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Toeplitz Matrices and Wiener-Hopf Operators
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Abstract. We describe the structure d asymptotically good pseudomodes for
Toeplitz matrices and their circulant analogues as wel as for Wiener-Hopf
integral operators and a continuous analogue o banded circulant matrices.
The pseudomodes o circulant matrices and their continuous analogues are
extended, while those of Toeplitz matrices or Wiener-Hopf operators are typ-
icaly strongly localized in the endpoints.

1. Introduction

Let A be a bounded linear operator on a complex Hilbert space H. A point A
in Cissaid to be an e-pseudoeigenvalue o A if ||(A — AI)~!|| > 1/e (with the
convention that |[(A — AI)"!|| :=cc incase A — X | is not invertible). If X isan e-
pseudoeigenvalue, then there existsa nonzero x € H such that [|[(A—A)z| < ¢||z].
Each such z iscalled an e-pseudomode (or E-pseudoeigenvector) for A at A\. Papers
[10], [12], [13], the web site [5], and the book [4] contain detailed information about
these concepts.

Now suppose we are given a sequence {4, }°°, of matrices A, € C"™". We
think of A,, as an operator on C" with the ¢ norm. We call a point A € C an
asymptotically good pseudoeigenvalue for {A,)) if ||[(A, — AI)71|| — o0 asn — oo.
In that case we can find nonzero vectors x,, € C" satisfying

(A, — ADz.||/||znll = 0 as n — oo,

and each sequence {x,,) with this property will be called an asymptotically good
pseudomode for {4, } at A. Our terminology is motivated by the papers [10] and
[14]: thereit isshown that ||(A,,—AI)~!|| increases exponentially for certain classes
of matrices, and the corresponding pseudomodes are called exponentially good.

S. Grudsky acknowledges financial support by CONACYT grant, Catedra Patrimonal, Nivel II,
No. 010286 (México).
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This paper is devoted to the structure of asymptotically good pseudomodes
for sequences o Toeplitz matrices. We also embark on Wiener-Hopf integral oper-
ators and on the circulant cousins of Toeplitz band matrices (called a-matrices in
theoretical chemistry [16]) and their continual analogues.

2. Banded circulant matrices

Given a subset J,, of {1,2,...,n), we denote by Pj,, the projection on C" defined
by

; for jeJ
P - Y; ns
(Fr.); { 0 for j¢ Jn.
The number of elementsin J,, will be denoted by |J,|. Let {y,}52, be a sequence
of nonzero vectors y, € C". We say that {y,,) is asymptotically localized if there
exists a sequence {J, }°2, of sets J, C {1,...,n) such that
/]

im 7l 0 and  lim (Da¥n

=1
n—G3 n n=03 |lyn||

We denote by F,, € C"*" the Fourier matrix,

1 1 i
Fn —_ (wjk Wy = 627”/”.

\/T—L n )j_,k:()’

A sequence {y,}5%,; o nonzero vectors y, € C" will be called asymptotically
extended if {F,y,} is asymptotically localized. Problems concerning the question
whether eigenvectors or pseudoeigenvectors are localized or extended have been
extensively studied for many decades, especially for randomly perturbed Toeplitz
matrices and their differential operators analogues, and the literature on thistopic

is vast. A few exemplary works are [1], {7], [8], [9], [11], [14].

Let a be a complex-valued L* function on the complex unit circle T. The
N X n Toeplitz matrix T}, (a) and the infinite Toeplitz matrix T'(a) are defined by
Tn(a) = (aj,k)]'?’k:l and T(a) = (ajfk)fk:p where

1 2w

ap a(e®)e 040, (e Z.

27 Jy

Asa € L™(T),the matrix T(a) generates a bounded linear operator on ¢*(IN).
Now suppose that a is actually a trigonometric polynomial,

5
a(t) = Z at’, te.
{=—7r

Then T}, (a)isabanded matrix. For n large enough; we can add entriesin the lower-
left and upper-right cornersof T,,(a) in order to get a circulant matrix C,(a).For
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example, if a(t) =a_;t7! + qo t ait T ast?, then

ag  a_, 0 0 as a;
a ag a_1 0 0 az
C@(a) _ ay (25} an a_] 0 0
0 as a agp a_q 0
0 0 ay a aq a_i
\ a-1 0 0 ag a; ag

Theorem 2.1. Let a be n trigonometric polynomial. A point A € C is an asymp-
totically good pseudoeigenvnlue for {C.(a)} if and only if A € a(T), in which case
every asymptotically good pseudomode for {C,(a)} is asymptotically extended.
Proof. Clearly, Cp(a) — XI = Cy(a — A). It is well known that
Cp(a-A) = Frdiag(a(w) — N2, F,=: F:D, F,.
Since F,, is unitary, it follows that
1
. iy

o fa(wn) = A
which shows that ||C;;t(a— A)|| — oo if and only if X\ € a(T).

