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ABSTRACT

The two-dimensional problem of sound propagation of a monochromatic point
source located in air above a flat absorbing earth surface crossed by a rectilinear
road with a reflecting cover is considered. The problem is reduced to a Wiener-
Hopf integral equation on a finite interval. The behavior of the solution is inves-
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tigated when the the length of the interval tends to infinity. The main term of the
asymptotic solution and an estimate for the remainder are obtained.

1. Introduction

The problem of sound propagation in air above the earth’s surface crossed by a
road is typical in diffraction theory. It can be reduced to a Wiener-Hopf integral
equation on a finite interval [1]-[2], where the length of the interval is defined
by the width of the road. In [3]-[5] theorems on uniqueness of the solution were
proved for the case when the width of the road is significantly less than the length
of the acoustic wave. Such a theorem for arbitrary width was proved in [6], where
the limiting absorption principle was also justified.

The present paper is devoted to the construction and Justification of an asymp-
totic formula when the length of the interval (the width of the road) tends to in-
finity. The main particularity of our consideration is that the symbol of the corre-
sponding Wiener-Hopf equation has zeroes of order -;- Note that such problems
were considered in [7]-[8] where the complete formal asymptotic expansion was
obtained. In contrast to [7]-[8] we not only construct here the main term of the
asymptotic expansion, but also give a rigorous estimate for the remainder.

The paper is organized as follows. Section 2 is devofed to a mathematical for-
mulation of the problem under consideration and reduction to a so called modified
Wiener-Hopf equation. In section 3 we prove the invertibility of the operator cor-
responding to the modified Wiener-Hopf equation and obtain an estimate for the
norm of the inverse operator in weighted L, spaces. Here we use the concept of
semisectoriality [9]-[12]. These estimates allow us to formulate and to prove in
section 4 the asymptotic representation for the solution of the modified Wiener-
Hopf equation. In section 5 we obtain the acoustic field asymptotic representation.

We are very pleased to thank A. Bottcher for extremely useful discussions.

2. Reduction to a modified Wiener-Hopf equation

Let the interval (0,a) on the X axis represent the transversal section of a road on
the earth’s surface, the air above it lying in the half plane (z,z) e RxR,,R, =
(0,00). Let (g, 29), zo > 0 be the coordinates of a point sound source, p(z, z) be
the complex amplitude of the sound pressure (or simply the sound field); let also
k = w/cbe the wave number, w = 27 f the angular frequency, f the frequency of
the source in Hertz, and ¢ the (constant) sound velocity in air.

The problem under consideration is described by the Helmholtz equation in
the domain R x R,

Ap(z,2) + k*p(z,2) = —6(z — 29)d(z — 20) 2.1
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with boundary conditions
. 0=
5(2, 0) = 0, TE (0, G), 2.2)
op '
a(x, 0) + ikvp(z,0) = 0,z € R\(0,a), (2.3)

where Rev > 0, and v(€ C) is the impedance of the earth’s surface [13].

To obtain a unique solution we use the so-called limiting absorption principle
(LAP). For this purpose we add to the wave number in (2.1) a small purely imag-
inary quantity: k = kon, n = 1+ ig, ko > 0, € > 0, simulating the sound decay
in air, and look for a solution decreasing at infinity. If such a solution exists, is
unique, and has a limit when ¢ — 0, we shall say that the LAP is fulfilled for
the given problem, and consider this limit as a solution at € = 0. Below we shall
formulate the LAP more precisely.

We restrict ourselves to the two dimensional problem in order to avoid super-
fluous technical difficulties. This problem corresponds to the acoustic model with
a line source.

The solution p(z, z) can be represented in the form

p(zr Z) = PJ(Z', Z) + w(zy z),

where ps(z, z) is the solution of the problem (2.1)-(2.2) whith (2.2) holding for
all z € R (i.e., the road is absent). It is well known [13] that

k :
po(@,2) = 3= [ Ban2)e" 2,

where
eikzou
®s5(p,2) = ——F—=——
( 2v2mky(p)

Vp) = 5;—% v(u) = +/n? — u2. The branch of the square root y(u) is
chosen to satisfy the condition Im~y(u) > 0 when € > 0, which corresponds to
the decreasing of ®5(u, z) as z = oo (the LAP). If ¢ = 0, then the branch of ()
is defined by continuity.

