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Main object.

Spectral properties of larger finite Toeplitz matrices

An = (aj−k)n−1
j,k=0 =


a0 a−1 a−2 . . . a−(n−1)

a1 a0 a−1 . . . a−(n−2)

a2 a1 a0 . . . a−(n−3)
...

...
... . . . ...

an−1 an−2 an−3 . . . a0

 .

Eigenvalues, singular values, condition numbers, invertibility and norms of
inverses, e.t.c.
n ∼ 1000 is a business of numerical linear algebra.

Statistical physics - n = 107 − 1012 - is a business of asymptotic theory.
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Limit matrix.

A = (aj−k)∞j,k=0 =


a0 a−1 a−2 . . .
a1 a0 a−1 . . .
a2 a1 a0 . . .
. . . . . . . . . . . .


Question
Does spectral properties of A is a limit (in some sense) of {An} or not?

Yes:
- properties invertibility and norms of inverses (for a larger class of
symbols);
- limiting set in a case of real-value symbols.

No:
- distribution of eigenvalue in general (complex-value) case.
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Content of the Course.

1. Infinite Toeplitz matrices.

2. Finite section method, stability.

3. Szegö’s limit theorems.

4. Limiting spectral set of sequences of Toeplitz matrices.

5. Asymptotics of eigenvalues.
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4. Albrecht Böttcher, Sergei M. Grudsky and Egor A. Maksimenko.
Pushing the envelope of the test functions in the Szegö and
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Infinite Toeplitz Matrices

Boundedness

Given a sequence {an}∞n=−∞ of complex numbers, an ∈ C, when does the
matrix

A =


a0 a−1 a−2 . . .
a1 a0 a−1 . . .
a2 a1 a0 . . .
. . . . . . . . . . . .

 (1)

induce a bounded operator on l2 := l2(Z+), where Z+ is the set of
nonnegative integers, Z+ := {0, 1, 2, . . .}? The answer is classical result by
Otto Toeplitz.
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Theorem (Toeplitz 1911)

The matrix (1) defines a bounded operator on l2 if and only if the
numbers {an} are the Fourier coefficients of some function a ∈ L∞(T),

an =
1

2π

∫ 2π

0
a(eiθ)e−inθdθ, n ∈ Z. (2)

In that case the norm of the operator given by (1) equals

‖a‖∞ := ess sup
t∈T

|a(t)|.
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Proof. We denote by L2 := L2(T) and L∞ := L∞(T) the usual Lebesgue
spaces on the complex unit circle T. The multiplication operator

M(a) : L2 → L2, f 7→ af

is bounded if and only if a is in L∞, in which case ‖M(a)‖ = ‖a‖∞. An
orthonormal basis of L2 is given by {en}∞n=−∞ where

en(t) =
1√
2π

tn, t ∈ T.
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The matrix representation of M(a) with respect to the basis {en} is easily
seen to be

L(a) :=



. . . . . . . . . . . . . . . . . . . . .

. . . a0 a−1 a−2 a−3 a−4 . . .

. . . a1 a0 a−1 a−2 a−3 . . .

. . . a2 a1 a0 a−1 a−2 . . .

. . . a3 a2 a1 a0 a−1 . . .

. . . a4 a3 a2 a1 a0 . . .

. . . . . . . . . . . . . . . . . . . . .


(3)

where the an’s are defined by (2). Thus, we arrive at the conclusion that
L(a) defines a bounded operator on l2(Z) if and only if a ∈ L∞ and that
‖L(a)‖ = ‖a‖∞ in this case.
The matrix (1) is the lower right quarter of L(a), that is we may think of
A as the compression of L(a) to the space l2 = l2(Z+). This implies that
if a ∈ L∞, then

‖A‖ ≤ ‖L(a)‖ = ‖a‖∞. (4)
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For a natural number n, let Sn be the projection on l2(Z) given by

Sn : (xk)∞k=−∞ 7→ (. . . , 0, 0, x−n, . . . , x−1, x0, x1, x2, . . .).

