff)(r). (3.10)

The function f(x) belongs to H∞
1 (R, e−r2

), and thus a(r) ∈ L∞
1 (R+, e

−r2

). Now the Toeplitz

operator Ta with symbol (3.10) is unitary equivalent to the multiplication operator by the
sequence γa = {γa(n)}n∈Z+

, where

γa(n) =
2

n!

∫

R+

a(r)e−r2

r2n+1dr

=
2
√

2π

n!
i2n+1f (2n+1)(0).

Thus by (3.9) we have γa(n) = γ(n) for all n ∈ Z+. �

Remark 3.8 Note, that the class L∞
1,0(R+, e

−r2

), which generates zero Toeplitz operators,

is quite large. In addition to methods of Theorem 3.6 one can construct symbols from the
class L∞

1,0(R+, e
−r2

) using the ideas of the proof of Theorem 3.7. Let f(x) be a function of

the class S having all derivatives equal to zero at the origin. Then the function

a(r) = er2

F ((P+f)(x) − (P−f)(−x))(r)

belongs to the class L∞
1,0(R+, e

−r2

).

4 Boundedness, compactness, spectral properties

We start with conditions which guarantee the boundedness or compactness of Toeplitz op-
erators with radial symbols from L∞

1 (R+, e
−r2

).

Theorem 4.1 Let a(r) ∈ L∞
1 (R+, e

−r2

). Then the Toeplitz operator Ta is bounded on F 2(C)
(the corresponding sequence (3.2) is bounded) if one of the following conditions holds:

(i) a(r) ∈ L∞(R+),

(ii) the sequence γ
(2)
a = {γ(2)

a (n)}n∈Z+
is bounded, where

γ(2)
a (n) =

1

n!

∫

R+

|a(
√
r)| rn e−r dr,
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(iii) the function

B(r) =

∫ +∞

r

a(
√
r) er−udu (4.1)

is bounded.

The Toeplitz operator Ta is compact on F 2(C) (the corresponding sequence (3.2) tends to
zero) if the one of the following conditions holds:

(i′) limr→+∞ a(r) = 0,

(ii′) limn→∞ γ
(2)
a (n) = 0,

(iii′) limr→+∞B(r) = 0.

Proof. The condition (i) and (i′) are well known, and are stated here for the completeness
only. Let now the condition (ii) (or (ii′)) holds. Then one obviously has

|γa(n)| =
1

n!

∣∣∣∣
∫

R+

a(
√
r)rne−rdr

∣∣∣∣

≤ 1

n!

∫

R+

|a(
√
r)|rne−rdr = γ(2)

a (n),

and the statement (ii) (or (ii′)) proved.
To prove the statement (iii) (or (iii′)) first integrate by parts:

γa(n) = − 1

n!

∫

R+

rnd

(∫ +∞

r

a(
√
u) e−udu

)

=
1

(n− 1)!

∫

R+

B(r) rn−1 e−rdr = γB(n− 1),

and then apply statement (i) (or (i′)) to the function B(r). �

Remark 4.2 Let us mention that the statement (ii) is a necessary and sufficient condition

on the function a(r) in order for the multiplication operator a(r)I : F 2(C) −→ L2(C, dµ) to
be bounded.

Let a(r) ∈ L∞
1 (R+, e

−r2

), and b(r) = a(
√
r). Introduce the following averages of the

function b(r) (a(r)):

B(j)(r) =

∫ +∞

r

B(j−1)(u) e
r−udr, j = 1, 2, ...,

and B(0)(r) = b(r). Note, that the function (4.1) is just B(1)(r).

Theorem 4.3 Let a(r) ∈ L∞
1 (R+, e

−r2

). Then the Toeplitz operator Ta is bounded, compact

or unbounded (the corresponding sequence (3.2) is bounded, tends to zero, or unbounded) if
for some integer j the corresponding condition holds:
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1. B(j)(r) ∈ L∞(R+),

2. limr→∞B(j)(r) = 0,

3. assume in addition that

ReB(j)(r) ≥ c
(
ImB(j)(r) ≥ c

)
,

for some c ∈ R; then the condition is

lim
r→∞

inf
s>r

ReB(j)(r) = +∞
(

lim
r→∞

inf
s>r

ImB(j)(r) = +∞
)
.