Now pick A € a(T) and suppose {x,) isan asymptotically good pseudomode
for {C,(a)} at A. We may without loss of generality assume that |z,|| = 1. Put
y, = (yE"))?:l = F,x,,. We have

?

IC H a =Ml =

ICrnla Nzl = | Fr Dr Frzn || = | Dnynll- (2.1)
Fix an ¢ > 0. For 6 > 0, we put
Gn(6) = {ied{l...in}:la(wl™h) - Al <6},

E(6) = {0€0,2m):]a(c”) - A| <6).

Since a is analytic in C \ {0}, the set £(6) is a finite union of intervals. Hence
|Gh(8)|/m — |E(8)|/(27) as n — oo, where |E(4)| denotes the (length) measure
o E(8). Because |E(d)] — 0 as6 — 0, there exist §(¢) > 0 and N;(z) > 1 such
that |G, (8(¢))|/n < e for adl n> N,(¢). From (2.1)we infer that | D,y,||> — 0 as
N — oo. Consequently, || D,y.||? < d(¢)? for all N> No(e). Since

n
1Dnynll® = 3" la@i™) = AP > 602 Y P
j=1 JEG(d(€))

it follows that {2 < & for n > Na(e). Thus, || Pa, senynl® > 1—¢
JjgGnd(e))
for all N > Na(¢). Put n(e) = max(Ny(E), Na2(¢)).

Now let e, = 1/k (k> 2).With & := §(cx) and ny := n(=,) we then have
|Gn(5k)| 1
<&

n

1
and || Pg, (5.ynl°> > 1— = for n>n. (2.2)

k
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We may without loss of generality assumethat 1<n, <ng <....Forl<n<ng,
we let J,, denote an arbitrary subset of {1,...,n). For n > no, vvedefmethe sets
Jn C (1,...,n) by

Jny = Gny(82), Jnpt1 = Gry11(82), . .., Jna—1 = Gna—1(62),

713 - Gn3(63) ng+1 — Gn3+1(63)7"'7JTL4—1 = Gn4—l(53)7
From (2.2) we see that

|JTL2| < 17' , |Jn3*1| < 17
n9 2 nsy —1 2
\Jngl < 17. |Jn4—1| < 1, ,
ny 3 ng — 1 3

which shows that |J,,|/n — 0asn — oo. Also by (2.2),

1 1
||P~/n.2y"2||2 >1- _""7||P-1713>1y713_1“2 >1-5,

2 2
||P~lngynd||2>]‘_ ||P]y4 1Yng— 1“ >1_3v ey

and hence || Py, y»ll = 1 asn — oo. Since lly. |l = 1 for al n, it results that {y,}
is asymptotically localized. Consequently,{x,) isasymptotically extended. O

3. Toeplitz matrices

Let a € L°°(T) be a piecewise continuous function, that is, suppose the one-sided
limits a(t — 0) and a(t + 0) exist for each t on the counter-clockwise oriented unit
circle. We denote by o*(T) the closed and continuous curve that results from the
(essential) range o a by filling in the line segments [a(t — 0),a(t + 0)] at each
jump o a. The counter-clockwise orientation of T induces an orientation of a# (T)
in the natural manner. For A € C \ o#(T), we let wind (a,A\) denote the winding
number of the curve o*(T) about . It iswell known that the spectrum of T'(a) on
¢2(N) is the union of a#(T) and all points A € C \ a#(T) with wind (a,A) # 0. If
A ¢ a#(T) and wind (a,\) = —m < 0, then the kernel (= null space) KerT'(a — A)
hasthedlmenson m, whileif A ¢ o#(T) and wind (a,A) = m > 0, then the kernel
of the adjoint of T'(a — A) is m-dimensional. All these facts can be found in [4] or
[6], for example.