The matrix representation of the operator SnL(a)Sn|Im Sn results from (3)
by deleting all rows and columns indexed by a number in
{−(n + 1),−(n + 2), . . .}. Hence, SnL(a)Sn|Im Sn has the matrix (1) as
its matrix representation. This shows that

‖A‖ = ‖SnL(a)Sn‖. (5)

Because Sn converges strongly (=pointwise) to the indentity operator on
l2(Z), it follows that SnL(a)Sn → L(a) strongly, whence

‖L(a)‖ ≤ lim inf
n→∞

‖SnL(a)Sn‖. (6)
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From (5) and (6) we see that L(a) and thus M(a) must be bounded
whenever A is bounded and that

‖L(a)‖ ≤ ‖A‖. (7)

Consequently, A is bounded if and only if a ∈ L∞, in which case (4) and
(7) give the equality ‖A‖ = ‖a‖∞.
Clearly, if there is a function a ∈ L∞ satisfying (2), then this function (or,
to be more precise, the equivalence class of L∞ containing it) is unique.
We therefore denote both the matrix (1) and the operator it induces on l2

by T (a). The function a is in this context referred to as the symbol
of the Toeplitz matrix/operator T (a).
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Compactness and Selfadjointness

In this section we cite two very simple but instructive results. They reveal
that Toeplitz operators with properly complex-valued symbol cannot be
tackled by the tools available for compact and selfadjoint operators.

Proposition (Gohberg 1952)

The only compact Toeplitz operator is the zero operator.

Proof. Let a ∈ L∞ and suppose T (a) is compact. Let Qn be the projection

Qn : l2 → l2, (x0, x1, x2, . . .) 7→ (0, . . . , 0, xn, xn+1, . . .). (8)

As Qn → 0 strongly and T (a) is compact, it follows that ‖QnT (a)Qn‖
converges strongly to 0. But the compression QnT (a)Qn|Im Qn has the
same matrix as T (a) whence ‖T (a)‖ = ‖QnT (a)Qn‖. Consequently,
T (a) = 0.
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Because T (a)− λI = T (a− λ) for every λ ∈ C, we learn from Proposition
2 that T (a) is never of the form λI+ a compact operator unless
T (a) = λI.

Proposition

The Toeplitz operator T (a) is selfadjoint if and only if a is real-valued.

Proof. This is obvious: T (a) is selfadjoint if and only if an = a−n for all n,
which happens if and only if a(t) = a(t) for all t ∈ T.
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C∗-Algebras

A Banach algebra is a Banach space A with an associative and distributive
multiplication such that ‖ab‖ ≤ ‖a‖ ‖b‖ for all a, b,∈ A. If a Banach
algebra A has a unit element, which is usually denoted by e, 1, or I, it is
referred to as a unital Banach algebra. A conjugate-linear map a 7→ a∗ of
a Banach algebra into itself is called an involution if a∗∗ = a and
(ab)∗ = b∗a∗ for all a, b ∈ A. Finally, a C∗-algebra is a Banach algebra
with an involution such that ‖a∗a‖ = ‖a‖2 for all a ∈ A. In more detail,
we can define a C∗-algebra as follows. A C∗-algebra is a set A with four
algebraic operations and a norm. The four algebraic operations are
multiplication by scalars in C, addition, multiplication, and involution. The
following axioms must be satisfied for the operations:
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(1) the axioms of a linear space for scalar multiplication and addition;
(2) a(bc) = (ab)c for all a, b, c ∈ A;
(3) a(b + c) = ab + ac, (a + b)c = ac + bc for all a, b, c ∈ A;
(4) (λa)∗ = λa∗, (a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗ for all λ ∈ C and

a, b ∈ A.