The unknown function ¢(z, z) satisfies the following problem:

[eiklz—zoh(u) - V(y)e"‘(”“h(“)] ) 24

Ap(z,2) + Kp(z,2) =0, 2.5)
g—f(z, 0) = ikvps(z,0), =z € [0,a], (2.6)
g—f(z, 0) +ikvp(z,0) =0, =z € R\[0,a]. 2.7
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Let us introduce the dimensionless direct and inverse Fourier transforms:

1 :
(Ff)(w) = —= [ f(z)e***dz,u € R, (2.8)
V2 }[
k . :
(F'9)(z) = —= [ g(u)e~*“*dp,z € R: (2.9)
Vo R/

Let us also consider the weighted function space Ly (R, p) with the norm

1/2
1Al = (E lf(un’p(u)du) : (2.10)

where p(u) is the power weight

m m
p(u) = |u+il* ITle-ml-1<8<1,-1< 8o+ 3 8=l Qi)
j=l k=1

We shall say that the function f(z, z) belongs to the class C; Ly (R x Ry, p) if the
following conditions hold:

a) f(z,z) has continuous partial derivatives of second order in the region R x
Ry,

b) forall z > 0, Fy(-, z) € Ly(R, p) and there exists &(-) such that
P_%”FSP(', z) - ‘I’(')”L,(R,p) =0;

¢) forall z > 0, F%’f(-,z) € La(R, p) and there exists $(-) such that
1 6 . e b . —
lim [P82C. ) =80, =0
Further we denote ®(u) = (Fip(-,0)) () and & () = (L F(-,0))(u).
The LAP for the given problem is justified in [6] for the space Lo(R). Here
we reformulate it for our case.

Theorem 2.1. Let k = ko(1 + i), ko > 0,6 > 0. Then the solution of the
problem (2.5)(2.7) exists and is unique in the class C, Ly(R x Ry, p).

Theorem 2.2. If we designate the solution of the problem (2.5)—(2.7) withe > 0
by ¢e(z,2), then for any point (z,z) € R x R, there exists a Junction py(z, z)
such that

,H_’f(’; ¥e(z,2) = po(z, 2)

(where we call the function po(z, z) the solution of the problem fore = 0).

The Wiener-Hopf integral
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Henceforth we shall consider £ = 0 unless otherwise stipulated. Let us also
write:

ehet(u): = (FX(a,001%(",0)) (1s),
(W) : = (Fxj—co09(~0)) (),
W) : = (Fxqoae(-0))(n),

where x;(z) is the characteristic function of the interval I and L = koa is a
dimensionless quantity.

Applying the Fourier transform (2.8) with respect to the variable z in (2.5)-
(2.7) and designating $(u, z) = (F(-, z))(u) we obtain

82§ 2/..2 2

oz (2) + R(n? = u)8(u,2) =0, 2.12)
22 (1,0) = —ikoo (e ™8+ (u) + 8~ () + BV [* ) 0 tbone gy (213
62 ’ \/21(' 0 ’

The usual solution of the equation (2.12), satisfying the LAP, is given by
®(p,2) = c(p)e™ o7, 50

Z—f(#, 0) = iko'r(n)é(_u, 0) = ikoy () (€@ () + 87 () + @~ (n)). (2.14)

Using (2.13), we finally obtain the modified Wiener-Hopf equation:

e™Lh®* () + G(u)8F () + @~ () = (1 — c:(,,))\/—;—_7r /o " pa(z, O)eomdz,

(2.15)
~where G(u) = ;%Sfd;; After some transformations,
e1Et () + GW)ETE () + 3~ () = f(u), (2.16)
where
£() = B5(,0) etko(zou+z07(p))
HERST S TavEem)

—_— . 1 [ .
ellrg+ = et (p) 4+ — / z,0)etkorz gy,
(1) (k) 73 & ps(,0)

B0 = 6+ = [ mie0)eenas,

() = @ (u)+ \/%—" /_o °om(:':,O)e""°“‘ﬂb"--
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Assume equation (2.16) is satisfied. Taking into account that

c(p) = &(,0) = e () + &F (1) + @ () = (1 - G(w)) 37 (1)
and

(z z) /c(l‘)e'k(‘y(“)z_“z))d“
R
we finally obtain

mw-

/ 3 (u)(1 - Gu)e-tota=1zgy. (@217
R

o(z,z) =

3. Estimate for the norm of the inverse operator

Let us consider the following operators: P+ := Fx[0,00)F ™", P~ := FX(-c0,0)