Proof. Statement 1) is a generalization of the statements (i) and (iii) of the previous

theorem; statement 2) is a generalization of the statements (i′) and (iii′) correspondingly.
Their proofs are analogous to those of the previous theorem, and are based on integrating

by parts, j times.

To prove statement 3) we may assume that c = 0, otherwise consider the symbol
a(r) − c (a(r) − ic). Integrating by parts j times we have

γa(n) =
1

(n− j)!

∫

R+

B(j)(r) r
n−j e−rdr.

Estimate now the real part of this integral

Re γa(n) ≥ 1

(n− j)!

∫ ∞

n−j

2

ReB(j)(r) r
n−j e−rdr

= inf
s> n−j

2

ReB(j)(s)

(
1

(n− j)!

∫ ∞

0

rn−j e−rdr − 1

(n− j)!

∫ n−j

2

0

rn−j e−rdr

)

≥ inf
s> n−j

2

ReB(j)(s)

(
1 − n− j

2

e−
n−j

2

(n− j)!

(
n− j

2

)n−j
)
.

We have used here the fact that the function rn−j e−r is increasing in the interval (0, n−j
2

).

Applying the asymptotic Euler formula for the Gamma function we have

Re γa(n) ≥ inf
s> n−j

2

ReB(j)(s)

(
1 −M

e−
n−j

2 (n−j
2

)n−j+1

(n− j + 1)n+j+ 1

2 e−(n−j+1)

)
,

where the constant M > 0 does not depend on n. The second summand in the last formula

tends to zero when n→ ∞, thus for sufficiently large n we have

Re γa(n) ≥ 1

2
inf

s> n−j

2

ReB(j)(s),

which by the first condition in 3) gives the unboundedness of the sequence {Re γa(n)}, and
thus of the sequence {γa(n)} as well.
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The proof of the second condition in 3) is quite analogous. �

Consider now examples of unbounded symbols illustrating the above theorems.

Example 1. Let

a(r) = eir2α

r2β, α > 1, β > 0.

Consider the first average of this symbol

B(1)(r) =

∫ ∞

r

eiuα

uβ er−udu =
1

iα

∫ ∞

r

uβ−α+1 er−udeiuα

= −e
irα

rβ−α+1

iα
− 1

iα

∫ ∞

r

eiuα

[(β − α + 1)uβ−α − uβ−α+1]er−udu.

If

β − α+ 1 < 0, (4.2)

then the function B(1)(r) tends to zero when r → ∞, and the operator Ta is compact. If the

condition (4.2) does not hold, then integrating by parts several times we arrive to

B(1)(r) =
m∑

k=1

ck e
irα

rβk +

∫ ∞

r

eiuα

(
m1∑

k=1

dkr
ξk

)
er−udu, (4.3)

where βk is a decreasing sequence of real numbers, since 1 − α < 0. Integrating by parts as
much as necessary we obtain that all numbers ξk are non positive. Thus the integral summand

in (4.3) is a bounded function. In fact, formula (4.3) gives an asymptotic representation of
B(1)(r) when r → ∞ with the principal term having the form

Bo
(1)(r) ∼ e1e

irα

rβ−α+1.

Consider next averages B(j)(r) of our symbol. Repeating the above calculation we obtain
that the principal terms of the asymptotic expansion of the functions B(j)(r) near the infinity

have the form
Bo

(j)(r) ∼ eje
irα

rβ−j(α+1).

For sufficiently large j the function B(j)(r) tends to zero at infinity, and thus by Theorem
4.3 the operator Ta is compact.

It is worth mentioning that not all symbols can be treated by Theorem 4.3 by passing
to an appropriate sufficiently large average. The next example illustrates this phenomena.

Example 2. Let now
a(r) = eir2

r2m, m ∈ N,

that is, comparing with the previous example, α = 1, β = m ∈ N.
Let us try to apply Theorem 4.3 to this symbol. For the first average we have

B(1)(r) =

∫ ∞

r

eiuumer−udu
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=
er

i− 1

∫ ∞

r

umde(i−1)u

=
eirrm

1 − i
− m

i− 1

∫ ∞

r

eiuum−1er−udu.

Now we see that the principal term of asymptotics (up to a multiplicative constant) has the

same form as the initial function b(r) = a(
√
r):

B(1)(r) ∼
1

1 − i
· eirrm.

Analogously,

B(j)(r) ∼
(

1

1 − i

)j

· eirrm.

Thus Theorem 4.3 is not applicable to this symbol.
At the same time:

γa(n) =
1

n!