The norm is subject to the following axioms:
(5) the axioms of a normed space;
(6) A is complete (that is, a Banach space);
(7) ‖ab‖ ≤ ‖a‖ ‖b‖ for all a, b ∈ A;
(8) ‖a∗a‖ = ‖a‖2 for all a ∈ A.
A unital C∗-algebra is a C∗-algebra A which has an element e such that
ae = ea = a for all a ∈ A. A C∗-algebra A is said to be commutative if
ab = ba for all a, b ∈ A.
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If H a Hilbert space, then B(H), the set of all bounded linear operators on
H, and K(H), the collection of all compact linear operators on H, are
C∗-algebras with the usual algebraic operations, with the operator norm,

‖A‖ = sup
x 6=0

‖Ax‖
‖x‖ ,

and with passage to the adjoint operator as involution. The set L∞ is a
C∗-algebra under pointwise algebraic operations, the ‖ · ‖∞ norm, and the
involution a 7→ a (passage to the complex conjugate). The C∗-algebra L∞
is commutative, the C∗-algebras B(H) and K(H) are not commutative for
dim H ≥ 2. The C∗-algebra K(H) is unital if and only if dim H <∞, in
which case K(H) = B(H).
An element a of a unital C∗-algebra A is said to be invertible if there is a
b ∈ A such that ab = ba = e. It it exists, this element b is unique; it is
denoted by a−1 and called the inverse of A. The spectrum of an element
A of a unital C∗-algebra A is the compact and nonempty set

spA a := {λ ∈ C : a − λe is not invertible in A}.
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A subset A of a C∗-algebra B is called a C∗-subalgebra of B if A itself is a
C∗-algebra with the norm and the operations of B. The following theorem
says that C∗-algebras are “inverse closed”.

Theorem

If B is a unital C∗-algebra with the unit element e and if A is a
C∗-subalgebra of B which contains e, then spA a = spB a for every a ∈ A.

By virtue of this theorem, we will abbreviate spA a to sp a.

A C∗-subalgebra J of a C∗-algebra A is called a closed ideal of A if
aj ∈ J and ja ∈ J for all a ∈ A and all j ∈ J .
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Theorem

If A is a C∗-algebra and J is a closed ideal of A, then the quotient
algebra A/J is a C∗-algebra with the usual quotient operations,

λ(a + J ) := λa + J , (a + J ) + (b + J ) := (a + b) + J ,

(a + J )(b + J ) := ab + J , (a + J )∗ := a∗ + J ,

and the usual quotient norm,

‖a + J ‖ := inf
j∈J
‖a + j‖.

A ∗-homomorphism is a linear map ϕ : A → B of a C∗-algebra A to
C∗-algebra B which satisfies ϕ(a)∗ = ϕ(a∗) and ϕ(ab) = ϕ(a)ϕ(b) for all
a, b ∈ A. In case A and B are unital, we also require that
∗-homomorphisms map the unit element of A to the unit element of B.
Bijective ∗-homomorphisms are referred to as ∗-isomorphisms.
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Theorem

Let A and B be unital C∗-algebras and suppose that ϕ : A → B is a
∗-homomorphism. Then the following hold.
(a) The map ϕ is contractive: ‖ϕ(a)‖ ≤ ‖a‖ for all a ∈ A.
(b) The image ϕ(A) is a C∗-subalgebra of B.
(c) If ϕ is injective, then ϕ preserves spectra and norms:

spϕ(a) = sp a and ‖ϕ(a)‖ = ‖a‖ for all a ∈ A.
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Fredholm Operators

Let H be a Hilbert space. An operator A ∈ B(H) is said to be Fredholm if
it is invertible modulo compact operators, that is, if the coset A +K(H) is
invertible in the quotient algebra B(H)/K(H). It is well known that an
operator A ∈ B(H) is Fredholm if and only if it is normally solvable (which
means that its range Im A is a closed subspace of H) and both the kernel

Ker A := {x ∈ H : Ax = 0}

and the cokernel
Coker A := l2/H

have finite dimensions. Thus, for a Fredholm operator A, the index

Ind A = dim Ker A− dim Coker A

is a well defined integer.
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Example

For n ∈ Z, let χn be the function given by χn(t) = tn (t ∈ T). It is readily
seen that T (χn) acts by the rule

T (χn) : (xj)
∞
j=0 7→ (0, . . . , 0︸ ︷︷ ︸

n

, x0, x1, . . .) if n ≥ 0,

T (χn) : (xj)
∞
j=0 7→ (x|n|, x|n|+1, . . .) if n < 0.