F!, Bao) = FXja,00)F s Po,a) == Fxjo,qF ', P := Bo,a)» QL =

Pa,oo), Pi- :=1I = P, T(G) := PLGPy, Dy, := Pj- + GPy. Let us also con-

sider the space Er, , = P La(R, p) with the norm induced by the space La(R, p).
In terms of the operators Py, and P;- the equation (2.16) can be written as

D13 (u) = f(u) 3.1)

where 3F (1) = (PL3)(n), €43+ () = ((QL3) (k). &~ () = (P~3)(w).
Applying the operator Py, to (3.1) and taking into account the equalities Py, Pj- =
Pi Py =0, we have:

T1(G)&F () = PLf(w). 3.2)
It is easy to see that the operator @1, can be written in the form

QL e, eiLtP-i-e-iLt. (3.3)

Let us consider P, Qr,TL(G) as operators acting on the space Lo(R, p). It
is well known that in this case these operators are bounded. In fact, the singular
integral operator S is bounded on the space Ly (R, p) [14]-[15]. Since Ty (G) =
PGP, P, = Pt — Qr, QL = eLtpte-ilt by (3.3), Pt = %(S + I).
Therefore Py, Qr,Tr(G) are bounded in Ly (R, p).

Introduce the space of all essentially bounded functions f(x) on the real line
with the usual norm || f ()|l = esssup |f(u)|.

HER

We say a complex function G(u) belonging to Lo, (R) is sectorial if the clo-
sure of the set of its essential values in the complex plane C lies strictly inside a
sector with vertex at the origin and angle less than 7. It is obvious that if G(u) is

- SN N S - > =, - )
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sectorial, then there exist numbers o € C,8 < 1, called the sectorial characteris-
tics of the function G(u), such that

loG(w) -1l _ () = 6 (3.4)

Note that the function G(u) in (2.16) can be replaced by oG (u), where o is
the sectorial characteristic from (3.4). For this we have to replace the unknown
function &7 (u) by o1& (p).

The followmg thcorem is based on the known Brown and Halmos theorem on
sectorial operators. The proof given in [12] for the space L, (R) can be applied to
the space Ly (R, p) without modifications.

Theorem 3.3. Let the function G(u) € Loo(R) be sectorial with sectorial char-
acteristics o and 6. Then the operator Dy, is invertible in Ly(R, p), and the norm
of the inverse operaltor has the following uniform estimate on L € (0, 00):

|z ||L,(n,,) <o(1-6)1. (3.5)

The sectorial condition on the function G(u) can be weakened.

Theorem 3.4. Let the functions h(u) and h_(p) be analytic and bounded in the
upper an lower half-planes, respectively, and let the function

G(u) = G(u) + €4 hy (1) + e #h_ () (3.6)

be sectorial with characteristics & and 3. Then the operator Dy, is invertible and
the estimate (3.5) holds with o = & and § = 6.

In fact, substituting G () = G(u) — e?L#h () — e~ LB h_(u) in (2.16) we
obtain an equation of the form (2.16):

e L4 F (u) + G(u)&F (1) + 3~ () = f(u)

with the new &+ () = &* () + ho () 3% (), 3~ () = &~ () + h_(p)e=it»
&} (), and sectorial symbol G ().
Using Theorem 3.4. we shall prove the following important result.

Theorem 3.5. The operator T (G) : Ey , = Ey, is invertible, and for L large
enough, we have the estimate

|72 |, , < constL/2. (3D
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Proof. Consider the equation (3.1) where

(k) = e#&* () + &F () + & () (3.8)
1—p?
1-p?
is not sectorial. However, it is possible to select functions h (u), h_ (p) ana-
lytic and bounded in the upper, and the lower half-planes, respectively, so that the
function G (i) = G(u) + h(u), where h(p) = hy ()e* + h_ (u)e~"L#, will be

sectorial. In particular, it is not difficult to show that if h,. () = 2(csLt2sinL) _

i%{’—“ﬂ h_(u) = —hy(u) then the function G() will be sectorial. Note

that in this case h(x1) = 2i, G(u) = G(p) + 2i (Imhy () - cos L+ Rehy (i) -
sin L.