Suppose that A ¢ o (T) and wind (a,\) = —m < 0. We then can write
a— A = by_m, where b is piecewise continuous, 0 ¢ 5% (T), wind (b,0) = 0, and
xx isdefined by xx(t) = tX (te T). The operator T'(b) is invertible on ¢2(N) and,
moreover, the matrices T,,(b) are invertible for all sufficiently large n,

lim [T7®)] = [T 0 and Ty ()P, - T\(b) srongly  (3.1)

(see e.g., [2], [4], [6]). Here P, is the projection on ¢?(N) given by (P,y); = y; for
1<j<nand (P,y); =0for 3 > n+ 1. We will frequently identify the image o
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P, with C™. It is also well known (and easily verified) that the m elements

u; =T "(ble; (j=1,...,m) (3.2)

form a basisin Ker T(a— A), where e¢; € ¢2(N) is the sequence whose jth term is
1 and the remaining terms of which are zero. We finally remark that, obviously,
T{a)— X1=T(a- A)and T,,{a) — X| =T,(a— ).

Each point A € C \ a#(T) with wind (a, \) # 0 is an asymptotically good
pseudoeigenvalue for {7}, (a)} (see (4], [6], [10]). The following theorem provides us
with a complete description of the structure of asymptotically good pseudomodes.

Theorem 3.1. Suppose A ¢ a#(T) and wind (a,)) = —m < 0. Letx, € C™ ke unit
vectors. The sequence{x,) is an asymptotically good pseudomode for {T},{a)} at

X if and only if there exist ¢{™,...,c") € C and z € C™ such that
Ty = cgn)Pnul +- 4+ cﬁ,’:)Pnum + Zn,
sup Y] < oo, lim [|za] =0, (3.4)
n>1,1<j<m n—oo
where u,, ..., u, aregiven by (3.2).

Proof. Assume that (3.3) and (3.4) hold. Since || T(a — M) Py < |la = Moo, We
see that T,(a — M)z, — 0. As the numbers |c§”)| are bounded by a constant
independent of nand as P, — | strongly (= pointwise) and T(a— A)u; = 0, we
obtain that

lim T,,( :Z lim c( T, {a—MNu; =0.
Thus, {z,} isan asymptotically good pseudomode.
Conversdly, suppose ||T.{a — N)z,|| — 0. Puty, =T,(a — A\)z,. WithQ, =
| - P,, we have
Th(a —A) = Tr(xX-mb) = BT (X-mb) Pr = PaT(x—1n)T(b) P,
= P, T{x—m )P TP, + P, T{(x—)QrnT (W) P, =: A, + By,

Since T'(x—m) is nothing but the shift operator (£1,&s,...) & (£mi1,Emin,.-.), it
followsthat

(3.5)
where Im C refers to the image (= range) of the operator C. This implies that

ImA, CImP,yn, ImB, CIm Py, 0},
||.7Jn||2 = || Anzn + annHQ = ”AnanQ + ”annHQv

and hence ||Anzr | — 0 because lly»ll — 0. The equality Ty, (x_m)Tn(b)zn = Apnz,
gives

Tn(b)zn = an)el +...+ Cg)em + Tn(Xm)AnfEn
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with certain complex numbers c(,") ...,c,(;;). Since

?

1/2
(Z |c§~">|2) < Tl + TG Al < [Bllce + [ Anz ]l
i=1

we conclude that there isan M < oo such that lc&")| < M for all n and j. Finaly,
from (3.1), (3.2) and the equality

zn = T B)er L AT B)em + TN B) T (xm) Antn

we get (3.3) and (3.4) with

2 =Ty (0) T (xm) At + 57 (T (b)e; — P T (b)ey).

Jj=1
This completes the proof. a

Let a be as in Theorem 3.1, but in addition suppose now that a belongs to
the Wiener algebra W(T), i.e., that the Fourier series of a converges absolutely.
We write a — A = bx_» as above. Clearly, b is also in W(T). Since 0 ¢ b(T) and
wind (b,0) = 0, the function b has a Wiener-Hopf factorization b = b_b.. The
factors b4 can be given by

b_(t) = exp (Z(log b)_zt‘“> , by(t) =exp (Z(log b)et£> ;

£=0 =1
where log bisany logarithm of bin W (T). The Wiener-Hopf factorizationb=b_b,
yields the representation 71 (b) = T(b3')T(b_") (see, e.g., [4] or [6]), or written
down in detail, 7~!(b) equals

(7o b= (2o (B2Y) 2
O i TE (b= 62

If a is even rational, then the sequences {(b7')n}3, and {(b_')_ .}, decay
exponentially, and from (3.2) we deduce that ui,...,u,, are aso exponentially
decaying. Thus, Theorem 3.1 implies that, up to the o(1)} term z,, al asymptot-
ically good pseudomodes are exponentially decaying. We remark that in the case
where a is a trigonometric polynomial (which isequivalent to the requirement that
T(a) be a banded matrix) the existence of exponentially decaying pseudomodes
was already proved in [10] and [14].