Consequently,

dim Ker T (χn) =

{
0 if n ≥ 0,
|n| if n < 0, dim Coker T (χn) =

{
n if n ≥ 0,
0 if n < 0,

whence Ind T (χn) = −n for all n ∈ Z.
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The following theorem summarizes some well known properties of the
index.

Theorem

Let A,B ∈ B(H) be Fredholm operators.
(a) If K ∈ K(H), then A + K is Fredholm and Ind (A + K ) = Ind A.
(b) There is an ε = ε(A) > 0 such that A + C is Fredholm and

Ind (A + C) = Ind A whenever C ∈ B(H) and ‖C − A‖ < ε.
(c) The product AB is Fredholm and Ind (AB) = Ind A + Ind B.
(d) The adjoint operator A∗ is Fredholm and Ind A∗ = −Ind A.

The spectrum of an operator A ∈ B(H) is its spectrum sp A as an element
of the C∗-algebra B(H):

sp A := {λ ∈ C : A− λI is not invertible}.
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By last Theorem, the quotient algebra B(H)/K(H) is also a C∗-algebra.
For A in B(H), the essential spectrum spessA is defined as the spectrum of
A +K(H) in B(H)/K(H),

spessA := sp (A +K(H)) = {λ ∈ C : A− λI is not Fredholm},

and the essential norm ‖A‖ess is defined as the norm of A +K(H) in
B(H)/K(H),

‖A‖ess = ‖A +K(H)‖ = inf
K∈K(H)

‖A + K‖.

Obviously,
spessA ⊂ sp A, ‖A‖ess ≤ ‖A‖.
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Continuous Symbols

We will mainly be concerned with Toeplitz operators with continuous
symbols. Let C = C(T) be the set of all (complex-valued) continuous
functions on T. Clearly, C is a C∗-subalgebra of L∞.
We give T the counter-clockwise orientation. For a function a ∈ C , the
image a(T) is a closed continuous and naturally oriented curve in the
complex plane. If a point λ ∈ C is not located on a(T), we denote by
wind(a, λ) the winding number of the curve a(T) with respect to λ.

Theorem (Gohberg 1952)

Let a ∈ C. The operator T (a) is Fredholm if and only if 0 /∈ a(T). In that
case

Ind T (a) = −wind(a, 0).
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The proof of this theorem is based on two auxiliary results.
For a ∈ L∞, we define the function ã ∈ L∞ by ã(t) := a(1/t) (t ∈ T). In
terms of Fourier series:

a(t) =
∞∑

n=−∞
antn =⇒ ã(t) =

∞∑
n=−∞

a−ntn.

Clearly,

T (a) =


a0 a−1 a−2 . . .
a1 a0 a−1 . . .
a2 a1 a0 . . .
. . . . . . . . . . . .

 , T (ã) =


a0 a1 a2 . . .

a−1 a0 a1 . . .
a−2 a−1 a0 . . .
. . . . . . . . . . . .

 .
Thus, T (ã) is the transpose of T (a). The Hankel operator H(a) generated
by a is given by the matrix

H(a) = (aj+k+1)∞j,k=0 =


a1 a2 a3 . . .
a2 a3 . . .
a3 . . .
. . .

 .
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Obviously, ã generates the Hankel operator

H(ã) = (a−j−k−1)∞j,k=0 =


a−1 a−2 a−3 . . .
a−2 a−3 . . .
a−3 . . .
. . .

 .
Because H(a) may be identified with the matrix in the lower left quarter of
the matrix (3), we see that if a ∈ L∞, then H(a) induces a bounded
operator on l2 and

‖H(a)‖ ≤ ‖a‖∞. (9)
Since ‖a‖∞ = ‖ã‖∞, we also have

‖H(ã)‖ ≤ ‖a‖∞. (10)

Proposition

If a, b ∈ L∞, then

T (a)T (b) = T (ab)− H(a)H(b̃).
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We omit the proof, because once this formula has been guessed, it can be
easily verified by comparing the corresponding entries of each side.

