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Abstract. We consider Toeplitz operators T
(λ)
a acting on the weighted

Bergman spaces A
2
λ(Π), λ ∈ [0,∞), over the upper half-plane Π, whose sym-

bols depend on y = Im z. Motivated by the Berezin quantization procedure
we study the dependence of the properties of such operators on the parameter
of the weight λ and, in particular, under the limit procedure λ → ∞.
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1. INTRODUCTION

This is the first part of a two-paper set devoted to the study of Toeplitz
operators acting on weighted Bergman spaces on the upper half-plane. Both of
them are motivated by the same ideas and are a continuation of our research
started in [8]. We mentioned in [8] the papers [3], [4], [5], [12], [13], where Toeplitz
operators with smooth (or continuous) symbols acting on the weighted Bergman
spaces, as well as C∗-algebras generated by such operators, naturally appear in
the context of problems in mathematical physics. In particular, recall that given

a smooth symbol a = a(z), the family of Toeplitz operators Ta = {T (h)
a }, with

h ∈ (0, 1), is considered under the Berezin quantization procedure ([3], [4]). For

a fixed h the Toeplitz operator T
(h)
a acts on the weighted Bergman space A2

h. In

the Berezin special quantization procedure ([3], [4]) each Toeplitz operator T
(h)
a is

represented by its Wick symbol ãh, and the correspondence principle says that for
smooth symbols one has

lim
h→0

ãh = a.
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Moreover, by [11] the above limit remains valid in the L1-sense for a wider class
of symbols.

As in a quantization procedure, weighted Bergman spaces appear naturally in
many questions of complex analysis and operator theory. In the last cases a weight
parameter is normally denoted by λ and runs through (−1,+∞). In the sequel we
will consider weighted Bergman spaces A2

λ parameterized by λ ∈ (−1,+∞) which
is connected with h ∈ (0, 1), used as the parameter in the quantization procedure,
by the rule λ+ 2 = 1

h .
At this stage some important problems emerge: study of the behavior of dif-

ferent properties (boundedness, compactness, spectral properties, etc.) of T
(λ)
a in

dependence on λ, and compare their limit behavior under λ→ ∞ with correspond-
ing properties of the initial symbol a.

It seems to be quite impossible to get a reasonably complete answer to the
above problem for general (smooth) symbols even for the simplest case of the
weighted Bergman spaces on the unit disk (hyperbolic plane). In the same time,
the recently discovered classes of commutative ∗-algebras of Toeplitz operators on
the unit disk suggest the classes of symbols for which the satisfactory complete
answer can be given. Recall in this connection (for details see [15], [16]) that
all known cases of commutative ∗-algebras of Toeplitz operators on the unit disk
are classified by pencils of (hyperbolic) geodesics of the following three possible
types: geodesics intersecting in a single point (elliptic pencil), parallel geodesics
(parabolic pencil), and disjoint geodesics, i.e., all geodesics orthogonal to a given
one (hyperbolic pencil). Symbols which are constant on the cycles, i.e, on the
orthogonal trajectories to the geodesics forming a pencil, generate in each case
a commutative ∗-algebra of Toeplitz operators. Moreover, these commutative
properties of the Toeplitz operators do not depend at all on smoothness properties
of symbols; the symbols can be merely measurable.

The model case for elliptic pencils, Toeplitz operators on the unit disk with
radial symbols, has been considered in [8]. In the present paper we consider the
model case for parabolic pencils, while the other paper, [9] from this two-paper set
is devoted to the study of the model case for hyperbolic pencils. Together, these
papers cover the material that remained uncovered after [8]. The results for other
(non model) cases can be easily obtained by means of Möbius transformations.

We study Toeplitz operators on the upper half-plane equipped with the hy-
perbolic metric, where the model case for parabolic pencils is realized as Toeplitz
operators with symbols depending only on y = Im z.

The key feature of symbols constant on cycles, which permits us to get much
more complete information that one obtained studying general symbols, is as fol-
lows. In each case of a commutative ∗-algebra generated by Toeplitz operators,
the Toeplitz operators admit a spectral type representation, i.e., they are uni-
tary equivalent to multiplication operators, by a certain sequence in the elliptic
case and by certain functions on R+ and R in the parabolic and hyperbolic cases,
respectively.

We mention a certain difference between the already studied elliptic case [8]
and the remaining cases. In particular, in the elliptic case Toeplitz operators have a
discrete spectrum and can be compact even for symbols that are unbounded near
the boundary, while in both parabolic and hyperbolic cases, Toeplitz operators
always have only a continuous spectrum and, being nonzero, can not be compact.
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As in the preceding paper, [8], the word “dynamics” in the title stands for
the emphasis of our main theme: what happens to properties of Toeplitz operators
acting on weighted Bergman spaces when the weight parameter varies.

In this paper, as a custom in operator theory, we consider weighted Bergman
spaces depending on a real parameter λ ∈ (−1,∞).

Denote by Π the upper half-plane in C, and introduce the weighted Hilbert
space L2(Π, dµλ) which consists of measurable functions f on Π for which the
norm

‖f‖L2(Π,dµλ) =
(∫

Π

|f(z)|2dµλ(z)
)1/2

is finite. Here dµλ(z) = µλ(z)dv(z) with

µλ(z) = (λ+ 1)(2Im z)λ, dv(z) =
1

π
dxdy, z = x+ iy.

Let further A2
λ(Π) denote the weighted Bergman space consisting on functions

that are analytic in the upper half-plane Π and belongin to L2(Π, dµλ).
It is well known (see, for example, [13]) that the orthogonal Bergman pro-

jection BΠ,λ of L2(Π, dµλ) onto the weighted Bergman space A2
λ(Π) has the form

(BΠ,λf)(z) = (λ+ 1)

∫

Π

f(ζ)

(
ζ − ζ

z − ζ

)λ+2
dv(ζ)

(2 Im ζ)2

= iλ+2

∫

Π

f(ζ)

(z − ζ)λ+2
dµλ(ζ).

Given a function (symbol) a = a(z), z ∈ Π, the Toeplitz operators T
(λ)
a

acting on A2
λ(Π) is defined as follows

T (λ)
a f = BΠ,λaf, f ∈ A2

λ(Π).

We start with the description of the Bargmann type transform, the unitary
operator which maps the weighted Bergman space A2

λ(Π) onto L2(R+). Besides
of its immediate necessity, it provides the unitary equivalence of Toeplitz opera-
tors whose symbols depend only on y with the multiplication operators acting on
L2(R+), this Bargmann type transform as well as the one established in [9] is of
great importance itself and both of them will be used in forthcoming papers in
another context.

The key result, which gives an easy access to the properties of Toeplitz
operators studied in the paper, is established in Section 2. Namely, we prove

that the Toeplitz operator T
(λ)
a with symbol a(y) is unitary equivalent to the

multiplication operator γa,λI acting on L2(R+), where

γa,λ(x) =
xλ+1

Γ(λ+ 1)

∞∫

0

a(y/2)yλe−xydy, x ∈ R+.

We mention in this context (see, for example, [3], [5]) the Wick (or covariant, or

Berezin) symbol ãλ(z, z), z ∈ Π, of the Toeplitz operator T
(λ)
a , which, together
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with the so-called star product, carries as well many essential properties of the
corresponding Toeplitz operator. Let H be a separable Hilbert space with the
scalar product 〈·, ·〉 and having a system of coherent states {kg}g∈G parameterized
by elements g of some set G carrying a measure (see for details [1], [2]). Recall
that the Wick symbol of a bounded linear operator A acting on H is defined as

ãA(g, g) =
〈Akg , kg〉
〈kg, kg〉

, g ∈ G.

In our particular case we have A = T
(λ)
a , H = A2

λ(Π), G = Π, and kg = kz(ζ) =

iλ+2(ζ − z)−(λ+2), where z, ζ ∈ Π. The star product defines the composition of
two Wick symbols ãA and ãB of the operators A and B, respectively, as the Wick
symbol of the composition AB, i.e., ãA ? ãB = ãAB.