It follows that the operator Dy, is invertible according to Theorem 3.4., and
3(u) = (D7) (). Applymg the operator Py, to the last equality we obtain
&F () = (PLDL £)(1). But &5 () = T; £ (). s0

172 <|bp l"L,(R,,,) (3.9)

(suppose that =1 is already included in @7 (1) ). Note that G(u) =

c
EL,

We now obtain an estimate for the norm of D *. To this end we draw a straight

line ', with the equation y = —pL'/2z. Select p > 0 so that G(u) is sectorial
relative to I, and the inequality

p(IG(i),T) > mL/? (3.10)

is satisfied for some constant m independent of L, where IG () is the image of the
function G(u) and p is the distance from a set to a line. It is enough to consider
the graph of the image of the function G () in a small neighborhood of the points
p = £1. In these neighborhoods G(u) = 3C\/IT + 2icosl(l F p) +
O(|1 F p). Let us make the change of variables u = 1 F u. Then in a neighbor-

hood of u = 0 the image of G () may be parameterized as

{ z := ImG(u) = 2c0s Lu + Im%Z /u + O(u), &3

v = ReG(s) = Re X2 /u + O(u).

We have eight cases: u = 1% p, signImv = %1, signu = £1. Consider first
u=1-pu Imv > 0,u > 0. Drawing the curve corresponding to (3.11), we
see that it is enough to show (3.10) for u € [0, 3%]. The distance p(IG(u),Ty) is
calculated by the formula

2cos Lu + Im¥2/u + pL'/?Re 2 \/u + o)

PUG(u),TL) = VL

“=a a-h‘m-n--——d—-—-—-—-——._.—__‘-—-ﬁ————_

The Wiener-Hopf integral
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We choose p so that the main part of the numerator increases monotonically in the
interval u € [0, 2%] (for instance, set p = 7or). The minimum of the main part
of the expression is attained in this case at u = 0, and the estimate (3.10) is true.
The remaining seven cases are considered similarly.

From Theorem 3.4. we have

1

: et i T1/2
”L:(R.P)—'Lz(ﬁ,p) = P(Ié(ﬂ),rL) < const - L'/*.

(7273
This estimate and the inequality (3.9) complete the proof of the theorem. O

4. Asymptotics for the solution of the modified Wiener-Hopf
equation

Introduce the operators T'(G) = PY*GP*, J : J(f(z)) = f(-z), W, =
e'L= JPy. Note that the operator T'(G) is formally the limit of the operator Ty, (G)
when L — co. However, if € = 0, the operators T'(G) and T (G) act on the dif-
ferent spaces (we shall explain this below in more detail). This fact is one of the
basic difficulties involved.

Introduce weighted spaces Lz 4, 5, := La(R, ps,,s,) and Lg 4 := Ly 4 , with
weight

Poroa(B) = |1 = pf** |1+ ) | + ]2 F2) | @.1)

81,82 € (—=1,1), of the kind (2.11). Also introduce the corresponding spaces
EL.'!.': = PLL?.H.':, EL,J = PLLz,.-

We say that the continuous, bounded function G(u), defined on the real axis,
has a standard canonical factorization if it can be represented as

G(p) = G+ (u) - G-(n), “4.2)

where G (1), G7' (1) and G_ (), G=' (u) are analytic in the upper and lower
half-planes, respectively, and bounded in the corresponding closed half-planes.

It is well known [14]-{15] that in this case the operator T'(G) is invertible in
L.j,’, s = P*(Ly,), s € (—1,1), and for the inverse operator we have the formula

-1y = Lp+ 1
T-1(G) = &F P 4.3)

In our case the function G () has also a Wiener-Hopf factorization, but the
presence of zeroes of half-integer order leads to the faet that the operator T'(G)
acts from one weighted space to another. More precisely, the following result
holds.
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Theorem 4.6. The function G(u) of type (2.15) admits the Jactorization
G(u) =G4 (p) - G_(p). (4.4)

Here G4 (u) = 5% where the functions af‘ (1) and a®* (1) are analytic in the

upper 11, and lower II_ half-planes, respectively, and continuous in II; andTI_,
except at the point . = 00, where the Jollowing conditions hold:

lax (k)] = O(Iul'/?), laz" ()] = O(lu|~1/2).

The operator T(G) : LI ot1 = L{ s 8 € (=1,0), is a bounded invertible opera-
tor whose inverse T~1(G) : L}, — LF ., has the form (4.3).