∫ ∞

0

eire−rrn+mdr.

Integrating by parts (n+m) times we have

γa(n) =
(n+m)!

(i− 1)n+mn!
.

Estimate the modulus

|γa(n)| ≤ const
nm

2
n+m

2

.

Thus the sequence {γa(n)} tends to zero as n tends to infinity, and the Toeplitz operator Ta

is compact, while all the averages B(j)(r) are unbounded.

Example 3. Let ϕ(r) be an infinitely differentiable function on R+ monotonically increasing

to infinity together with its own first derivative as r tends to infinity. Consider the following
symbol

a(r) = eiϕ(r2)ϕ′(r2).

Then

B(1)(r) =

∫ ∞

r

eiϕ(u)ϕ′(u)er−udu

= ieiϕ(r) + i

∫ ∞

r

eiϕ(u)er−udu,

and ∣∣∣∣
∫ ∞

r

eiϕ(u)er−udu

∣∣∣∣ ≤
∫ ∞

r

er−udu = 1.
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Thus the function B(1)(r) is bounded. It can be shown analogously that the principal asymp-
totic term of the second average B(2)(r) has the form

B(2)(r) ∼
eiϕ(r)

ϕ′(r)
.

Thus by Theorem 4.3 the Toeplitz operator Ta is compact.

The function ϕ(r) can be taken, for example, in the form

ϕ(r) = erd

, 0 < d < 1.

In this case the modulus |a(r)| is a very rapidly increasing function. It increases more rapidly
that any power function, nevertheless the Toeplitz operator Ta is still compact.

Example 4. Consider now an example of a non negative unbounded symbol a(r) for which

the corresponding Toeplitz operator Ta is compact. Let a(r) be the following piecewise
constant function

a(
√
r) =

{
n, r ∈ [n, n+ n−3]
0, r ∈ (n+ n−3, n+ 1)

.

Estimate the first average

|B(1)(r)| =

∫ ∞

r

a(
√
u)er−udu

≤
∫ ∞

[r]

a(
√
u) du =

∞∑

m=[r]

1

m2
≤ const

1

[r]
,

where [r] denotes the integer part of r. That is

lim
r→∞

B(1)(r) = 0,

and the operator Ta is compact.

Consider now the spectral properties of bounded Toeplitz operators Ta with symbols
a(r) ∈ L∞

1 (R+, e
−r2

). First of all, as a direct corollary of Corollary 3.3 and Theorem 3.7 we

have

Theorem 4.4 For any compact set M ∈ C there exists a bounded Toeplitz operator Ta with

symbol a(r) ∈ L∞
1 (R+, e

−r2

) such that

spTa = ess-sp Ta = M.

In particular, from this theorem it follows that the essential spectrum of a Toeplitz
operator is not always connected. At the same time in the theory of Toeplitz operators the

connectedness of the essential spectrum theorems play an important role. Thus it interesting
to find sufficient conditions which guarantee the connectedness of the essential spectrum.
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Theorem 4.5 Let a(r) ∈ L∞
1 (R+, e

−r2

). If

lim
n→∞

(γa(n+ 1) − γa(n)) = 0, (4.4)

then the essential spectrum of the Toeplitz operator Ta is connected.

Proof. See the proof of Corollary 3.8 in [13]. �

Let us express now the condition (4.4) in the terms of a symbol a(r) directly.
Introduce

γ(1)
a (n) = γa(n+ 1) − γa(n).

Integrating by parts the expression for γa(n+ 1) we have

γ(1)
a (n) =

1

n!

∫ ∞

0

(∫ ∞

r

a(
√
u) er−udu

)
e−rrndr − 1

n!

∫ ∞

0

a(
√
r) e−rrndr

=
1

n!

∫ ∞

0

a1(
√
r) e−rrndr,

where

a1(
√
r) =

∫ ∞

r

(a(
√
u) − a(

√
r))er−udr. (4.5)

Thus we have immediately

Corollary 4.6 Given a(r) ∈ L∞
1 (R+, e

−r2

), if the Toeplitz operator Ta1
with the symbol a1(r)

of the form (4.5) is compact, then the essential spectrum of the Toeplitz operator Ta with the
initial symbol a(r) is connected.