In Section 3 we give the formulas for the Wick symbols of Toeplitz operators

T
(λ)
a , whose symbols depend only on y, as well as the formulas for the star product

in terms of our function γa,λ.
An interesting and important feature of Toeplitz operators on the (weighted)

Bergman spaces is that such operators can be bounded even for symbols that are
unbounded near the boundary symbols. In Section 4 we study in details boudedness
properties of Toeplitz operators with such unbounded symbols. We give several
separate sufficient and necessary boundedness conditions, as well as a number of
illustrating examples. It turns out that for unbounded symbols, the behavior of
certain means of a symbol, rather than the behavior of a symbol itself, plays a
crucial role in the boundedness properties. Given a symbol a, it is natural to
introduce the set B(a) of values λ ∈ [0,∞) for which the corresponding Toeplitz

operator T
(λ)
a is bounded on A2

λ(Π). We show that being nonempty the set B(a)
may have only one of the following three types: [0,∞), [0, ν), or [0, ν].

Section 5 is devoted to the spectral properties. The (continuous) spectrum of

each T
(λ)
a coincides with the closure of the image of the corresponding continuous

function γa,λ. For each fixed λ the spectrum seems to be quite unrestricted; the
definite tendency starts appearing only as λ tends to infinity. The correspondence
principle suggests that the limit set of those spectra has to be somehow connected
with the range of the initial symbol a. This is definitely true for continuous
symbols. Given a continuous symbol a, the limit set of spectra, which we will
denote by M∞(a), does coincide with the range of a. As in [8], the new effects
appear when we consider more complicated symbols. To understand the impact
of each type of a discontinuity of a symbol we consider two model cases, piecewise
continuous and oscillating symbols.

In the case of piecewise continuous symbols, the limit set M∞(a) coincides
with the range of a together with the line segments connecting the one-sided limit
points of our piecewise continuous symbol. Note that these additional line segments
may essentially enlarge the limit set M∞(a) when compared with the range of a
symbol.

In the case of oscillating symbols, the situation becomes more interesting
and unexpected. It turns out that in spite of the qualitative identity of symbols,
an oscillation type discontinuity, the results may differ drastically depending on a
speed of oscillation. We consider two symbols, with strong and, respectively, with
slow oscillation. Both of them have the same range, the unit circle, but in the case
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of strong oscillation, the limit set M∞(a) coincides with the unit disk, while in the
case of slow oscillation M∞(a) coincides with the unit circle.

For a measurable and, in general, unbounded symbol one always has

Rangea ⊂M∞(a) ⊂ conv(Rangea),

and the gap between these extreme sets can be substantial. We give a number of
examples illustrating possible interrelations between them.

2. REPRESENTATIONS OF THE WEIGHTED BERGMAN SPACE

We start with the description of the weighted Bergman space A2
λ(Π)), where

λ ∈ (−1,+∞), which is compatible with the cartesian coordinates in Π. Introduce
the unitary operator

U1 =
1√
π

(F ⊗ I) : L2(Π, dµλ) −→ L2(R, dx) ⊗ L2(R+, (λ + 1)(2y)λdy),

where the Fourier integral transform F : L2(R) → L2(R) is given by

(Ff)(u) =
1√
2π

∫

R

e−iux f(x) dx.

The image A2
1,λ(Π) = U1(A2

λ(Π)) consists of all functions ϕ = ϕ(x, y) satisfying
the equation

U1
∂

∂z
U−1

1 ϕ =
i

2

(
x+

∂

∂y

)
ϕ = 0,

whose general solution has obviously the form ϕ(x, y) = ψ(x)e−xy . But the func-
tion ϕ has to be in L2(R, dx)⊗L2(R+, (λ+ 1)(2y)λdy), thus A2

1,λ(Π) is the set of
all functions

(2.1) ϕ(x, y) = χ+(x)θλ(x)f(x)e−xy , f ∈ L2(R),

where χ+(x) is the characteristic function of R+,

(2.2) θλ(x) =
(
(λ+ 1)

∫

R+

e−2xv(2v)λdv
)−1/2

=
( 2xλ+1

(λ+ 1)Γ(λ+ 1)

)1/2

, x > 0,

and moreover, ‖ϕ‖A2
1,λ

(Π) = ‖f‖L2(R+). Introduce the unitary operator

U2 : L2(R, dx) ⊗ L2(R+, (λ+ 1)(2y)λdy) −→ L2(R, dx) ⊗ L2(R+, dy)

as follows

(U2ϕ)(x, y) =
1

θλ(|x|) e−y/2+|x|β(|x|,y)ϕ(x, β(|x|, y)),

where, for each fixed x > 0, the function β(x, y) is the inverse function to

(2.3) γ(x, t) = − ln
{
θ2λ(x)(λ + 1)

∞∫

t

(2η)λe−2xηdη
}
,
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i.e., β(x, γ(x, t)) = t, x > 0. We note an alternative form of γ(x, t) in terms of the
incomplete Γ-function. Start with

∞∫

t

(2η)λe−2xηdη =
1

2xλ+1

∞∫

2xt

uλe−udu =
1

2xλ+1
Γ(λ+ 1, 2xt).

Then

γ(x, t) = − ln
{( 2xλ+1

(λ+ 1)Γ(λ+ 1)

) λ+ 1

2xλ+1
Γ(λ+ 1, 2xt)

}
= ln

Γ(λ+ 1)

Γ(λ+ 1, 2xt)
.

The inverse operator

U−1
2 : L2(R, dx) ⊗ L2(R+, dy) −→ L2(R, dx) ⊗ L2(R+, (λ+ 1)(2y)λdy)

has the form (U−1
2 ϕ)(x, y) = θλ(|x|) eγ(|x|,y)/2−|x|yϕ(x, γ(|x|, y)). For each f ∈

L2(R) one has U2 : χ+(x)θλ(x)f(x)e−xy 7−→ χ+(x)f(x)e−y/2. Thus, the image
A2

2 = U2(A2
1,λ(Π)) is the set of all functions of the form

ψ(x, y) = χ+(x)f(x)e−y/2, f ∈ L2(R).

We summarize the above in the following theorem.

Theorem 2.1. The unitary operator U = U2U1 gives an isometric isomor-
phism of L2(Π, dµλ), where λ ∈ (−1,+∞), onto L2(R, dx)⊗L2(R+, dy) and under
which:

(i) the Bergman space A2
λ(Π) is mapped onto L2(R+)⊗L0, where L0 is the

one-dimensional subspace of L2(R+, dy) generated by l0(y) = e−y/2;
(ii) the Bergman projection Bλ

Π is unitary equivalent to

UBλ
ΠU

−1 = χ+I ⊗ P0,

where P0 is the one-dimensional projection on L0

(P0ψ)(y) = e−y/2

∞∫

0

ψ(v)e−v/2dv.

Following [14] we introduce the isometric imbedding

R0 : L2(R+) −→ L2(R) ⊗ L2(R+)

by the rule
(R0f)(x, y) = χ+(x) f(x) `0(y).

Here the function f is extended to an element of L2(R) by setting f(x) ≡ 0, for
x < 0. The image of R0 obviously coincides with the space A2

2. The adjoint
operator R∗

0 : L2(Π) → L2(R+) is given by (R∗
0ϕ)(x) = χ+(x)

∫
R+

ϕ(x, η) `0(η) dη,

and R∗
0R0 = I : L2(R+) −→ L2(R+), R0R

∗
0 = B2 : L2(Π) −→ A2

2 = L2(R+) ⊗
L0. Now the operator Rλ = R∗

0U maps the space L2(Π, dµλ) onto L2(R+), and
the restriction Rλ|A2

λ
(Π) : A2

λ(Π) −→ L2(R+) is an isometric isomorphism. The

adjoint operator R∗
λ = U∗R0 : L2(R+) −→ A2

λ(Π) ⊂ L2(Π, dµλ) is an isometric
isomorphism of L2(R+) onto the subspace A2

λ(Π) of the space L2(Π, dµλ).



Dynamics of properties of Toeplitz operators 7

Remark 2.2. We have

RλR
∗
λ = I : L2(R+) −→ L2(R+), R∗

λRλ = Bλ
Π : L2(Π, dµλ) −→ A2

λ(Π).

Theorem 2.3. The isometric isomorphism R∗
λ = U∗R0 : L2(R+) −→

A2
λ(Π) is given by

(2.4) (R∗
λf)(z) =

1√
Γ(λ+ 2)

∫

R+

f(ξ) ξ(λ+1)/2eizξ dξ.

Proof. Calculate

(R∗
λf)(z) = (U∗

1U
∗
2R0f)(z)

=
√
π(F−1 ⊗ I)(χ+(ξ) f(ξ) θλ(ξ) eγ(ξ,y)/2−ξy e−γ(ξ,y)/2)

=
1√
2

∫

R

χ+(ξ) f(ξ)

√
2 ξ(λ+1)/2

√
(λ+ 1)Γ(λ+ 1)

e−ξyeixξ dξ

=
1√

Γ(λ+ 2)

∫

R+

f(ξ) ξ(λ+1)/2ei(x+iy)ξ dξ.