Proof. Represent the function G as Gp) = :: : Go(u), where Go(p) =
ﬁ%. It is easy to see that the function Go(u) is Holder continuous (with
v —H

Holder exponent 1/2) on the closed real line R G (#) #0,u € R, and

. 1
ind Go(u) := 2,218 Go(u)|r = 0.
By a classical result of F. D. Gakhov (see [14]-[15]) Go(u) admits a canonical
factorization (4.2),
Go(u) = Go,+(u) - Go,— ().
" Gy} .
Writing a4 (u) = 7°;§?(";—) we obtain (4.4). -
The last statement of the theorem can be obtained from (4.4) by standard tech-
niques ([14]-[15]). Theorem 4.6. is proved. O

We write also K (G) = 7! (G) -T(G™), considering this as an operator
from L}, into L}, |, where s € (-1,0).

Define the operator

BL(G) = PLT_I(G)PL + WLK(G)WL 4.5)

It is well known [14] that if G(u) is continuous on the closed real axis R and
T-1(G) exists, then the equality

TL(G)BL(G) = P, - E(G), (4.6)
i true, where E1.(G) = PLT(G)Q1 K (G)P, + W, T(G)QL K(C)W,

Theorem 4.7. Let G(u) and f (1) be as in equation (2.16). Then the equation

(3.2) has a unique solution in the space Ey, o, s € (0,1), and the Jollowing esti-
mate,

@7 - Bf|,,, < ML= 5 € (0,1), 4.7
holds, where M = M(s) is independent of L>Ly>0.

The Wiener-Hopf integral e

Assume ®¢(u) = BLf

Taking into account th:
sion operator is bounded, v
Ep s+1.8 € (—=1,0), the op
the function 7 € Ly 441, :

Using (4.3), it is not di!
is represented as follows:

where E{V) = PLGQ,, e

where X{l). X,(:‘)) are solut

Introduce the notation f

QLG 'VI=1dy. Then E

We now prove some len

Lemma4.1. Letb(t) € L,
tation holds:

(Qrb)(¢)

~

Proof. By definition,
(P*b

and Qp, = eiltP+e=il7, T

we obtain formula (4.11). T
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factorization

4.4)

(u) are analytic in the
inuous in 11 andT1_,
hold:

-1/2).

inded invertible opera-
4.3).

y(u), where Go(p) =

lder continuous (with

), u € R, and

() admits a canonical

1 (4.4) by standard tech-
O

ring this as an operator

Wi. 4.5)

closed real axis R and

(4.6)
QLK (G)WL.

16). Then the equation
_and the following esti-

,1), 4.7)
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Assume ®o(u) = By f. Then it is not difficult to verify that
TL(®F — &) = ELf. (4.8)
Taking into account that if 8; < s then Lg s, C L2, and that the inclu-
sion operator is bounded, we shall consider the operator Ey, acting from Ey 4 t0
Ep 41,8 € (—1,0), the operators Ty, and T * acting from Ef, 4+1 10 E 441 and
the function ®F € Lg 541, 8 € (—1,0). From (4.8) we have ®f — & = T Bt

Using (4.3), it is not difficult to show that the right part of the equation (4.8)
is represented as follows:

Ef=EQf+EDS,

where Ef") = PLGQL g~ P~ g-Pu, E{) = WLGQLg-P~g-Wy. Then

&t -3 =X +x2), (4.9)
where X{l) 5, 1 22) are solutions to the problems

T, x = B, (4.10)
Introduce the notation fr, = Ppf, by = PG lfy, dL = b;a;l. YL =
QLG~'VT=7dy. Then E{V f = PLGoy.
We now prove some lemmas.

Lemma 4.1. Let b(t) € La 4, 8 € (—1,1). Then the following integral represen-
tation holds:

_ 1 [b(#)=b(7) ire-r)
QL)) = 5— / T dr. @.11)
R
Proof. By definition,
B () = / M) ot
(PTo)(t) = omi o 7 _tdr+ 2b(t)

and Q, = e’ft P+e~iL7T, Taking into account the equality

1 eil(t-1)

- dr =1
in Jp T—1

we obtain formula (4.11). The proof is finished. O
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Lemma 4.2. We have the following integral representation:
. 1
b (—1- i) = 5 / fL@)K (r, €)dr, @.12)
R