We now sharpen the definition of an asymptotically localized sequence. We
say that a sequence{y,,} of vectorsy, € C" is asymptotically strongly localized in
the beginning part if
—— =1 (3.6)

n—00 yn
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for every sequence {7, }><, such that j, — oo and 1 < j, < n. Asymptotic strong
localization in the beginning part implies, for example, that (3.6) is true with
jn =loglogn (n> 3).

Theorem 3.2. Suppose A ¢ a#(T) and wind (a,A) = —m < 0. Then every asymp-
totically good pseudomode for {?;,(a)) at X is asymptotically strongly localized in
the beginning part.

Proof. Let{z,,) bean asymptotically good pseudomode for {T7,(a)} at A. We may
without loss of generality assume that ||x,|| = 1 for &l n. By Theorem 3.1,

Ty = z(l'l)Pnul oo Pty + 2, =1 Wy + 2,

where uy, ..., uy are given by (3.2) and ¢{’”,....c!"), =, satisfy (3.4). Choose
M < oo so that |cf.”)| < M for al i and n. Let {j.} be any sequence such that
jn —mooand 1< j, < n.PutJ, ={1,...,5,} and JS = {j T 1,...,n}. From
(3.2) we infer that us,...,u, € ¢3(N). We have [|[Pjewn| < M3 1Preul.
Since u; = (u\)%°, is in £2(N) and hence
IPruill?= > WwP< > wlP=0(1) as j,— oo,
k=jn+1 k=37, +1
it follows that | Pjc w,|| — 0 as n — oo. Finally,

12 [Py, anll® =1 = ||Pganll® =1 = [Py (wn + 20)|I°
2
> 1= (I1Psgwall + 1P 2all)
and because || Pjcwy|| — 0 and || Pjc z,|| — 0 asn — oo, wearrive at the conclusion
that [Py, znfl — 1. 0

To conclude this section, suppose that A € C \a#(T) and that wind (a,\) =
m > (). Following [15], we define @ by a(t) :=a(1/t) (te T)and welet W,, be the
operator that is P, followed by reversal of the coordinates. We have A ¢ a%(T)
and wind (a, A) = —m < 0. Moreover, W,,T,,(a — \)W,, = T},(a — A) and hence
Thia — Nzl = [|Ta(@ — \)W,x,||. Consequently, by Theorem 3.1, a sequence
{z,} of unit vectorsis an asymptotically good pseudomode o {7T,,(a)} at A if and
only if
Wz, = cgn)Pnﬂl + .+ VP, + 2, (3.7)
where |c§”)| <M <coforaljandn, |z, —0asn — oo, and uy,...,q, are
given by u; = T‘l(g)e,-. Clearly, (3.7) can be rewritten in the form

Ty = cgn)VVnﬂl +...+ 01(7?) Wnﬂm + 2n

with z, = W, z,. The analogue of Theorem 3.2 says that every asymptotically
good pseudomode {z,} for {T.(a)} at A is asymptotically strongly localized in
the terminating part, that is, the sequence {W,z,} is asymptotically strongly
localized in the beginning part.
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4. A continuous analogue of banded circulant matrices

Let & be a function in L*(R) and suppose k(z) = 0 for |z| > r. For 7 > 2r, there
is a unique continuation of k to ar-periodic function k, on all of R. A continuous
analogue o the operator C,,(a) considered in Section 2 is the operator on L?(0,r)
that is defined by

(CRN)@) =30@) + [ kelz - 0O, 2 €.)

where y is a fixed number in C. We put

—~

k(&) =~v+ / k(z)e~%dz, ¢eR.