Corollary 2.4. The inverse isomorphism Rλ : A2
λ(Π) −→ L2(R+) is

given by

(2.5)

(Rλϕ)(x) =
x(λ+1)/2

√
Γ(λ+ 2)

∫

Π

ϕ(w) e−i wx µλ(w) dv(w)

=
(λ+ 1)x(λ+1)/2

√
Γ(λ+ 2)

∫

Π

ϕ(ξ + iη) e−i (ξ−iη)x (2η)λ 1

π
dξdη.

Let us note that, given a bounded symbol a = a(z), the Toeplitz operator

T
(λ)
a is bounded on all spaces A2

λ(Π), where λ ∈ (−1,∞), and the corresponding
norms are uniformly bounded by sup

z
|a(z)|. That is, all spaces A2

λ(Π), where

λ ∈ (−1,∞), are natural and appropriate for Toeplitz operators with bounded
symbols. One of our aims is a systematic study of unbounded symbols. To avoid
unnecessary technicalities in what follows we will always assume that λ ∈ [0,∞).

The above representation of the Bergman space A2
λ(Π) is especially im-

portant in the study of the Toeplitz operators with symbols depending only on
y = Im z.

Given a function a = a(y) depending only on y = Im z, consider the Toeplitz
operator with the symbol a(y)

T (λ)
a : ϕ ∈ A2

λ(Π) 7−→ BΠ,λaϕ ∈ A2
λ(Π).

In what follows we will, in general, consider unbounded symbols. Denote by
L1(R+, 0) the class of functions a(y) such that

a(y)e−εy ∈ L1(R+), for any ε > 0.
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Theorem 2.5. Given a=a(y)∈L1(R+, 0), the Toeplitz operator T
(λ)
a acting

on A2
λ(Π) is unitary equivalent to the multiplication operator γa,λI = RλT

(λ)
a R∗

λ,
acting on L2(R+). The function γa,λ(x) is given by

(2.6)

γa,λ(x) =
xλ+1

Γ(λ+ 1)

∞∫

0

a(t/2)tλe−xtdt

=
1

Γ(λ+ 1)

∞∫

0

a(t/2x)tλe−tdt, x ∈ R+.

Proof. Calculate

RλT
(λ)
a R∗

λ = RλBΠ,λaBΠ,λR
∗
λ = Rλ(R∗

λRλ)a(R∗
λRλ)R∗

λ

= (RλR
∗
λ)RλaR

∗
λ(RλR

∗
λ) = RλaR

∗
λ

= R∗
0U2U1a(y)U

−1
1 U−1

2 R0 = R∗
0U2a(y)U

−1
2 R0 = R∗

0a(β(|x|, y))R0.

Now (R∗
0a(β(|x|, y)R0f)(x) =

∫
R+

a(β(|x|, η) f(x) e−η dη = γa,λ(x)f(x), where for

x ∈ R+

γa,λ(x) =

∫

R+

a(β(|x|, η) e−η dη =

∫

R+

a(t)e−γ(x,t)dγ(x, t)

=

∫

R+

a(t)θ2λ(x)(λ + 1)(2t)λe−2txdt =
xλ+1

Γ(λ+ 1)

∞∫

0

a(t/2)tλe−xtdt.

Here the functions γ(x, t) and θλ(x) are given by (2.3) and (2.2) respectively.

The above theorem suggests considering not only L∞-symbols, but unbounded
ones as well. It this case we obviously have:

Corollary 2.6. The Toeplitz operator T
(λ)
a with symbol a(y) is bounded

on A2
λ(Π) if and only if the corresponding function γa,λ(x) is bounded.

3. TOEPLITZ OPERATORS WITH SYMBOLS DEPENDING ON y = Im z

Reverting the statement of Theorem 2.5 we come to the following spectral-type
representation of a Toeplitz operator.

Theorem 3.1. Let a(y) ∈ L1(R+, 0). Then the Toeplitz operator T
(λ)
a act-

ing on A2
λ(Π) admits the representation

(3.1) (T (λ)
a ϕ)(z) =

1√
Γ(λ+ 2)

∫

R+

t(λ+1)/2 γa,λ(t) f(t) eiztdt,

where f(x) = (Rλϕ)(x).
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Proof. Follows directly from Theorems 2.5, 2.3, and Corollary 2.4.
At the same time it is instructive to give a direct proof of the theorem which

does not use the results of the previous section. Indeed, for a symbol a = a(y)
depending only on y consider the Toeplitz operator

(T (λ)
a ϕ)(z) = (λ+ 1)

∫

Π

a(η)ϕ(ζ)
( ζ − ζ

z − ζ

)λ+2 dv(ζ)

(2Im ζ)2
,

where ζ = ξ + iη. Represent the function ϕ(ζ) in the form of the Fourier integral
(see (2.1) and (2.2))

ϕ(ξ + iη) =
1√

Γ(λ+ 2)

∫

R+

t(λ+1)/2f(t) eit(ξ+iη)dt, η > 0,

where f ∈ L2(R+). Now

(T (λ)
a ϕ)(z) =

iλ+2(λ+ 1)

π
√

Γ(λ+ 2)

∫

R+

a(η)(2η)λdη

∫

R+

t(λ+1)/2f(t) e−tηdt

∫

R

eitξ dξ

(z + iη − ξ)λ+2
.

Using the following formula (see 3.382.6 of [7])

(3.2)

∫

R

(iβ − ξ)−(λ+2)eitξdξ = χ+(t)
2π

iλ+2

tλ+1 e−βt

Γ(λ+ 2)
,

where χ+(t) is the characteristic function of (0,∞), we have

(T (λ)
a ϕ)(z) =

2(λ+ 1)

Γ(λ+ 2)3/2

∫

R+

a(η)(2η)λdη

∫

R+

t(λ+1)/2+(λ+1)f(t) e−2tη+iztdt

=
2

Γ(λ+ 2)1/2

∫

R+

t(λ+1)/2f(t) eiztdt
tλ+1

Γ(λ+ 1)

∫

R+

a(η)(2η)λe−2tηdη

=
1√

Γ(λ+ 2)

∫

R+

t(λ+1)/2f(t) γa,λ(t) eiztdt,

where

γa,λ(t) =
tλ+1

Γ(λ+ 1)

∞∫

0

a(η/2) ηλ e−tη dη.

Theorem 3.2. Given a = a(y) ∈ L1(R+, 0), the Wick symbol ãλ(z, z) of

the Toeplitz operator T
(λ)
a depends only on y as well, and has the form

(3.3) ãλ(y) = ãλ(z, z) =
〈T (λ)

a kz, kz〉
〈kz , kz〉

=
(2y)λ+2

Γ(λ+ 2)

∫

R+

uλ+1 γa,λ(u) e−2yu du,

and the corresponding Wick function is given by the formula

(3.4) ãλ(z, w) =
〈T (λ)

a kw, kz〉
〈kw , kz〉

=
[−i(z − w)]λ+2

Γ(λ+ 2)

∫

R+

uλ+1 γa,λ(u) ei(z−w)u du.
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Proof. Consider kz(w) = i2+λ(w−z)−(λ+2) = i2+λ(u+iv−x+iy)−(λ+2) and

calculate

(U1kz)(u, v) =
i2+λ

π
√

2

∫

R

(ξ + iv − x+ iy)−(λ+2)e−iξudξ

=
i2+λ

π
√

2

∫

R

(ξ + i(y + v + ix))−(λ+2)e−iξudξ.

Using (3.2), we have

(U1kz)(u, v) = χ+(u)

√
2uλ+1

Γ(λ+ 2)
e−u(y+v)−iux.

Thus,

〈T (λ)
a kz, kz〉 = 〈akz , kz〉 = 〈U1akz, U1kz〉 = 〈aU1kz , U1kz〉 =

=
2

[Γ(λ + 2)]2

∞∫

0

∞∫

0

a(v)u2(λ+1) e−2u(y+v)(λ+ 1) (2v)λdudv

=
1

Γ(λ + 2)

∞∫

0

uλ+1 e−2yudu
2uλ+1

Γ(λ+ 1)

∞∫

0

a(v)(2v)λe−2uv dv

=
1

Γ(λ + 2)

∫

R+

uλ+1 γa,λ(u) e−2yu du.

Thus, we have (3.3). The equality (3.4) follows either from (3.3) by the analytic

continuation principle, or can be verified by direct calculations.