In particular, applying Theorem 4.3 we have

Corollary 4.7 Let the function a(r) be differentiable, and the derivative

da(
√
r)

dr
=

1

2
√
r
a′(

√
r)

tend to zero as r tends to infinity. Then the essential spectrum of the Toeplitz operator Ta

is connected.

5 Algebras of Toeplitz and Weyl pseudodifferential

operators

Recall first the essential ingredients of the Berezin theory (see, for example, [4, 5, 14]).
A Toeplitz operator Ta with a symbol a = a(z) acting on the Fock space F 2(C)

from this point of view is an operator with anti-Wick symbol a = a(z). The function ã(z, z)
is called a Wick symbol of an operator T if this operator acts on F 2(C) as follows

(Tf)(z) =
1

π

∫

C

ã(z, ζ)f(ζ)e−ζ(ζ−z)dv(ζ) (5.1)

=

∫

C

ã(z, ζ)f(ζ)eζzdµ(ζ).
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The Wick and anti-Wick symbols of the same operator are connected by the formula

ã(z, z) =
1

π

∫

C

e−(z−ζ)(z−ζ) a(ζ) dv(ζ).

Let T1 and T2 be two operators with Wick symbols ã1 and ã2 respectively, then for the Wick

symbol ã of the operator T = T1T2 the following composition formula holds:

ã(z, z) = (ã1 ⋆ ã2)(z, z) =
1

π

∫

C

ã1(z, ζ) ã2(ζ, z) e
−(z−ζ)(z−ζ) dv(ζ). (5.2)

The Bargmann transform ([2]) B : L2(R) −→ F 2(C), where

(Bψ)(z) = π− 1

4

∫

R

e−
1

2
(x2−2

√
2xz+z2)ψ(x) dx, (5.3)

is an isometrical isomorphism, and the inverse isomorphism B−1 = B∗ : F 2(C) −→ L2(R) is

given by

(B−1f)(x) = π− 1

4

∫

C

e−
1

2
(x2−2

√
2xz+z2)f(z) dµ(z).

Now each Toeplitz operator Ta with the (anti-Wick) symbol a = a(z) acting on the Fock
space F 2(C) is unitary equivalent to the operator T̂a = B−1TaB acting on L2(R), which is a

Weyl pseudodifferential operator. We will denote by aw(x, ξ) its Weyl symbol.
The (anti-Wick) symbol a = a(z) and the Weyl symbol aw(x, ξ) of the operators Ta

and T̂a = B−1TaB, respectively, are connected by the formula

aw(x,−ξ) =
2

π

∫

C

a(ζ) e−2(z−ζ)(z−ζ)dv(ζ), (5.4)

where z = 1√
2
(x+ iξ).

Let us mention as well the connection between the Weyl and the Wick symbols of
the operators T̂a = B−1TaB and Ta respectively:

ã(z, z) =
2

π

∫

C

aw(x,−ξ)e−2(z−ζ)(z−ζ)dv(ζ),

where ζ = 1√
2
(x+ iξ).

We consider now the C∗-algebra generated by bounded Toeplitz operators with

radial symbols. First observe that our class of symbols, as well as the corresponding

Toeplitz C∗-algebra will have certain peculiarities. In particular, contrary to commonly
known and studied cases, the Toeplitz operator algebra is commutative, yet the semicom-

mutators [Ta1
, Ta2

) = Ta1
· Ta2

− Ta1· a2
are not compact in general. Moreover, the symbols

under consideration do not form an algebra (under pointwise multiplication). That is, given

two radial symbols a1(r) and a2(r), for which the corresponding Toeplitz operators Ta1(r)

and Ta2(r) are bounded, the Toeplitz operator Ta1· a2
, which corresponds to the product of

these symbols, is not necessarily bounded. The natural structure on the set of symbols under
consideration is a linear space (in the algebraic sense, i.e., no norm structure assumed).

29



Example 5. Consider the following radial symbols

a1(r) = eir2α

r2β and a2(r) = e−ir2α

r2β,

where α > 1 and β > 0. Then by the results of Example 1 both operators Ta1
and Ta2

are

bounded. At the same time the Toeplitz operator Ta3
with symbol

a3(r) = a1(r) · a2(r) = e4β

is unbounded by the statement 3) of Theorem 4.3.

Denote by M the linear subspace of L∞
1 (R+, e

−r2

) such that for each a(r) ∈ M the

Toeplitz operator Ta(r) is bounded on F 2(C), and denote by T (M) the C∗-algebra generated
by all Toeplitz operators Ta with symbols a ∈ M.