Proposition

If c ∈ C, then H(c) and H(c̃) are compact operators on l2.

Proof. Let {fn} be a sequence of trigonometric polynomials such that

‖c − fn‖∞ → 0

(for example, let fn be the nth Fejér-Cèsaro mean of c). From (9) and
(10) we infer that

‖H(c)− H(fn)‖ ≤ ‖c − fn‖∞ = o(1),

‖H(c̃)− H(f̃n)‖ ≤ ‖c − fn‖∞ = o(1),

and as H(fn) and H(f̃n) are finite-rank operators, it follows that H(c) and
H(c̃) are compact.
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Proof of Gohberg Theorem. Consider the map

ϕ : C → B(l2)/K(l2), a 7→ T (a) +K(l2).

This map is obviously linear, we have

ϕ(a)∗ = (T (a) +K(l2))∗ = T (a) +K(l2) = ϕ(a),

above Propositions imply that

ϕ(a)ϕ(b) = (T (a) +K(l2))(T (b) +K(l2))

= T (ab) +K(l2) = ϕ(ab). (11)

Thus, ϕ is a ∗-homomorphism. We know that ϕ is injective.
Consequently, ϕ is a ∗-isomorphism of C onto the C∗-subalgebra ϕ(C) of
B(l2)/K(l2). So we have that T (a) is Fredholm if and only if a is
invertible in C , that is, if and only if 0 /∈ a(T).
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The index formula follows from a simple homotopy argument. Let Φ(l2)
be the set of Fredholm operators on l2 and let GC be the set of all a ∈ C
for which 0 /∈ a(T). If a ∈ GC and wind(a, 0) = n, then there is a
continuous function

[0, 1]→ GC , µ 7→ aµ
such that a0 = a and a1 = χn (recall Example 7). The function

[0, 1]→ Φ(l2), µ 7→ T (aµ)

is also continuous, and Theorem about index stability shows that the map

[0, 1]→ Z, µ 7→ Ind T (aµ)

is continuous and locally constant. Thus, the last map is constant. This
implies that

Ind T (a) = Ind T (a0) = Ind T (a1) = Ind T (χn).

Example 7 finally tells us that Ind T (χn) = −n.
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Theorem (Gohberg 1952)

Let a ∈ C. The operator T (a) is invertible if and only if it is Fredholm of
index zero.

Proof. The “only if” part is trivial. To prove the “if” portion, suppose
T (a) is Fredholm of index zero, and, contrary to what we want, let us
assume that T (a) is not invertible. Then

dim Ker T (a) = dim Coker T (a) > 0,

and since

dim Coker T (a) = dim Ker T ∗(a) = dim Ker T (a),

there are nonzero x+, y+ ∈ l2 such that

T (a)x+ = 0, T (a)y+ = 0.
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Extend x+ and y+ by zero to all of Z and let L(a) be the operator (3).
Then

L(a)x+ = x− where x− ∈ l2(Z) and (x−)n = 0 for n ≥ 0,

L(a)y+ = y− where y− ∈ l2(Z) and (y−)n = 0 for n ≥ 0.

The convolution u ∗ v of two sequences u, v ∈ l2(Z) is the sequence
{(u ∗ v)n}∞n=−∞ given by

(u ∗ v)n =
∞∑

k=−∞
ukvn−k .

Note that u ∗ v is a well defined sequence in l∞(Z), because

|(u ∗ v)n| ≤ ‖u‖2‖v‖2 <∞,

where ‖ · ‖2 denotes the norm in l2(Z). Let b ∈ l2(Z) be the sequence of
the Fourier coefficients of a ∈ C ⊂ L2. Given a sequence f = (fn)∞n=−∞,
we define the sequence f # by (f #)n := f−n. It easily seen that
(u ∗ v)# = u# ∗ v# for u, v ∈ l2(Z).
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We have
L(a)x+ = b ∗ x+ = x−,

L(a)y+ = b# ∗ y+ = y−.