Remark 3.3. Formula (3.3) admits an interesting interpretation. Start with

a symbol a = a(y) and the Toeplitz operator T
(λ)
a acting on A2

λ(Π), calculate
corresponding function γa,λ(x), x > 0, and consider now the Toeplitz operator

T
(λ+1)
γa,λ with symbol γa,λ(y) acting on A2

λ+1(Π). Then the corresponding function

γγa,λ,λ+1 coincides with the Wick symbol of the initial Toeplitz operator T
(λ)
a , i.e.,

ãλ(y) = ãλ(z, z) = γγa,λ,λ+1(y).

Remark 3.4. Given a symbol a = a(y) ∈ L1(R+, 0), writing the Toeplitz

operator T
(λ)
a in terms of its Wick symbol (see, for example, [1], [2]) we get the
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formula (3.1). Indeed

(T (λ)
a ϕ)(z) =

∫

Π

ã(z, w)
ϕ(w) iλ+2

(z − w)λ+2
µλ(w) dv(w)

=

∫

Π

[−i(z − w)]λ+2

Γ(λ+ 2)

∫

R+

uλ+1 γa,λ(u) ei(z−w)u du

× ϕ(w) iλ+2

(z − w)λ+2
µλ(w) dv(w)

=
1√

Γ(λ+ 2)

∫

R+

u(λ+1)/2 γa,λ(u) eizu du

× u(λ+1)/2

√
Γ(λ+ 2)

∫

Π

ϕ(w) e−i wu µλ(w) dv(w)

=
1√

Γ(λ+ 2)

∫

R+

u(λ+1)/2 γa,λ(u) (Rλϕ)(u) eizu du.

Corollary 3.5. Let T
(λ)
a and T

(λ)
b be two Toeplitz operators with symbols

a(y) and b(y) respectively, a(y), b(y) ∈ L1(R+, 0), and let ãλ(y) and b̃λ(y) be their

Wick symbols. Then the Wick symbol c̃λ(y) of the composition T
(λ)
a T

(λ)
b is given

by

c̃λ(y) = (ãλ ? b̃λ)(y) =
(2y)λ+2

Γ(λ+ 2)

∫

R+

uλ+1 γa1,λ(u) γa2,λ(u) e−2yu du.

Proof. Besides of a direct verification based on the formula for the star prod-
uct of Wick symbols ([3], [4]), the result follows immediately from Theorems 2.5
and 3.2.

4. BOUNDEDNESS OF TOEPLITZ OPERATORS WITH SYMBOLS DEPENDING

ON y = Im z

Recall, see Corollary 2.6, that the function

(4.1) γa,λ(t) =
tλ+1

Γ(λ+ 1)

∞∫

0

a(η/2) ηλ e−tη dη =
1

Γ(λ+ 1)

∞∫

0

a(η/2t) ηλ e−η dη

is responsible for the boundedness of a Toeplitz operator with symbol a = a(y). If

the symbol a = a(y) ∈ L∞(R+), then the operator T
(λ)
a is obviously bounded on

A2
λ(Π), and ‖T (λ)

a ‖ 6 ess-sup|a(y)|. As it is easy to see, the major contribution
to the integral (4.1) for “very big t” , t → ∞, is determined by the values of a(y)
at a neighborhood of the point 0, and the major contribution for “very small t”,
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t → 0, is determined by values of a(y) at a neighborhood of ∞. In particular, if

a(y) has limits at the points 0 and ∞, then

lim
t→∞

γa,λ(t) = lim
y→0

a(y),

lim
t→0

γa,λ(t) = lim
y→∞

a(y).

As a matter of fact, 0 and ∞ are the only points of the unbounded symbols

a(y) ∈ L1(R+, 0) that we have to worry for. Moreover, it is the behavior of certain

means of the symbol rather than the behavior of the symbol itself, that plays the

crucial role in the study of the boundedness of Toeplitz operators.

Given λ ∈ [0,+∞) and a locally summable function a(y), we introduce the

following means

B
(1)
a,λ(ξ) =

ξ∫

0

a(t/2)tλdt,

B
(j)
a,λ(ξ) =

ξ∫

0

B
(j−1)
a,λ (t)dt, j = 2, 3, . . . .

Theorem 4.1. Let a(y) ∈ L1(R+, 0). If, for any λ0 ∈ [0,+∞) and any

j ∈ N, the function B
(j)
a,λ0

(ξ) has the following asymptotic behaviors in the neigh-
borhoods of the points ξ = 0 and ξ = ∞

(4.2) B
(j)
a,λ0

(ξ) = O(ξj+λ0 ), ξ → 0,

and

(4.3) B
(j)
a,λ0

(ξ) = O(ξj+λ0 ), ξ → ∞,

then for each λ ∈ [λ0,∞)

sup
x∈R+

|γa,λ(x)| <∞,

and the corresponding Toeplitz operator T
(λ)
a is bounded on A2

λ(Π) for each λ ∈
[λ0,∞).

Proof. Let λ > λ0. Assume first that j = 1. Then the conditions (4.2) and

(4.3) imply that, for all ξ ∈ R+, the following estimate holds

(4.4) |B(1)
a,λ0

(ξ)| 6 const ξ1+λ0 ,
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where “const” does not depend on ξ ∈ R+. Integrating by parts we have, for all
x ∈ R+,

|γa,λ(x)| =
xλ+1

Γ(λ+ 1)

∣∣∣
∞∫

0

tλ−λ0e−xtdB
(1)
a,λ0

(t)
∣∣∣

=
xλ+1

Γ(λ+ 1)

∣∣∣
∞∫

0

B
(1)
a,λ0

(t)[(λ − λ0)t
λ−λ0−1 − xtλ−λ0 ]e−xtdt

∣∣∣

6 const
xλ+1

Γ(λ + 1)

∞∫

0

((λ − λ0)t
λ + xtλ+1)e−xtdt

6 const [(λ− λ0) + (λ+ 1)] = const (2λ− λ0 + 1),

and the case j = 1 is done.
For j > 2 we use the inequalities

(4.5) |B(j)
a,λ0

(ξ)| 6 const ξj+λ0

(where ξ ∈ R+ and “const” does not depend on ξ) and integrate by parts j-times.

Remark 4.2. The condition (4.2) provides the boundedness of the func-
tion γa,λ(x) at a neighborhood of x = ∞, while the condition (4.3) provides the
boundedness of the functions γa,λ(x) at a neighborhood of x = 0.

The next statement sets a partial order on the family of sufficient conditions
for boundedness of Toeplitz operators given by Theorem 4.1.

Theorem 4.3. (i) Let the conditions (4.2) and (4.3) hold for j = j0 and
some λ0. Then these conditions hold for j = j0 + 1 and the same λ0.

(ii) Let the conditions (4.2) and (4.3) hold for j = j0 and some λ0. Then
these conditions hold for j = j0 and λ0 replaced by any λ1 > λ0.

Proof. Assume we have (4.2) and (4.3) for j = j0. Then, according to (4.5),
we have

|B(j0+1)
a,λ0

(ξ)| 6

ξ∫

0

|B(j0)
a,λ0

(t)|dt 6 const

ξ∫

0

tj0+λ0dt 6 const ξj0+1+λ0 .

Thus, the first statement is proved. Let us now have (4.2) and (4.3) for j = 1 and
λ = λ0. If λ1 > λ0 then

|B(1)
a,λ1

(ξ)| 6

∣∣∣
ξ∫

0

tλ1−λ0dB
(1)
a,λ0

(t)
∣∣∣

=
∣∣∣B(1)

a,λ0
(ξ)ξλ1−λ0 − (λ1 − λ0)

ξ∫

0

B
(1)
a,λ0

(t)tλ1−λ0−1dt
∣∣∣

6 const
(∣∣∣ξ1+λ0ξλ1−λ0 +

ξ∫

0

t1+λ0tλ1−λ0−1dt
∣∣∣
)

6 const ξ1+λ1 .
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Let now (4.2) and (4.3) hold for j = 2 and λ = λ0. Then, for each λ1 > λ0, we
have

|B(2)
a,λ1

(ξ)| =
∣∣∣

ξ∫

0

u∫

0

a(t/2)tλ1dtdu
∣∣∣ =

∣∣∣
ξ∫

0

u∫

0

tλ1−λ0dB
(1)
a,λ0

(t)du
∣∣∣

=
∣∣∣

ξ∫

0

B
(1)
a,λ0

(u)uλ1−λ0du− (λ1 − λ0)

ξ∫

0

u∫

0

B
(1)
a,λ0

(t)tλ1−λ0−1dtdu
∣∣∣

=
∣∣∣B(2)

a,λ0
(ξ)ξλ1−λ0 − (λ1 − λ0)

ξ∫

0

B
(2)
a,λ0

(u)uλ1−λ0−1du

− (λ1 − λ0)

ξ∫

0

B
(2)
a,λ0

(u)uλ1−λ0−1du

+ (λ1 − λ0)(λ1 − λ0 − 1)

ξ∫

0

u∫

0

B
(2)
a,λ0

(t)tλ1−λ0−2dtdu
∣∣∣

6 const
(
ξ2+λ1 +

2(λ1 − λ0)

λ1 + 2
ξ2+λ1 +

(λ1 − λ0)(λ1 − λ0 − 1)

(λ1 + 1)(λ1 + 2)
ξ2+λ1

)

6 const ξ2+λ1 .