GZ'(r)-GZ'(-1-if)
T+1+4€

where § > 0, K(1,£) =
Proof. Since by, = P~ & fL, for € > 0 we have

GZ'(r)

el
T T

(1= = -3 [ )
R

Butif £ > 0 then [ L) dr = 0, whence under the condition £ > 0 we obtain
R

(4.12). At§ = 0and 7 = =1, the kernel K (r, £) has a weak singularity, so the
integral on the right side of (4.12) is continuous at & = 0. The proof is finished. O

Lemma 4.3. The following estimate holds:

b2 (=) < const (lfzlle + 172l m) - “.13)

Proof. According to the previous lemma,
b7 = g [ fu(K (00
L = o L\T T, T.
R

We split the last integral into two integrals on the sets 7 € [-2,2] and r €
R\[-2,2] and apply the Holder inequality to the second integral:
(-1 < 5%

1/2
(Ilfz,llcffgIK(T,O)IdT+HfLIIL,(n)(R / )IK(T,O)I”dT) )

This gives (4.13).

Lemma 4.4. The following estimate holds:

ldz (=1 =€) = di.(=1)| < const (|| fz I + |1 £z,

\/El,e €[0,1). (4.14)

The Wiener-Hopf integra

Proof. 1t is not difficult

a1 (=1 —i€)V/E, where ¢
this it follows that for & ¢

dp(—1=i€)—dp(-1) =
Because by, (—1 — ¢
rying out simple calcula

br(=1 — i€) — br(-1)

Using the inequaliti

GZ'(-1)

T 4

0

dr
/ vr+1|vr-1|
-2

we arrive at the estimate
from (4.13), (4.15) and
(4.14). The proof is fini

Lemma 4.5. If the fun
I fLllL,cry IIfLlic are

Proof. It is obvious that

fr

e—il.

where Ry (7,t) =

||fL||C < const (

+1fllL,m) ( J

Jr—t|

1(

< const (IIfHL,(n) ;



nd E. Ramirez de Arellano

tion:

€)dr, (4.12)

(1)
:i—é_dT.

ondition £ > 0 we obtain

2 weak singularity, so the
. The proof is finished. O

@) 4.13)
T.

s T € [~2,2] and T e
integral:

1/2
((r, O)|2d‘r) )

'\/E‘ E€[0,1]. (4.14)
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Proof. 1t is not difficult to show that if ¢ € [0,1], then a=' (-1 — i¢) = aq +
a1 (-1 - )/, where a1 (—1 - i€) is bounded for £ € [0,1], a;(~1) # 0. From
this it follows that for £ € [0, 1],

d(~1-if)—dy(-1) = ao(bL(-l—if)—bL(—l))h/Eal(-l—ie)bL(—l(;ilfs)i
Because by (-1 — i) — bp(-1) = #iffL(T) (K (1, &) — K(1,0))dT, ;:ar-
R

rying out simple calculations, we obtain

GZ'(-1)-GZ'(7)
T+1

1

dr.
|7+ 1+ €| &

ba(-1-i6) ~bu(-ni < 1 [ mo—n\
R

Using the inequalities

GZ'(-1)-GZ'(r)
T+1

const

<
- |\/1'+1||\/1'—1|’

T€R,

d onst

0 1
T dr C
_{I\/T+1||\/T—1||r+l+i£| S_/ll\/1‘-[|1—+i£|S V€|’ € (0,1],

we arrive at the estimate |b7 (=1 — i€) — b7 (—1)| < const llllc |V/€|, and then
from (4.13), (4.15) and the boundedness of a; (—1 — i£) at & € [0,1] we obtain
(4.14). The proof is finished. O

‘ Lemma 4.5. If the function f(u) is defined as in formula (2.16), then the norms

”fL”L,(n)» | fLllc are uniformly bounded for zo > 0, zo € R.

Proof. Itis obvious that || f1|| Lar) S 71l La(R)- Using the integral representation

eiLt
fo=Pf = = RRL(T, t)f(r)dr,

—iLr —iL "
where Ry (7,t) = &——=¢ *, we obtain

@) [ Ru(rt)dr+ [ Ry(rt)(f(r) - f(¢)dr

lIfLllc < const
Ir—t|<1 Ir—t|<1

1/2
+|lf|ng(R)( J |RL(T,t)I2dT) )S

T—t|>1
Mr!—f!t!l)
T—t

< const <||f“1,,(n) +1fllc + - sup
Ir—ti<1
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It is not difficult to show that if the function f(u) is defined as in (2.16), then all
terms on the right side of the last inequality are uniformly bounded for zo > 0.
The proof is finished. O

Let us turn to the proof of theorem 4.7.. The following estimates are true:

||X§” < const- L™*/%,5 € (0,1). (4.16)

Lﬂ.l

< const - L™*/2, nxf)
L2,¢

First we prove an estimate for X,El). Using the integral representation (4.11)
for Q1 we have

v—=vy1-t? _ v—y1-—7
o1(t) = QugVT=Td)® = 5 [ 7‘-‘;t_T =
R

VI=r1dy (1)Lt dr.