Hence,

y#
− ∗ x+ = (b# ∗ y+)# ∗ x+ = (b ∗ y#

+ ) ∗ x+ = (y#
+ ∗ b) ∗ x+. (12)

We claim that
(y#

+ ∗ b) ∗ x+ = y#
+ ∗ (b ∗ x+). (13)

This is easily verified if y+ and x+ have finite supports. Because

|((y#
+ ∗ b) ∗ x+)n| ≤ ‖y#

+ ∗ b‖2‖x+‖2 ≤ ‖y+‖2‖a‖∞‖x+‖2,

|(y#
+ ∗ (b ∗ x+))n| ≤ ‖y#

+ ‖2‖b ∗ x+‖2 ≤ ‖y+‖2‖a‖∞‖x+‖2,

it follows that (13) is true for arbitrary y+, x+ ∈ l2(Z). From (12) and
(13) we get

y#
− ∗ x+ = y#

+ ∗ (b ∗ x+) = y#
+ ∗ x−. (14)
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Since (y#
− ∗ x+)n = 0 for n ≤ 0 and (y#

+ ∗ x−)n = 0 for n ≥ 0, we see that
(14) is the zero sequence. In particular, (y#

+ ∗ x−)n = 0 for all n ≥ 0,
which means that

(y+)0(x−)−1 = 0,
(y+)0(x−)−2 + (y+)1(x−)−1 = 0,
(y+)0(x−)−3 + (y+)1(x−)−2 + (y+)2(x−)−1 = 0,
. . . . . . . . .

As y+ 6= 0, it results that

(x−)−1 = (x−)−2 = (x−)−3 = . . . = 0.

Hence x− = 0. This implies that L(a)x+ = 0. The Fredholmness of T (a)
in conjunction with Theorem 9 shows that a has no zeros on T.
Consequently, a−1 ∈ L∞ and as L(a−1) and L(a) are unitarily equivalent
to M(a−1) and M(a), respectively, we obtain that L(a−1) is the inverse of
L(a). It follows that x+ = 0, which is a contradiction.
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In summary, we have proved the following. If a ∈ C , then

‖T (a)‖ = ‖T (a)‖ess = ‖a‖∞, (15)
spessT (a) = a(T), (16)
sp T (a) = a(T) ∪ {λ ∈ C \ a(T) : wind(a, λ) 6= 0}. (17)

Moreover, if a ∈ C and 0 /∈ a(T), the Propositions 10 and 11 give

T (a−1)T (a) = I − H(a−1)H(ã) ∈ I +K(l2),

T (a)T (a−1) = I − H(a)H(ã−1) ∈ I +K(l2).

Thus, T (a−1) is an inverse of T (a) modulo K(l2). In particular,
‖T−1(a)‖ess = ‖T (a−1)‖ess and, hence,

‖T−1(a)‖ ≥ ‖T−1(a)‖ess = ‖T (a−1)‖ = ‖a−1‖∞. (18)
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C∗-Algebras in Action

Finite Section Method

Let {An}∞n=1 be a sequence of n × n matrices An. This sequence is said to
be stable if there is an n0 such that the matrices An are invertible for all
n ≥ n0 and

sup
n≥n0
‖A−1

n ‖ <∞.

Using the convention to put ‖A−1‖ =∞ if A is not invertible, we can say
that {An}∞n=1 is a stable sequence if and only if

lim sup
n→∞

‖A−1
n ‖ <∞.

Stability plays a central pole in asymptotic linear algebra and numerical
analysis. At the present moment, we confine ourselves to the part stability
plays in connection with the finite section method.
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Let A ∈ B(l2) be a given operator and let {An}∞n=1 be a sequence of n× n
matrices. In order to solve the equation

Ax = y (19)

one can have recourse to the finite systems

Anx (n) = Pny , x (n) ∈ Im Pn, (20)

where here and throughout what follows Pn is the projection

Pn : l2 → l2, (x0, x1, x2, . . .) 7→ (x0, x1, . . . , xn−1, 0, 0, . . .). (21)