The cases j0 > 2 for the second statement are considered analogously.

Example 4.4. Consider the unbounded symbol a(t/2) = t−β sin t−α, where
0 < β < 1, α > 0. Applying Theorem 4.1 for j = 1 and λ0 = 0 we have

(4.6) Ba,0(ξ) =

ξ∫

0

t−β sin t−αdt =
1

α

∞∫

ξ−α

y(β−1)/α−1 sin y dy.

Integrating by parts two times we get

B
(1)
a,0(ξ) =

ξα−β+1

α
cos ξ−α − (β − α− 1)

α2
ξ2α−β+1 sin ξ−α

− (β − α− 1)(β − 2α− 1)

α3

∞∫

ξ−α

y(β−1)/α−3 sin y dy.

So we have

(4.7) B
(1)
a,0(ξ) =

ξα−β+1

α
cos ξ−α +O(ξ2α−β+1), ξ → 0.

To get the asymptotic at the infinity we use again the representation (4.6):

B
(1)
a,0(ξ) =

1

α

1∫

ξ−α

y(β−α−1)/α sin y dy +
1

α

∞∫

1

y(β−α−1)/α sin y dy.
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Since ((β − α− 1)/α) < 0 the second integral converges. Integrating by parts the

first integral we get

(4.8) B
(1)
a,0(ξ) = c0 + c1ξ

1−β−α +O(ξ1−β−2α), c0, c1 ∈ C.

Thus, if

(4.9) α > β,

then the conditions (4.2) and (4.3) hold for j = 1, λ0 = 0, and the operator T
(λ)
a

is bounded for each λ > 0.

Now apply Theorem 4.1 for j = 2, λ0 = 0. Let α < β. Using the inequality

(4.7), for β := β − α − 1, and (4.8) we get B
(2)
a,0(ξ) = O(ξ2α−β+2), ξ → 0, and

B
(2)
a,0(ξ) = O(ξ) +O(ξ2−β+α), ξ → ∞. Thus, the operator T

(λ)
a is bounded if

(4.10) α >
β

2
.

Analogously, applying Theorem 4.1 for j = 3, 4, . . . and λ0 = 0, we have that, for

(4.11) α >
β

j
,

operator T
(λ)
a is bounded. Since there exist j large enough for which (4.11) holds

we have that, for arbitrary 0 < β < 1 and α > 0, the operator T
(λ)
a is bounded for

each λ > 0.

Remark 4.5. Example 4.4 shows that the conditions (4.2) and (4.3) for

j = j1, λ0 = 0, compared with those for j = j2, λ0 = 0, and j1 > j2, widen in

fact a class of symbols for which the boundedness of the corresponding Toeplitz

operators can be justified.

The sufficient conditions of Theorem 4.1 provide at once the simultaneous

boundedness of an operator T
(λ)
a for all λ ∈ [λ0,∞). We pass now to a more

delicate question concerning the boundedness of a Toeplitz operator T
(λ)
a on the

space A2
λ(Π) with respect to its dependence on λ. The following result plays a

central role here.

Theorem 4.6. Let a(y) belong to L1(R+, 0) and let the operator T
(λ0)
a be

bounded on A2
λ0

(Π) for a certain λ0 > 0. Then T
(λ)
a is bounded on A2

λ(Π) for each
λ ∈ [0, λ0].

Proof. Let the operator T
(λ)
a be bounded on A2

λ0
(Π), that is, sup

x>0
|γa,λ0

(x)|
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<∞. Write, for λ < λ0

γa,λ(x) =
xλ+1

Γ(λ+ 1)

∞∫

0

a(t/2)tλe−xtdt

=
xλ+1

Γ(λ+ 1)Γ(λ0 − λ)

∞∫

0

a(t/2)tλ0e−xtdt

∞∫

0

yλ0−λ−1e−ytdy

=
xλ+1

Γ(λ+ 1)Γ(λ0 − λ)

∞∫

0

yλ0−λ−1dy

∞∫

0

a(t/2)tλ0e−(x+y)tdt

=
Γ(1 + λ0)

Γ(λ+ 1)Γ(λ0 − λ)

∞∫

0

yλ0−λ−1(1 + y)−λ0−1γa,λ0
(x(1 + y))dy.

Thus, we have

|γa,λ(x)| 6 sup
x>0

|γa,λ0
(x)| Γ(1 + λ0)

Γ(λ + 1)Γ(λ0 − λ)

∞∫

0

yλ0−λ−1(1 + y)−λ0−1dy.

The next theorem extends the range of λ, given by Theorem 4.1, for simul-
taneous boundedness of Toeplitz operators on A2

λ(Π).

Theorem 4.7. Under the hypothesis of Theorem 4.1, the Toeplitz operator

T
(λ)
a is bounded on A2

λ(Π), for each λ ∈ [0,∞).

Proof. Follows directly from Theorems 4.1 and 4.6.

Theorem 4.6 allows us to obtain in particular the necessity of the hypothesis
of Theorem 4.1 in the case of nonnegative symbols or nonnegative means.

Theorem 4.8. (i) Assume that a(y) ∈ L1(R+, 0) and a(y) > 0 almost ev-

erywhere. Let the operator T
(λ′)
a be bounded on A2

λ′(Π) for some λ′ > 0. Then
the conditions (4.2) and (4.3) hold, for j = 1 and λ0 = 0, and, consequently, the

operator T
(λ)
a is bounded on A2

λ(Π), for each λ ∈ [0,∞).

(ii) Assume that B
(j)
a,µ(y) > 0 almost everywhere for some j = j0 > 1 and

µ > 0, and that the operator T
(λ′)
a is bounded on A2

λ′(Π) for some λ′ > 0. Then
the conditions (4.2) and (4.3) hold for j = j0 + 1 and λ0 = µ and consequently,

the operator T
(λ)
a is bounded on A2

λ(Π) for each λ ∈ [0,∞).

Proof. (i) If T
(λ′)
a is bounded on A2

λ′(Π), then according to Theorem 4.6 the

operator T
(0)
a is bounded on A2

0(Π). We have

γa,0(x) = x

∞∫

0

a(t/2)e−xtdt > x

x−1∫

0

a(t/2)e−xtdt >
x

e
B

(1)
a,0(x

−1).
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Thus, denoting ξ = x−1, we have

B
(1)
a,0(ξ) 6

(
e sup

x∈R+

|γa,0(x)|
)
ξ.

(ii) Assume first that j0 = 1 and µ > λ′. We have

γa,λ′(x) =
xλ′+1

Γ(λ′ + 1)

∞∫

0

a(t/2)tλ
′

e−xt dt.

Integrating by parts we get

γa,λ′(x) =
xλ′+1

Γ(λ′ + 1)

∞∫

0

B(1)
a,µ(t)[(µ− λ′) + xt]tλ

′−µ−1e−xtdt

>
xλ′+1

Γ(λ′ + 1)

( x−1∫

0

B(1)
a,µ(t)dt

)
[(µ− λ′) + 1]x−(λ′−µ−1)e−1

=
xµ+2(µ− λ′ + 1)

e Γ(λ′ + 1)
B(2)

a,µ(x−1).

Again, denoting ξ = x−1 we have

B(2)
a,µ(ξ) 6

e Γ(λ′ + 1)

µ− λ′ + 1
sup

x∈R+

|γa,λ′(x)| ξµ+2.

The above integration by parts is correct because, for arbitrary a(t) ∈ L1(R+, 0),

we have |B(1)
a,µ(ξ)| = o(ξµ), ξ → 0.