We call a point A € C an asymptotically good pseudoeigenvalue for {C(k)}
if [(Cr(k) — A7 — oo asT — oo, and a family {f;},-o of nonzero functions
fr € L?(0,r)issaid to be an asymptotically good pseudomode for {C,(k)} at X if
1(Cx(k) — AD) f-AI/1I f- || — 0 as 7 — oo

Let {g-}->0 be a family of elements g, = (QJ(T)>]'€Z € (%(Z). We say that
{g,) is asymptotically localized if there exists a family {J,}.>., of finite subsets
J, € Z such that

Pg.
im 2 o and  tim 1Pl

Teo T 7= [grll

=1.

Put ¢;(z) = (1/y7)e*™2/7. The system {y,};cz is an orthonormal basis in
L2(0,r).Thus, the map

®, : L0,7) = (2Z), fr = ((fr:95)) ez

is a unitary operator. A family {f.},~¢ of functions f, € L?(0,r) will be called
asymptotically extended if the family {®. f.}.0 isasymptotically localized.

Theorem 4.1. A number A € C is an asymptotically good pseudoeigenvalue for
{C.(k)} if and only if A € y + k(R), where R:= RU {oo}. If A+y € k(R) and,
in addition, A # vy, then every asymptotically good pseudomode for {C,(k)} at A
is asymptotically extended.

Proof. For f- € L2(0,r)and x € (0, 7),

(CoWNE) = @)+ S (frrps) / "k -ty ()t

JjEZ

1 2miy * —2mijs/T
@)+ L) = [ k(s)e s

JjEZ
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1 y /2 y
_ ’Yf z) + f‘r7§0‘ eQTrz]:c/T / k-r s e—QTrz]s/Tds
@+ Stron) [k

r

,),f(x)+Z(f7_’80]_)%627rij1'/7'/ kT(S)e—QTrijs/TdS

JEZ -r

= > (45 () tneerta)

JEZ

Thus, C; (k) is unitarily equivalent to the diagonal operator
diag <7 +k (@))  2(Z) — 2(Z)
T jEZ
This shows that A is an asymptotically good pseudoeigenvalue for {C,(k}} if and
only if A ey +k(R).

Now suppose A = v + E(fo) with §o € R and let {f,} be an asymptotically
good pseudomode for {C.(k)} at A. Without loss of generality we may assume

that | f-|| =1 for all 7. Thus,
N ~ 27y ~
0=l = 7 (22) - Ree)
JjEZ
Fix e > 0. For 6 > 0, consider the sets
G-(8) = {jeZ:k@mj/r)— k()| <5},

E(@) = {€€R: k() - ko)l <4}

Since E(go) # 0 and since k is an entire function, the set E(9) is afinite union of
intervals and |E(d)| — 0 as § — 0. As|G,(6)|/7 — |E(d)|/(27), thereare i(s) >0
and t1(g) > 0 such that |G- (6(¢))|/7 < e whenever 7 > ¢;(¢). We have

~(2mj ~ 2 .
S () -Reo)| (mePzo0? ¥ el
JEZ JEG-(8(e))
which in conjunction with (4.1) gives || P (s @+ f- 17 > 1 — ¢ for dlr > m(e).
Let 7(g) = max(t1(e), ta(e))-
Choose ¢, = 1/¢ (£ > 2) and put 8, := 6(s¢) and 7y := 7(e¢). We have proved

(fr ) = 0. (4.1)

that L L

|GTT5[)| < ) and “PGT((;Z)(I)-,J T Z>1- E for 7 > 74, (42)
and we may assume that 0 < r, < 73 < .... Let J; be an arbitrary subset of Z
for 0 <7 < 1, and define J, = G, (4,) for 7o <7 < 71541. Then, by (4.2),

J 1

- 1
— < 7 and ||Pjr¢7-f7-“2>1—z for 7, <1 < T4,
-

which shows that |J.|/7 — 0 and |P;, @, f;|| — 1 as7 — oco. Thus, {®.f,} is
asymptotically localized. This means that {f,} is asymptotically extended. O
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Things are different for A =y. In the following, P_,,; ,,-) denotes the canon-
ical projection of ¢2(Z) onto the subspace of all sequences whose support is con-
tained in theinterval (—pur, ur).