Deforming the path of integration R into I'y U I'y, where I';, T2 are the rays
-1 — i€, € € (—o0,0), traversed in opposite directions, we obtain

(4.17)

— o oiL(t+1) O S A
o1 (t) = coetHt+ O/dL( 1-i6)

where ¢y = — -’r—,"y; We divide the last integral in two parts,

) -
IL,x(t)=dL(-1)o/de,

Bt = [LZE—d() e
0

V3 t+1+1’

and introduce the notation ¢, 1 (£) = coe’ XtV I 1 (t), pr,2(t) = coeL VI o(2),

Eg,)l =P LG‘PL.lvES,)z = PLGyL,2. As before x{"l and X [(11% let be solutions

with right parts Eg)l and E{", respectively. Using the technique found in [16], p.
525-526, we derive the integral formula

7S —Lu
o/ \/?ZTJ) du = 7”_:?:-"" (2 (v=¢L)-1). (4.18)

Therefore

b/ 72(%;%:'_5)‘1{ = -"Fﬁe-‘“‘“) (<I> (ﬁ(H—I)) - 1) , (4.19)

The Wiener-Hopf integral
2 z —t?
where &(2) = 2= ofe
pLa(t) = —comV/-
According to [17],
&(Viz) -

so we have

_pra(t) = cov/mdL (-1

Let us consider the functi
with the same asymptotic
PLAX Si , SO

TL(X i

Let us estimate the L

" PLG(pL,y - AXS,)n

Split the last integral on
second one in detail:

2
Jesrp2-1 1IG @) ‘I‘P
< const - IdL(—l)|2flu
< const - [b7 (-1)|"
< const - b (~1)|" 1

The last integral cor
AXE) ().

Itis not hard to obtai
1. Therefore,

I|PLG (pL,
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>fined as in (2.16), then all
rmly bounded for z5 > 0.
O

ving estimates are true:

L™*/%? s €(0,1). (4.16)

tegral representation (4.11)

A=t _ v—=v/1-71
1—t2 1-1
t—17

T.

where I';, 'y are the rays
1s, we obtain

e L

e 4.17
t+1+if)d€’ @17

parts,

._)dfv

D emdg
t+1+1&’

), pL2(t) = coetLEHVIL 5(t),

)1 and XSL let be solutions
¢ technique found in [16], p.

’ZE) - 1) . (4.18)

’—_zL—(t+_1)) e 1) , (4.19)
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z
where &(z) = Z- | e~*dt is the Fresnel integral. Hence
0

oL (t) = —corV/—i——— \/_d;,( 1)( (\/m)—1). (4.20)

According to [17],

$(Vir)—1= 'f/;Tz (1+o G)) >,
5o we have
1 eil(t+1) 1
L) = covmda(-1) = S (1+o (m)) JLE+1)]> 1.
' , @.21)
Letus consider the function AX (") 1(t) = coy/md (-1)- "L(‘“)_(elyl;::; )/ GLE+D)

with the same asymptotics as ¢y, 1 (t) at|L(t + 1)| > 1. Itis evident that AXE{ =
PLAX {1)1 SO
Ty (X$) - AX{)) = PLG(ery — AX)). 4.22)
Let us estimate the L, , norm, s € (0, 1), of the right part of (4.22):

|Pectony - axED, / G Jorat) - AXE @) - puterat.

(4.23)
Split the last integral on the sets |t + 1| < } and [t + 1| >  and consider the
second one in detail:

Sisriznms 1GOR -[ora() - AXD 0| - psat

an iLu 2
< const - [d(-1)| fu|>L ll,/—_m ‘l’\/iLu -1 ¢ = - L_ulﬂ |u|1+'du
- 2
S const, - IbL (—l)l tm f I\/—'"r. ¢_(72_‘/’_:“ -1 + % “iere e. -1 Iu|l+ldu
Jul>1

< const - [bg (—1)|* 7,5 € (0, 1).