Let now j0 = 1 and µ < λ′. Then, according to Theorem 4.6 the operator

T
(µ)
a is bounded on A2

µ(Π). Repeating the above reasonings for the function γa,µ(x)
we complete the consideration for the case j0 = 1.

The cases j0 > 1 are considered analogously.

Remark 4.9. Simultaneous boundedness of the operators T
(λ)
a for all λ in

the case of arbitrary (depending on both variables) nonnegative symbol was shown
in [17]. We extend this result for a class of not necessarily nonnegative symbols
depending only on y.

For a nonnegative function a(t) we set

ma,0(x) = inf
(0,x)

a(t/2) and ma,∞(x) = inf
(x/2,x)

a(t/2).

Corollary 4.10. Given a nonnegative symbol a(y), if either

(4.12) lim
x→0

ma,0(x) = ∞
or

(4.13) lim
x→∞

ma,∞(x) = ∞,

then the Toeplitz operator T
(λ)
a is unbounded on each A2

λ(Π), λ ∈ [0,+∞).
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Proof. If the condition (4.12) holds then

B
(1)
a,0(ξ) =

ξ∫

0

a(t/2)dt > ξma,0(ξ)

and ξ−1B(1)(ξ) → ∞ as ξ → 0. Now let the condition (4.13) holds. Then

ξ−1B
(1)
a,0(ξ) > ξ−1

ξ∫

ξ/2

a(t/2)dt >
1

2
ma,∞(ξ) → ∞ as ξ → ∞.

Note that Corollary 4.10 shows that infinitely growing positive symbols can-
not generate bounded Toeplitz operators. To generate a bounded Toeplitz opera-
tor, its unbounded symbol must necessarily have (see Example 4.4) a sufficiently
sophisticated oscillating behavior at neighborhoods of the “critical” points 0 and
∞.

Given a symbol a(y) ∈ L1(R+, 0), denote by B(a) the set of values λ ∈ [0,∞)

for which the corresponding Toeplitz operator T
(λ)
a is bounded. Theorem 4.6

suggests that the set B(a), being nonempty, may have only one of the following
three types:

[0,∞), [0, ν), [0, ν].

We show that all of these possibilities can be realized. Indeed, the first case is
satisfied for bounded symbols. The following theorem treats the two remaining
cases.

Theorem 4.11. There exists a family of symbols aν,β(y), with ν ∈ (0, 1),

β > 0, such that for the corresponding Toeplitz operators T
(λ)
aν,β we have:

(i) B(aν,0) = [0, ν], β = 0;
(ii) B(aν,β) = [0, ν), β > 0.

Proof. To prove the above statement we show that the asymptotic behavior
of the corresponding function γaν,β ,λ(x), when x→ ∞, is as follows,

(4.14)
γaν,β,λ(x) = cλe(i/5π) ln2(1+x) lnλ−ν(1 + x) lnβ ln(1 + x)

+ o(lnλ−ν(1 + x) lnβ ln(1 + x)),

where cλ 6= 0, and

(4.15) lim
x→0

γaν,β ,λ(x) = 0.

To introduce the function aν,β(y) we consider

fν,β(z) = e((5π)/4)i exp
{ i

5π
ln2(z + i)

}[
ln(z + i) − i

5π

2

]−ν

lnβ
(
ln(z + i) − i

5π

2

)
,

where the branch of the function fν,β(z) is fixed by imposing the condition arg z ∈
[3π/2, 7π/2]. We set now

aν,β(t/2) =
1√
2π

∫

R

fν,β(x)e−ixtdx.
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The function fν,β(z) belongs to the Hardy space H2(Π), hence aν,β(t) ∈ L2(R+)
and the formula

fν,β(z) =

∫

R+

aν,β(t/2)eiztdt

holds. Thus, γaν,β ,0(x) = xfν,β(ix).

Recall that tαe−xt = Dαe−xt, where the Liouville fractional derivative is
given, as usually, as follows

Dαϕ(x) =
1

d1,1(α)

∫

R+

ϕ(x+ t) − ϕ(x)

t1+α
dt, d1,1(α) =

∫

R+

e−ξ − 1

ξ1+α
dξ, 0 < α < 1.

Therefore, denoting c(λ) = 1/(d1,1(λ)Γ(λ + 1)), we have

γaν,β,λ(x) = c(λ)xλ+1

∫

R+

fν,β(i(x+ t)) − fν,β(ix)

t1+λ
dt

= c(λ)
xλ+1

(x+ 1)λ

∫

R+

fν,β(i(x+ xt+ t)) − fν,β(ix)

t1+λ
dt

= c(λ, x)(x + 1)

∫

R+

dt

t1+λ
dt

t∫

0

d

dξ
fν,β(i(x + xξ + ξ))dξ

= c(λ, x)(x + 1)

∫

R+

d

dξ
fν,β(i(x + xξ + ξ))dξ

∞∫

ξ

dt

t1+λ
dt

= λ−1c(λ, x)(x + 1)

∫

R+

1

ξλ

d

dξ
fν,β(i(x + xξ + ξ))dξ,

where c(λ, x) = c(λ)xλ+1/(1 + x)λ+1. Note that

fν,β(iy) =
exp{ i

5π ln2(1 + y)}
1 + y

ln−ν(1 + y) lnβ ln(1 + y),

whence we have

(4.16)

γaν,β,λ(x) = −λ−1c(λ, x)

∫

R+

exp{ i
5π ln2(1 + x)(1 + ξ)}
ξλ(1 + ξ)2

( 2i

5π
ων,β(x, ξ)

− ων+1,β(x, ξ) − νων+2,β(x, ξ) − βων+2,β−1(x, ξ)
)
dξ,

where
ων,β(x, ξ) = ln1−ν(1 + x)(1 + ξ) lnβ ln(1 + x)(1 + ξ).

We split the above integral into four integrals according to the sum of four terms
in the brackets. These integrals are of the same type, and differ (up to a constant)
only by the parameters ν, β.Obviously, the principal term of the behavior of γa,λ(x)
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when x → ∞ is determined by the integral corresponding to the first summand,
i.e.,

I(x, λ, ν, β) =

∫

R+

exp{ i
5π ln2(1 + x)(1 + ξ)}
ξλ(1 + ξ)2

ων,β(x, ξ) dξ

=

∫

R+

exp{ i
5π ln2(1 + x)(1 + ξ)}
ξλ(1 + ξ)2

ων,β(x, ξ) (χ0(ξ) + χ∞(ξ))dξ

= I0(x, λ, ν, β) + I∞(x, λ, ν, β).

Here χ0(ξ) is a smooth function on R+, satisfying the conditions χ0(ξ) = 1 for
0 6 ξ 6 1 and χ0(ξ) = 0 for ξ > 2; and χ∞(ξ) = 1 − χ0(ξ).

Integrating by parts the second integral we have

I∞(x, λ, ν, β) = −5πi

2

∞∫

1

ων+1,β(x, ξ)

ξλ(1 + ξ)
χ∞(ξ) d exp

{ i

5π
ln2(1 + x)(1 + ξ)

}

=
5πi

2

∞∫

1

exp
{ i

5π
ln2(1 + x)(1 + ξ)

} ∂

∂ξ

(
ων+1,β(x, ξ)

ξλ(1 + ξ)
χ∞(ξ)

)
dξ.

For ξ > 1 and large enough x the following inequality holds∣∣∣∣
∂

∂ξ

(
ων+1,β(x, ξ)

ξλ(1 + ξ)
χ∞(ξ)

)∣∣∣∣ 6 const
ων+1,β(x, 0)

ξλ(1 + ξ)2
.

Thus we have

|I∞(x, λ, ν, β)| = O(ων+1,β(x, 0)) = O(ln−ν(1 + x) lnβ ln(1 + x)).

For I0(x, λ, ν, β) according to Lemma of Erd́lyi ([6]), we have

I0(x, λ, ν, β) = (1 +O(ln−1(1 + x)))Ĩ0(x, λ, ν, β),

where

Ĩ0(x, λ, ν, β) = ων,β(x, 0)ei/(5π) ln2(1+x)

∫

R+

ei(2 ln(1+x))/(5π) ξ

ξλ(1 + ξ)2
χ0(ξ)e

i/(5π) ln2(1+ξ)dξ

= ων,β(x, 0)ei/(5π) ln2(1+x)

2∫

0

ei(2 ln(1+x))/(5π) ξ

ξλ
F (ξ)dξ.