Theorem 5.1 The C∗-algebra T (M) is commutative, and isomorphically isometric to the
algebra l∞. The isomorphism

ν : T (M) −→ l∞

is generated by the following mapping

ν : Ta 7−→ γa,

where a(r) ∈ M, and the sequence γa is given by (3.2).

Proof. Follows directly from Theorems 3.1, 3.2, and 3.7. �

Remark 5.2 Considering an algebra T generated by Toeplitz operators Ta with symbols

from a certain class one typically has that the elements of the algebra T have in general
more complicated structure than the initial generators Ta. In that sense our algebra T (M)

is quite unusual: each element of the algebra T (M) is just a Toeplitz operator, whose symbol
can be recovered from the corresponding l∞ sequence by the procedure of Theorem 3.7.

The commutativity of our Toeplitz operator algebra T (M) implies, in particular,
that this algebra has a very rich structure of invariant subspaces.

Theorem 5.3 Let Λ be an arbitrary (finite or infinite) subset of Z+. Then the subspace

AΛ = {ψ(z) =
∑

n∈Λ

cnz
n : ψ ∈ F 2(C)}

is invariant for the algebra T (M). Moreover the orthogonal projection PΛ onto the subspace
AΛ belongs to the algebra T (M), and thus is a Toeplitz operator with symbol from M.

In particular, each subspace of polynomials (with fixed set of powers of their terms)
is invariant for the algebra T (M).
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Proof. Follows directly from Theorems 3.1 and 2.3, and Remark 5.2. �

The system of functions

ℓ(n)(z) =
zn

√
n!
, n ∈ Z+,

is an orthonornal base for the Fock space F 2(C). Denote by L(n) the one-dimensional space
generated by the function ℓ(n)(z). The orthogonal projection P(n) : F 2(C) −→ L(n) obviously

has the form

(P(n)f)(z) = 〈f(ζ), ℓ(n)(ζ)〉 ℓ(n)(z) =
zn

n!

1

π

∫

C

f(ζ) ζ
n
e−|ζ|2dv(ζ), (5.5)

and is a Toeplitz operator with symbol from M.

Corollary 5.4 For any n ∈ Z+ the one-dimensional space L(n) is an eigenspace for any

Toeplitz operator Ta with a(r) ∈ M, and the corresponding eigenvalue is equal to γa(n).

Theorem 5.5 Let a(r) ∈ M. Then the Wick symbol of the Toeplitz operator Ta is radial as

well, and is calculated by the formula

ã(z, z) = e−|z|2
∞∑

n=0

|z|2n

n!
γa(n). (5.6)

Proof. The proof is a matter of calculation:

ã(z, z) = ã(|z|) =
1

π

∫

C

e−(z−ζ)(z−ζ) a(|ζ |) dv(ζ)

=
1

πi

∫

R+

∫

S1

e−(|z|2+r2−zrt−zrt−1)dt

t
a(r) rdr

=
e−|z|2

πi

∫

R+

(∫

S1

e(zr)te(zr)t−1 dt

t

)
a(r)e−r2

rdr

=
e−|z|2

πi

∫

R+

∫

S1

( ∞∑

n=0

(zr)ntn

n!

∞∑

k=0

(zr)nt−k

k!

)
dt

t
a(r) e−r2

rdr

= e−|z|2
∞∑

n=0

|z|2n

n!

2

n!

∫

R+

a(r)e−r2

r2n+1dr

= e−|z|2
∞∑

n=0

|z|2n

n!
γa(n).

�

Berger and Coburn stated in [8] a conjecture that for a certain class of symbols

Toeplitz operator Ta is bounded if and only if its Wick symbol is bounded. Note, that
in general case of radial symbols the boundedness of a Wick symbol does not guarantee
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the boundedness of the sequence {γa(n)}, which is equivalent to boundedness of Toeplitz
operator with radial symbol a. Indeed, following all the steps of the proof of Theorem 3.7

one can construct a symbol a = a(r) such that the corresponding sequence γa is given by

γa(n) = (−1)n−1n.