The image Im Pn of Pn is a subspace of l2, but we freely identify Im Pn
with Cn. This allows us to think of An and A−1

n as operators on l2: we can
make the identifications An = AnPn and A−1

n = A−1
n Pn.
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Suppose A is invertible. One says that the method {An} is applicable to A
if there is an n0 such that the equation (20) are uniquely solvable for every
y ∈ l2 and all n ≥ n0 and if their solutions x (n) converge in l2 to the
solution x of (19) for every y ∈ l2. Equivalently, the method {An} is
applicable to A if and only if the matrices An are invertible for all
sufficiently large n and A−1

n → A−1 strongly (i.e., A−1
n Pny → A−1y for all

y ∈ l2).
In the case where An = PnAPn|Im Pn, one speaks of the finite
section method.
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Proposition

Let A ∈ B(l2) be invertible and suppose {An} is a
sequence of n × n matrices such that An → A
strongly. Then the method {An} is applicable to
A if and only if the sequence {An} is stable.
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Proof. If A−1
n → A−1 strongly, then lim sup ‖A−1

n ‖ <∞ due to the
Banach-Steinhaus theorem (= uniform boundedness principle). Hence
{An} is stable. Conversely, suppose {An} is stable. Then for each y ∈ l2,

‖A−1
n Pny − A−1y‖ ≤ ‖A−1

n Pny − PnA−1y‖+ ‖PnA−1y − A−1y‖,

the second term on the right goes to zero because Pn → I strongly, and
the first term on the right is

‖A−1
n (Pny − AnPnA−1y)‖ ≤ M‖Pny − AnPnA−1y‖ = o(1)

since AnPnA−1 → AA−1 = I strongly.
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We remark that last Proposition can be stated as

convergence = approximation + stability;

here convergence means applicability of the method {An} to A, while
approximation means that An → A strongly. As approximation is usually
given (e.g., if An = PnAPn|Im Pn) or enforced by the choice of {An}, the
central problem is always the stability.
The following simple fact will be needed later.

Proposition (Invertibilites)
Let {An} be a sequence of n× n matrices and suppose there is an operator
A ∈ B(l2) such that An → A and A∗n → A∗ strongly. If {An} is stable,
then A is necessarily invertible and

‖A−1‖ ≤ lim inf
n→∞

‖A−1
n ‖. (22)
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Proof. Suppose ‖A−1
n ‖ ≤ M for infinitely many n. For x ∈ l2 and these n,

‖Pnx‖ = ‖A−1
n AnPnx‖ ≤ M‖AnPnx‖,

‖Pnx‖ = ‖(A∗n)−1A∗nPnx‖ ≤ M‖A∗nPnx‖.

and passing to the limit n→∞, we get

‖x‖ ≤ M‖Ax‖, ‖x‖ ≤ M‖A∗x‖,

which implies that A is invertible and ‖A−1‖ ≤ M.
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Perturbed Toeplitz Matrices

For a ∈ L∞, let Tn(a) be the n × n matrix

Tn(a) =

 a0 . . . a−(n−1)
... . . . ...

an−1 . . . a0

 .
We will freely identify the n × n matrix Tn(a) with the operator
PnT (a)Pn|Im Pn or even with PnT (a)Pn. Obviously,

Tn(a)→ T (a), T ∗n (a) = Tn(a)→ T (a) = T ∗(a)

strongly. In particular, Proposition (Invertibilites) tells us that the finite
section method {Tn(a)} is applicable to an invertible Toeplitz operator
T (a) if and only if {Tn(a)} is stable.
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Instead of the pure Toeplitz matrices Tn(a), we will consider more general
matrices, namely, matrices of the form

An = Tn(a) + PnKPn + WnLWn + Cn; (23)

here a ∈ L∞, K ∈ K(l2), L ∈ K(l2), {Cn} is a sequence of n × n matrices
such that ‖Cn‖ → 0, Pn is given by (21), and Wn is defined as

Wn : l2 → l2, (x0, x1, x2, . . .) 7→ (xn−1, xn−2, . . . , x0, 0, 0, . . .).

Again we freely identify Im Wn ⊂ l2 and Cn, and frequently we think of
Wn as being the matrix

Wn =


0 . . . 0 1
0 . . . 1 0
...