The last integral converges due to the presence of the “compensatory” term
Ax(M ().
L2
Itis not hard to obtain an analogous estimate for the integral on the set |t + 1| <
- Therefore,

”PLG(WJ - Axﬁl)"Lh <constL~*# [bp(-1)|.  (4.24)
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One can verify also that "AX (1)

< constL=*/2 |b;(~1)|. Hence using

(4.24) and Theorem 3.4. we have | x®
(0,1). Finally, by Lemmas 4.3. and 4.5.,

.. S constL™2bp(-1)|. s €
2,8

[%E2],. < constL*’2 (Ufellc + £2ly,) < constZ=/2,s € (0,1).

(4.25)

. It is enough to consider the integral of
2,8

L,2(t) on the interval (0,1), because the integral on (1, 00) decreases exponen-
tially when L — oo uniformly on ¢. Taking into account Lemma 4.4. and the
equality || P || L., = 1 we have the following chain of inequalities:

Let us now estimate ||E§‘1)2

2

) I (=1—if) —=dr(-1) e L
"}’ﬂmf"h_.S /R VZ arie %[ polu)du
- 2
< const( || flle + Il £zll,)? A e~ %dn)| py(u)du

< T (Wallo + 18l [ 1GQI 25wl
< T Ufell + 1f2ll,)% s € 0,1).

Using Theorem 3.4., Lemma 4.5. and the fact that x{‘; is a solution for the
equation of type (4.10) with right part ES), f, we arrive at the estimate

|%E3],. . < constL/2 (U allc + 172lly,ny) < constZ=2,s € (0,1).

(4.26)
since X{" = X{") + X{!}, from (4.25), (4.26) and Lemma 4.5. we now have

e

< const L=*/2(||fylc + | full . ry) < constL="/2, s € (0,1).

(4.27)
. Finally, the equality &7 — &, =

2,8

2,8

Similarly we obtain an estimate for "X £z) .

x0 + x2 yields
2% = BLf|,, , < constL=*/2,5 € (0,1). (4.28)

Theorem 4.7. is thus completely proved. O

The Wiener-Hopf integrc

5. Asymptotics fo

Substituting the expansi
obtain

oz, =22 [ (&
R

where the first integral
perturbed field, and the |

|O(=, 2)]

(-

From Theorem 4.7. we 1

Theorem 5.8. Let p(z,.
the LAP. Then

p(z,2) =

¥E RNEF

2
J

where ®5(u, z) is define
and the remainder O(z,

where the constant M =
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2|b7(~1)|. Hence using

onstL=*/2 b7 (-1)|, s €

constL /25 € (0, 1).
(4.25)
(0 consider the integral of

1,00) decreases exponen-
>ount Lemma 4.4. and the
inequalities:

-1) q“LE l2
T = €1 py(u)du

> |

12

“Idn| ps(u)du

v

) b (u)d

).

Yg; is a solution for the
> at the estimate

constL™%/2 5 € (0,1).

(4.26)
mma 4.5. we now have

constL~*2 s € (0,1).

4.27)
/, the equality ] — & =

= (0,1). (4.28)
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S. Asymptotics for the solution of the original problem

Substituting the expansion 7 = By f + (&7 — By f) into formula (2.17), we
obtain

0(z,2) = 52 [ (BLAGIL - Gluehobe—09dy + 0z, ), 6.1)
R

where the first integral represents the principal term for the asymptotics of the
perturbed field, and the residual term O(z, z) is estimated as follows:

_ 1/2
0@, 2) = |®F = Bof|* pu(p)du |  x
27

1/2
(ﬁ/ll — Gp)I? |e2bolua=r02)| oo ‘(u)dn)

From Theorem 4.7. we now obtain our main result.

Theorem 5.8. Let p(z, z) be the solution to the problem (2.1)-(2.3) which satisfies
the LAP. Then

p@s) = 32 [ sl 2)eommay
R
+ 52 [ BLHE - Glueee—19dy + 0@, ),
R

where ®5(u, z) is defined by (2.4), the operator By, = By, (G) has the form (4.5)
and the remainder O(z, z) admits the estimate
|O(z,2)| < ML™*/%,5 € (0,1),

where the constant M = M(s) is independent of z,zo € R and of z,29 > 0.
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