For such a symbol the Toeplitz operator is obviously unbounded, while its Wick symbol

ã(z, z) = e−|z|2
∞∑

n=0

|z|2n

n!
(−1)n−1n = |z|2 e−2|z|2

is not only bounded, but even tends to 0 when z → ∞. That is, the Berger-Coburn conjecture

is not true in general.
Moreover, this example, as well as the sequence

γa(n) = (−1)n,

which is generated by a bounded Toeplitz operator, shows that in the Fock space setting the
compactness of Toeplitz operator is not equivalent to the vanishing of its Wick symbol when

z → ∞. In this context recall that in the Bergman space setting [1] the compactness of a
Toeplitz operator is equivalent to the vanishing of its Wick symbol when z → ∂D.

Corollary 5.6 Let a(r) ∈ M. Writing the Toeplitz operator Ta in the form of an operator
with Wick symbol (5.1) gives the spectral decomposition of the operator Ta:

Ta =
∞∑

n=0

γa(n)P(n) (5.7)

Proof. Given n ∈ Z+, consider the operator with the Wick symbol of the form

p̃(n)(z, z) = e−zz znzn

n!

1

π

∫

C

e−zζ z
nζ

n

n!
e−ζ(ζ−z)f(ζ) dv(ζ) =

zn

n!

1

π

∫

C

f(ζ) ζ
n
e−|ζ|2dv(ζ) = (P(n)f)(z),

where P(n) is the orthogonal projection (5.5). Thus the Wick symbol (5.6) of the operator

Ta admits the representation

ã(z, z) =
∞∑

n=0

γa(n)p̃(n)(z, z),

which proves the theorem. �

Remark 5.7 In addition to Theorem 4.4, formula (5.7) gives an alternative way to construct
a Toeplitz operator with predefined spectrum, essential spectrum, or eigenvalues correspond-

ing to eigenspaces L(n), n ∈ Z+.
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The set W (M) of all Wick symbols for Toeplitz operators Ta with (anti-Wick)
symbols a(r) ∈ M is obviously coincides with the set of all functions of the form (5.6)

ã(z, z) = e−|z|2
∞∑

n=0

|z|2n

n!
γ(n),

where γ = {γ(n)}n∈Z+
∈ l∞. This set is obviously a linear space, and the multiplication law

(5.2) in our case has the form: let

ã1(z, z) = e−|z|2
∞∑

n=0

|z|2n

n!
γ1(n) and ã1(z, z) = e−|z|2

∞∑

n=0

|z|2n

n!
γ2(n)

then

ã(z, z) = (ã1 ⋆ ã2)(z, z) = e−|z|2
∞∑

n=0

|z|2n

n!
γ1(n) γ2(n). (5.8)

This can be seen either from (5.7), or by direct computation:

ã(z, z) = (ã1 ⋆ ã2)(z, z) =
1

π

∫

C

ã1(z, ζ) ã2(ζ, z) e
−(z−ζ)(z−ζ) dv(ζ)

=
1

π

∫

C

e−zζe−ζz

( ∞∑

n=0

(zζ)n

n!
γ1(n)

∞∑

k=0

(ζz)k

k!
γ2(k)

)
e−(|z|2+|ζ|2ezζeζzdv(ζ)

= e−|z|2 1

πi

∫

R+

(∫

S1

∞∑

n=0

(zr)nt−n

n!
γ1(n)

∞∑

k=0

(zr)ktk

k!
γ2(k)

dt

t

)
e−r2

rdr

= e−|z|22

∫

R+

∞∑

n=0

|z|2n

(n!)2
γ1(n) γ2(n) e−r2

r2n+1dr

= e−|z|2
∞∑

n=0

|z|2n

n!
γ1(n) γ2(n).

That is, the linear space W (M) is a commutative algebra with respect to multiplication

(5.8), and the Toeplitz operator algebra T (M) (besides the isomorphism of Theorem 5.1) is
isomorphic to W (M) via the following mapping

ω : Ta ∈ T (M) 7−→ ã(z, z) = e−|z|2
∞∑

n=0

|z|2n

n!
γa(n) ∈W (M).

Under the Bargmann transform (5.3) the algebra T (M) is unitary equivalent to a

certain algebra of Weyl pseudodifferential operators:

Ψ(M) = B−1T (M)B = {Op (aw) = T̂a = B−1TaB : a = a(r) ∈ M}.
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Theorem 5.8 Let a(r) ∈ M. Then the Weyl symbol of the operator Op (aw) = B−1TaB is
radial as well, and is calculated by the formula

aw(x, ξ) = e−(x2+ξ2)
∞∑

n=0

(x2 + ξ2)n

n!
γa( r

√

2
)(n). (5.9)

Proof. Direct calculations using formula (5.4). �

Recall that the function

Hn(x) = (−1)nex2

(
d

dx

)n

e−x2

= n!