Theorem 4.2. Let {f;}+>0 ke an asymptotically good pseudomode for {C;(k)} at
v and assume Without loss d generality that || f,|| =1 for all 7. If k&(0) # -, then
there exists a ;> 0 such that

1P prpry®rfrll =0 as 7 — oo. (4.3)
Ifﬁ(()) =+, then there are u and v such that 0 < v <y and
”P(—u‘r.,—uT)U(uT,y‘r)q)‘rf‘r|| —0 as T —00. (44)

Proof. Suppose first that k(0) # y. Then k() - vl >8>0 foral [£| < 2mu with

some p > 0. Thus, @(27rj/7) — 7| > & > 0 whenever |j] < ur. Since
IC-(k — NP =)

;(&2>7
jez T

28" 30 U ) = 1P rim @ S,

|jl<pr

2

l(f‘rv‘Pj)'Q

we obtain (4.3) from (4.1). Now suppose @(0) =y. Then the entire k- ~ has no
other zerosthan 0 in some open neighborhood of 0, and hence we can find numbers
pand v such that 0 < v < g and [k(£) — | > § > 0 for 27v < |£| < 2mu. It follows
that |/k\7(27Tj/7') —| >4 >0 for vr <|j| < pr and hence

||CT<k - 7)f'r||2 2 62 Z |(f7'v (pj)llz = 62”P(7}17,—I/T)U(l/‘r,u,‘r)q)‘rf‘r||2'

vr<ljl<pr

It is again (4.1) that implies (4.4). O

Remark 43. Theorem 4.2 can be improved by taking into account the orders of
the zerosof k —~ at the origin and at infinity. We will not embark on this question
here. We rather wish to point out that Theorem 4.2 is best possible in general.

siné

Let k(z) = 0 for |z| > 1 and k(z) = 1/2 for |z| < 1. Then k(¢) = :

for fr € L?(0,7),

and,

2 7 . 2 27J 2
1C-(R) - 1I” = ZW sin” —= |(fr, ¢5)I"-
JEZ
We have k(0) = 1 # 0. Let {f,) by any asymptotically good pseudomode for
{C-(k)} at 0. Thus, | f-|| =1 for al 7 >0 and ||C-(k)f.| — 0 as T — co. Change
fr top, for 7 € N. Since

2
s T .9 27T
||CT(k)¢T|| - 47_‘_2]2 sin T - 07
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it follows that the family {h;},~o defined by h, = f. for 7 ¢ N and h, = ¢, for
7 € N is also an asymptotically good pseudornode for {C,(k)} at the origin. If
B :(0,00) — (0, co) isany superlinear function, that is, any function that increases
faster than every linear function, then

IP—a(my.a0@hel = 1P sy el =1
whenever = € N and 3(r) > 7. This shows that (4.3)is not in general true with
ur replaced by 5(7).
Now let k(z) = 0 for [z > 1, k(z) = —i/2 for -1 <x <0, and k(z) = i/2
for 0 < x < 1. Then k(&) = (1 - cosé)/¢. This time k(0) = 0. Since C, (k)p, = 0

for 7 € N, we can argue as above to see that (4.4) is not in general valid with pr
and v replaced by a superlinear and sublinear function, respectively. O

5. Wiener-Hopf integral operators

The Wiener-Hopf integral operator W (a) generated by afunctiona € L°(R) isthe
bounded linear operator on L?(0,co) that is defined by W(a)f = PF~'M(a)Ff,
where F is the Fourier transform,

(FN© = [ e, ger
M (a) stands for the operator o multiplication by a, and P is the orthogonal

projection of L?(R) onto L?(0,00). If aisd theform a =~ Fk with v € C and
k € L*(R), then W(a) can be written as

(W(a)f)(z) =~vf(z) + /OOo k(z —t)f(t)dt, z>0.

The Cauchy singular integral operator on the half-line,

1 < f@)
= — v.p. dt ,
(1)) = v JC T4 250
is W (o) with the piecewisecontinuousfunction ¢(¢) := —sign&. The subject of this
section is truncated Wiener-Hopf operators: for = > 0, the truncated Wiener-Hopf
operator W..(a) is the compression of W (a) to L(0, 7).

If a € L>(R) is piecewise continuous, we define a* (R) as the closed, contin-
uous, and naturally oriented curve that results from the (essential) range of a by
filling in the line segments [a(z — 0),a(z T 0)] for the jumps at x € R and the line
segment [a{+00), a(—o0)] if a has a jump at infinity. We let wind (a,A) denote the
winding number of a#(R) about A € C \ a#(R).