Applying Lemma of Erd́lyi ([6]) once again, we have

2∫

0

ei(2 ln(1+x))/(5π) ξ

ξλ
F (ξ)dξ =

5π

2i
Γ(1 − λ)eiπ(1−λ)/2ei/(5π) ln2(1+x) lnλ−1(1 + x)

+ o(lnλ−1(1 + x)), x→ ∞.

This and the above considerations prove (4.14). Finally, it is easy to see that
(4.16) implies (4.15).
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5. SPECTRA OF TOEPLITZ OPERATORS WITH SYMBOLS DEPENDING ON y = Im z.

5.1. Continuous symbols. Let E be a subset of R having +∞ as a limit point
(normally E = (0,+∞)), and suppose that, for each λ ∈ E, we are given a set
Mλ ⊂ C. Define the set M∞ as the set of all z ∈ C for which there exists a
sequence of complex numbers {zn}n∈N such that:

(i) for each n ∈ N there exists λn ∈ E such that zn ∈Mλn
;

(ii) lim
n→∞

λn = +∞;

(iii) z = lim
n→∞

zn.

We will write
M∞ = lim

λ→+∞
Mλ,

and call M∞ the (partial) limit set of a family {Mλ}λ∈E when λ→ +∞.
For the case when E is a discrete set with a unique limit point at infinity, the

above notion coincides with the partial limiting set introduced in [10], Section 3.1.1.
Following the arguments of Proposition 3.5 in [10], one can show that

M∞ =
⋂

λ

clos
( ⋃

µ>λ

Mµ

)
.

Note that
lim

λ→+∞
Mλ = lim

λ→+∞
Mλ = M∞.

The a priori spectral information for L∞-symbols (see, for example, [3], [4])
says that for each a ∈ L∞(Π) and each λ > 0

(5.1) spT (λ)
a ⊂ conv(ess-Range a).

Given a symbol a = a(y), the Toeplitz operator T
(λ)
a acting on the space

A2
λ(Π) is unitary equivalent to the multiplication operator γa,λI, where the func-

tion γa,λ(x), x ∈ R+, is given by (2.6). Thus, we have obviously

spT (λ)
a = Mλ(a),

where Mλ(a) = Range γa,λ.

Theorem 5.1. Let a = a(y) ∈ C(R+) = C[0,+∞]. Then

(5.2) lim
λ→+∞

spT (λ)
a = M∞(a) = Rangea.

Note that Rangea coincides with the spectrum sp aI of the operator of mul-
tiplication by a = a(y) acting, say, on all of L2(Π, dµλ), and hence another form
of (5.2) is

lim
λ→+∞

spT (λ)
a = spaI.

Proof. We use the Laplace method ([6]) to evaluate the integrals. Introduce

the large parameter L =
√
x2 + λ2 (recall λ → +∞) and represent γa,λ(x) in the

form

(5.3) γa,λ(x) =
xλ+1

Γ(λ+ 1)

∞∫

0

a(t/2)e−LS(t,ϕ)dt,
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where

S(t, ϕ) =
x

L
t− λ

L
ln t = (sinϕ) t+ (cosϕ) ln

1

t
, with ϕ ∈

[
0,
π

2

]
.

The function S(t, ϕ), as a function of t, has a minimum at the point

tϕ =
cosϕ

sinϕ
∈ (0,∞).

Write (5.3) in the form

(5.4)

γa,λ(x) − a(tϕ/2) =
xλ+1

Γ(λ+ 1)

[ ∫

R+∩U(tϕ)

(a(t/2) − a(tϕ/2))e−LS(t,ϕ)dt

+

∫

R+\U(tϕ)

(a(t/2) − a(tϕ/2))e−LS(t,ϕ)dt
]

≡ I1(L) + I2(L),

where U(tϕ) is a neighborhood of the point tϕ such that sup
t∈U(tϕ)

|a(t/2)−a(tϕ/2)| <

ε, with ε > 0 sufficiently small. We have,

I1(L) 6 ε

uniformly in ϕ. Next, I2(L) 6 ε uniformly on ϕ as well. Indeed, rewrite the
integral I2(L) in the following form

I2(L) =
xλ+1

Γ(λ+ 1)

tϕ−σ∫

0

(a(t/2) − a(tϕ/2))e−LS(t,ϕ)dt

+
xλ+1

Γ(λ+ 1)

∞∫

tϕ+σ

(a(t/2) − a(tϕ/2))e−LS(t,ϕ)dt

≡ I2,1(L) + I2,2(L)

where σ > 0 is small enough.
Use the asymptotic Euler formula for the Γ-function (see, formula 8.327 of

[7])

Γ(λ+ 1) = λΓ(λ) =
λe−λλλ−1/2

√
2π

(1 +O(λ−1/2)), λ→ ∞,

where we set λ = xtϕ. Then the integral I2,2(L) admits the following estimate

|I2,2(L)| 6 constx1/2

∞∫

tϕ+σ

|a(t/2) − a(tϕ/2)|e−xS̃(t,ϕ)dt

where
S̃(t, ϕ) = (t− tϕ) − tϕ(ln t− ln tϕ).
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It is evident that there exists ∆ (> 0) which does not depend on ϕ and such that,
for t > tϕ + δ, the following inequality holds

S̃(t, ϕ) > ∆(t− tϕ), t > tϕ.

Thus, we have

|I2,2(L)| 6 constx1/2

∫

tϕ+σ

|a(t/2) − a(tϕ/2)|e−x∆(t−tϕ)dt

6 constx1/2e−(x−1)∆σ

∫

tϕ+σ

|a(t/2) − a(tϕ/2)|e−∆(t−tϕ)dt.

According to the definition of the class L1(R+, 0) the last integral is finite and we
have, uniformly on ϕ,

lim
L→∞

I2,2(L) = 0.

Analogously one can get that, uniformly with respect to ϕ,

lim
L→∞

I2,1(L) = 0

and, consequently, lim
L→∞

I2(L) = 0.

Since ε can be arbitrarily small, from the above we get

(5.5) γa,λ(x) = a(tϕ/2) (1 + α(L)),

where α(L) → 0, when L→ ∞, uniformly with respect to ϕ.

5.2. Piecewise continuous symbols. Let b(t) = a(t/2) be a piecewise contin-
uous function on [0,+∞] having jumps on a finite set of points {tj}m

j=1 :

0 = t0 < t1 < t2 < · · · < tm < tm+1 = +∞,

and a(tj/2 ± 0), j = 1, . . . ,m, exist. Introduce the sets

Jj(a) := {z ∈ C : z = a(t/2), t ∈ (tj , tj+1)}
where j = 0, . . . ,m, and let Ij(a) be the straight line segment with the endpoints
a(tj/2 − 0) and a(tj/2 + 0), j = 1, 2, . . . ,m.

Introduce now

R̃(a) =
( m⋃

j=0

Jj(a)
)
∪
( m⋃

j=1

Ij(a)
)
.

Theorem 5.2. Let a(t/2) be a piecewise continuous function on [0,+∞].
Then

lim
λ→∞

spλ T
(λ)
a = M∞(a) = R̃(a).

Proof. The proof is quite analogous to that one of Theorem 5.2 in [9]; see
also [8].
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For L∞-symbols, apart from the a priori information (5.1), we have obviously

(5.6) lim
λ→∞

spλ T
(λ)
a = M∞(a) ⊂ conv(ess Range a).

At the same time the collocation ofM∞(a) inside conv(ess Rangea) may essentially
vary. We give a number of examples illustrating possible interrelations between
these sets.

Example 5.3. Let a(t) ∈ C[0,+∞]. Then, according to Theorem 5.1,

M∞(a) = Rangea (= ess Range a).

Example 5.4. Let

a(t/2) =

{
α1 t ∈ (0, 1);
α2 t ∈ [1,∞].

where α1, α2 ∈ C and α1 6= α2. Then, according to Theorem 5.2, M∞(a) coincides
with the straight line segment [α1, α2] joining the points α1 and α2, whence

M∞(a) = conv(ess Rangea) (= conv(Range a)).

Example 5.5. Let

a(t/2) =

{
α1 t ∈ [0, 1),
α2 t ∈ [1, 2),
α3 t ∈ [2,∞];

where α1, α2, α3 are different points from C. Then, by Theorem 5.2, we have

M∞(a) = [α1, α2] ∪ [α2, α3]

and in this case the set M∞(a) is a part of the boundary of the convex hull
ess Rangea = Rangea, that is

M∞(a) ⊂ ∂ conv(Range a).