[n/2]∑

m=0

(−1)m(2x)n−2m

m! (n− 2m)!

is the Hermite polinomial of degree n (see, for example [3, 20]), and that the functions

hn(x) = (2nn!
√
π)−1/2 Hn(x) e−x2/2, n ∈ Z+

form an orthonormal base in L2(R). Denote by Hn the one-dimensional subspace of L2(R)

generated by the function hn(y), and by Qn the one-dimensional orthogonal projection of
L2(R) onto Hn, which is given obviously by

(Qnψ)(y) = hn(x)

∫

R

ψ(η) hn(η) dη.

Reformulate now the above statements about Toeplitz operators for the our class

of Weyl operators.

Theorem 5.9 The C∗-algebra Ψ(M) is commutative, and isomorphically isometric to the
algebra l∞. The isomorphism

ω : Ψ(M) −→ l∞

is generated by the following mapping

ω : Op (aw) = B−1TaB 7−→ γa,

where a(r) ∈ M, aw(x, ξ) is given by (5.9), and the sequence γa is given by (3.2).

For any n ∈ Z+ the one-dimensional space Hn is an eigenspace for any operator
Op (aw) ∈ Ψ(M), and the corresponding eigenvalue is equal to γa(n).

The Wick symbol ã(|z|) of an operator Op (aw) ∈ Ψ(M) is given by (5.6).
Any operator Op (aw) ∈ Ψ(M) admits the following spectral decomposition

Op (aw) =

∞∑

n=0

γa(n)Qn,

where, besides the formula (3.2), the eigenvalues γa(n) can be calculated by the formula

γa(n) =
dn

drn

(
er2

ã(
√
r)
)

r=0

=
dn

drn

(
1

π

∫

R2

aw(x, ξ) e−|(x+iξ)−
√

2r|2+r2

dxdξ

)

r=0

.
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There exists an operator Op (aw) ∈ Ψ(M) with any predefined (compact) spectrum,
essential spectrum, or a bounded sequence of eigenvalues corresponding to eigenspaces Hn,

n ∈ Z+.

It is evident that most results of this section remain valid (with appropriate changes
and usual care about domains) for unbounded Toeplitz operators with radial symbols from

L∞
1 (R+, e

−r2

), and for the corresponding unbounded Weyl pseudodifferential operators.

Example 4. Harmonic oscillator.

In the space L2(R) introduce the creation and annihilation operators

a† =
1√
2
(x− d

dx
), a =

1√
2
(x+

d

dx
),

and consider the harmonic oscillator

H =
1

2
(a†a + aa†) =

1

2
(x2 − d2

dx2
). (5.10)

Passing to the Fock space we have obviously

a† = B a†B−1 = z, a = B aB−1 =
d

dz
,

and

H = BHB−1 =
1

2
(a†a + aa†) =

1

2
(z
d

dz
+

d

dz
z).

The operator H acts on elements of the base in F 2(C) as follows

H
zn

√
n!

=
2n+ 1

2

zn

√
n!
, n ∈ Z+,

and thus it coincides with the Toeplitz operator Th with the symbol h(r) = r2 − 1
2
, which

has the same sequence of eigenvalues

γh(n) =
1

n!

∫

C

h(
√
r)e−rrndr

=
1

n!

∫

C

e−rrn+1dr − 1

2
= (n+ 1) − 1

2
=

2n+ 1

2
.

Now, h( r√
2
) = 1

2
(r2 − 1), and

γh( r
√

2
)(n) =

1

2

(
1

n!

∫

C

e−rrn+1dr − 1

)
=
n

2
.

Calculating by (5.9) the Weyl symbol of the harmonic oscillator (5.10) we have

hw(x, ξ) = e−(x2+ξ2)

∞∑

n=0

(x2 + ξ2)n

n!

n

2

=
x2 + ξ2

2
e−(x2+ξ2)

∞∑

n=1

(x2 + ξ2)n−1

(n− 1)!
=

1

2
(x2 + ξ2).
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In this connection note that both the Toeplitz and Weyl pseudodifferential operators

we are considering are nothing but functions of the harmonic oscillator, considered in the
Fock space F 2(C) or in L2(R), respectively.
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