Let L; be the normalized Laguerre polynomial of degree j — 1,
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The system {e;}%2, given by e;(z) = V2 L;(2z)e™" is an orthonormal basis in
L2(0,co). Notice that

Jj—1
(Fej;)(¢ _1f(§+z> fii’ £eR.
For k € Z, we put
¢—i\*
ch(ﬁ):(m) , £ER.

Suppose a € L>=(R) is piecewise continuous, A ¢ a#(R), and wind (a,)\) =
—m < 0. Then a — A = by_,,, Where b is piecewise continuous, 0 ¢ b#(R), and
wind (b,A) = 0. It follows that W (b) is invertible, that W.(b) is invertible for all
sufficiently large 7, that
Jim, | = |[W='(b)| and W '(b)P, — W™'(b) strongly,
where P, isthe natural projection of L?(0,00) onto L2(0,7), and that thefunctions
u, =W~ (b)e; (j=1,...,m) form a basisin Ker W(a - X) (see[2], (3], [6]).

Theorem Slypket ) gé a¥(R) and wind (a,\) = —m < 0. Let further {f,},>0 ke
afamily o functions f, € L? (0,7) o norm 1. Then the point A is an asymptoti-

cally good pseudoeigenvalue o {W, (a)}-~o. Thefamily {f,) is an asymptotically
good pseudomode for {W,(a)},~o at X if and only if there exist complex numbers

ch), ..., andfunctions z. ¢ L2(0,7) such that

fT == C(lT)P U1 + -+ C(T)P-,—um + Zr,
I|msup max |c( )| <oo, lim |z =0,
- T—00

Proof. That X is an asymptotically good pseudoeigenvalue was established in [6]
(alsosee [2]). Therest of the proof is analogous to the proof of Theorem 3.1, except
for a modification of (3.5). Thus, suppose W,(a — A)f, — 0. Let Q, =1 — P,
Then

WT(a - /\‘)fr = PTW(X—m)PTVV(b)PTfT + PTW(XA’/’?L)QTW(b)PTfT'

Put A, = P.W(x_n)P,W(®B)P,, B; = P,W(x—m)Q-W(b)P;, h, = W(O)P: f-.
We denote by P, the orthogonal projection of L?(0,00) onto the linear hull of

el,...,em andweset Q,, =1 — P,,. We have P,W (x—m)Pr = W{(x_.»,)P; and
hence, (-, ) denoting the inner product in L2(0,00),
(ATfT7BTfT) = (P ‘/V(X m)P hT7P W(X I7l)QThT)

(W (X=m)Prhs, P-W(x-m)Q-h:)

(PrW(X—m)Prhe, W(x-m)Q-hr)
= (Wix- )P b, W(x-m)Qrh+)

(Prhe, W (X—m)W (X—m)Q@rhr).
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Since W*(x—m) = W(xm) and W(xm)W(x—m) = Qm, it followsthat

(ATfT7 BTfT) = (PTh’T7 QmQThT)
- (PTh’T7 QTh’T) - (PTh’T7PmQTh/T) = _(PThT;PmQThT)-
Thus,
I(Ar fr, Br fo)| S |Prhell [Pm@ell [ hr | < ClPm@Q-|l
with some constant C < oo independent of 7. As P, is compact and Q% = Q,

converges strongly to zero, we may conclude that ||P,,Q~-|| — 0. Consequently,
(A, f,, B, f) — 0ast — co. Finaly, because | A+ f- T B. f,| — 0 and

“ATfT + B-rf7—“2 = ||ATfT||2 + ||BTfT||2 +2R€ (ATfT7BTfT)7
we obtain that ||A-f-|| — 0. The rest is asin the proof of Theorem 3.1. d

We call a family {f-}->o of nonzero functions f, € L?(0,r) asymptotically
strongly locdlized in the beginning part if

lim 5 =1
oo f7]

whenever s, — oo as7 — oo and 0 < s, < 7 for al 7. Again notice that s,
is allowed to increase as dowly as desired (or required). For example, the choice
s; = logloglog (7 large enough) is admitted.

Theorem 52. If A ¢ a#(R) and wind (a,\) = —m < 0, then every asymptoti-
caly good pseudomode for {W.(a)} at A is asymptotically strongly localized in the
beginning part.

This can be proved by the same arguments as in the proof of Theorem 3.2.
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