Example 5.6. Let α1, α2, α3 be as above, and

a(t/2) =






α1 t ∈ [0, 1),
α2 t ∈ [1, 2),
α3 t ∈ [2, 3),
α1 t ∈ [3,∞].

By Theorem 5.2 the set M∞(a) coincides with triangle with the vertices α1, α2, α3,

M∞(a) = [α1, α2] ∪ [α2, α3] ∪ [α3, α4].

Thus, in this case,
M∞(a) = ∂ conv(Range a).

Example 5.7. Let {tj}j∈Z+
be an increasing sequence of positive numbers

with lim
j→∞

tj = ∞ and t0 = 0. Define the symbol a(t) as follows,

a(t/2) =

{
eiξj t ∈ [t2j , t2j+1),
−eiξj t ∈ [t2j+1, t2j+2),

where {ξj}j∈Z+
⊂ [0, π] with the closure {ξj}j∈Z+

= [0, π].
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As in Theorem 5.2 one can show that each diameter [eiξj ,−eiξi ] of the unit
disk D having eiξj and −eiξj as endpoints, belongs to M∞(a), which implies D ⊂
M∞(a). We have that Rangea = ∂D = T. Finally,

M∞(a) = D = conv(Range a).

5.3. Oscillating symbols. We consider here the case of a discontinuity of
the second kind, the oscillating symbols. To be more precise, the following two
model situations will be considered: a strong oscillation and a slow oscillation.
In spite of their qualitative identity, an oscillation type discontinuity, the results
differ drastically.

Theorem 5.8. (Strong oscillation) Let a(t) = e2it, then Rangea = T and
M∞(a) = D.

Proof. For a(t/2) = eit we have

(5.7)

γa,λ(x) =
xλ+1

Γ(λ+ 1)

∞∫

0

tλe−(x−i)tdt

=
xλ+1

(x− i)λ+1
· 1

Γ(λ+ 1)

∞∫

0

sλe−sds

=

(
x

x− i

)λ+1

= exp

[
λ+ 1

2
ln

(
1 − 1

x2 + 1

)]
· exp

[
(λ+ 1)i arctan(x−1)

]
.

Given a nonzero point z0 ∈ D, we represent it in the following form

z0 = exp(−α0 + iβ0),

where α0 > 0 and β0 ∈ [0, 2π).
Introduce the sequences

xk =
β0 + 2πk

2α0
and λk =

(β0 + 2πk)2

2α0
− 1 = 2α0x

2
k − 1, k ∈ N.

Then, for large values of k, we have

γa,λk
(xk) = exp

[
λk + 1

2
ln

(
1 − 1

x2
k + 1

)]
· exp

[
(λk + 1)i arctan(x−1

k )
]

= exp

[
−λk + 1

2x2
k

+ (λk + 1)O(x−4
k )

]

× exp

[
i
λk + 1

xk
+ (λk + 1)O(x−3

k )

]

= exp
[
−α0 +O(k−2) + i(β0 + 2πk) +O(k−1)

]
.

It is easy to see now that
lim

k→∞
γa,λk

(xk) = z0,

that is, z0 ∈M∞(a), and D ⊂M∞(a). The inverse inclusion follows from (5.6).
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We note that formula (5.7) permits us to understand the form of the image

of γa,λ for each fixed (and sufficiently large) value of λ. First of all, it is easy to

see that

lim
x→∞

γa,λ(x) = 1 and lim
x→0

γa,λ(x) = 0.

If 0 < m < x < M < +∞, then the absolute value of γa,λ(x) changes much more

slowly than its argument. That is, for each fixed λ, the image of γa,λ looks like

a spiral outgoing from the point z = 1 and tending to z = 0, as x tends to 0.

Moreover, when λ is growing, the branches of a spiral became closer and closer to

each other.

Theorem 5.9. (Slow oscillation) Let a(t) = (2t)i, then Rangea = T and

M∞(a) = T.

Proof. For a(t/2) = ti we have

γa,λ(x) =
xλ+1

Γ(λ+ 1)

∞∫

0

tλ+ie−xtdt

=
1

Γ(λ+ 1)

∞∫

0

sλ+ie−sds = xi Γ(λ + 1 + i)

Γ(λ+ 1)
.

That is for a fixed λ the image of γa,λ coincides with the circle centered at origin
and having radius equals to |(Γ(λ+ 1 + i))/(Γ(λ+ 1))|.

By formula 8.328.2 of [7], we have

lim
λ→∞

∣∣∣∣
Γ(λ+ 1 + i)

Γ(λ+ 1)

∣∣∣∣ = 1.

We note that Theorems 5.8 and 5.9 can be generalized for a wide class of
strong and slowly oscillating symbols. For example, if a1(t) = (2t + 1)i, then

M∞(a1) = T, as in Theorem 5.9. The function a1(t) is continuous at the point

t = 0, thus γa1,λ(∞) = a1(0) = 1, for all λ. For a fixed λ the image of γa1,λ is a

spiral outgoing from the point z = 1 and tending to the limit circle with the radius

equals to |(Γ(λ+ 1 + i))/(Γ(λ+ 1))| and centered at origin (the same circle as in

Theorem 5.9).

We illustrate the above on the figures presenting the images of functions γa,λ

for two oscillating symbols

a1(t) = (1 + 2t)i = ei ln(1+2t) and a2(t) = ei2t, t ∈ [0,∞),

and for the following values of λ: 0, 10, and 1000.
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The functions γa1,λ(x) and γa2,λ(x) for λ = 0.
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The functions γa1,λ(x) and γa2,λ(x) for λ = 10.
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The functions γa1,λ(x) and γa2,λ(x) for λ = 1000.

We note that both symbols are continuous at the point t = 0 and have an
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oscillation type discontinuity at infinity, both of them are of the same form

ak(t) = eiϕk(t), k = 1, 2,

where the corresponding functions ϕk(t) are continuous and growing on [0,+∞]
with ϕk(0) = 0 and ϕk(+∞) = +∞. The only difference between them is the
speed of their growth at infinity. And this difference leads to a drastic difference
between the spectral behavior of the corresponding Toeplitz operators.

5.4. Unbounded symbols.

Theorem 5.10. Let a(t) ∈ L1(R+, 0) ∩ C(R+). Then

Rangea ⊂M∞(a).

Proof. The proof is analogous to that of Theorem 5.1.

We show now that the property (5.6), previously established for bounded
symbols, still remains valid for our unbounded symbols.

Theorem 5.11. Let a(t) ∈ L1(R+, 0). Then

M∞(a) ⊂ conv(ess Range a).

Proof. For each M > 0 consider the function

aM (t) =

{
a(t) if |a(t)| 6 M,
0 if |a(t)| > M.

The function aM (t) is bounded, whence

Range γaM ,λ ⊂ conv(ess RangeaM ) ⊂ conv(ess Range a).

The equality
lim

M→∞
γaM ,λ(x) = γa,λ(x),

verified by the Lebesgue dominated convergence theorem, implies

Range γa,λ(x) ⊂ conv(Rangea).

Corollary 5.12. For functions a(t) ∈ L1(R+, 0) ∩ C(R+),

Rangea ⊂M∞(a) ⊂ conv(Rangea).

Example 5.13. For each j ∈ N define Ij = [j − 1, j − 1 + 1/j3] and let

{ξj}j∈N be a sequence such that {ξj}j∈N = [0, 2π]. Define the symbol as follows

a(t/2) =

{
jeiξj t ∈ Ij , j ∈ N,

0 otherwise.

Obviously, B
(1)
a (ξ) 6

∑
j∈N

1/j2, and the corresponding Toeplitz operator T
(λ)
a is

bounded for every λ > 0. Theorem 5.2 implies that the straight line segment
[0, jeiξj ] is contained in M∞(a). Thus

M∞(a) = C = conv(Range a).
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Example 5.14. For given α ∈ (0, 1) introduce a(t/2) = ti−α and calculate

γa,λ(x) =
xλ+1

Γ(λ+ 1)

∞∫

0

tλ+i−αe−xtdt =
xα−iΓ(λ+ 1 + α− i)

Γ(λ+ 1)
.

By the asymptotic of the Γ-function (see formula 8.327 in [7])

γa,λ(x) = xα−i(λ+ 1)i−α(1 + o(1)), λ→ ∞.

Given arbitrary η > 0, one can take x and λ such that (λ+ 1)/x = η. Thus,

γa,λ(x) = ηi−α(1 + o(1)), λ→ ∞,

and in this case,
Rangea = M∞(a).
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