...
...

1 . . . 0 0

 .
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There are several good reasons for studing sequences {An} with An of the
form (23). First, the matrices one encounters in applications are often not
pure Toeplitz matrices but perturbed Toeplitz matrices. For example, if K
and L have only finitely many nonzero entries, then
Tn(a) + PnKPn + WnLWn results from Tn(a) by adding the block K in the
upper left and the “reverse” of the block L in the lower right corner. Note
that, for instance,

Wn


3 7 0 . . . 0
5 2 0 . . . 0
0 0 0 . . . 0
...

...
...

...
0 0 0 . . . 0

Wn =


0 . . . 0 0 0
...

...
...

...
0 . . . 0 0 0
0 . . . 0 2 5
0 . . . 0 7 3

 .

Secondly, consideration of matrices of the form (23) is motivated by the
following result.
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Proposition (Widom 1976)

If a, b ∈ L∞, then

Tn(a)Tn(b) = Tn(ab)− PnH(a)H(b̃)Pn −WnH(ã)H(b)Wn.

The proof is a straightforward computation (once the formula has been
guessed) and is therefore omitted.
If a, b ∈ C , then

Tn(a)Tn(b) = Tn(ab) + PnKPn + WnLWn

with compact operators K and L.
Finally and most importantly, we will see that the sequences {An} defined
by matrices of the form (23) with a ∈ C constitute a C∗-algebra.
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Algebraization of Stability

Let S be the set of all sequences {An} := {An}∞n=1 of n × n matrices An
such that

sup
n≥1
‖An‖ <∞,

and let N (the N is for ”null“) denote the set of all sequences {An} in S
for which

lim
n→∞

‖An‖ = 0.

It is easily seen that S is a C∗-algebra with the operations

λ{An} := {λAn}, {An}+ {Bn} := {An + Bn},

{An}{Bn} := {AnBn}, {An}∗ = {A∗n}

and the norm
‖{An}‖ := sup

n≥1
‖An‖

and that N is a closed ideal of S. Thus, the quotient algebra S/N is also a
C∗-algebra. For {An} ∈ S, we abbreviate the coset {An}+ N to {An}ν .
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Obviously,
‖{An}ν‖ = lim sup

n→∞
‖An‖.

Proposition

A sequence {An} ∈ S is stable if and only if {An}ν is invertible in S/N.

Proof. If {An} is stable, there is a sequence {Bn} ∈ S such that

BnAn = Pn + C ′n, AnBn = Pn + C ′′n , (24)

where C ′n = C ′′n = 0 for all n ≥ n0. This implies that {Bn}ν is the inverse
of {An}ν .
On the other hand, if {An}ν has the inverse {Bn}ν in S/N, then (24)
holds with certain {C ′n} ∈ N and {C ′′n } ∈ N. Clearly, ‖C ′n‖ < 1/2 for all
sufficiently large n. For these n, the matrix (Pn + C ′n)|Im Pn = I + C ′n is
invertible, whence

‖A−1
n ‖ = ‖(I + C ′n)−1Bn‖ ≤ 2‖Bn‖,

which shows that {An} is stable.
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The C∗-algebra S/N is very large and therefore difficult to understand. In
order to study Toeplitz operators with continuous symbols, we can bound
ourselves to a much smaller algebra. We define S(C) as the subset of S
which consists of all elements {An} with

An = Tn(a) + PnKPn + WnLWn + Cn,

where a ∈ C , K ∈ K(l2), L ∈ K(l2), {Cn} ∈ N, and we let S(C)/N stand
for the subset of S/N consisting of the coset {An}ν with {An} in S(C).

Proposition

If {An} = {Tn(a) + PnKPn + WnLWn + Cn} is a sequence in S(C), then

An → A := T (a) + K strongly (25)

and
WnAnWn → Ã := T (ã) + L strongly. (26)
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Proof. Since Wn → 0 weakly (that is, (Wnx , y)→ 0 for all x , y in l2) and
L is compact, it follows that LWn → 0 strongly. As ‖Wn‖ = 1, we see that
WnLWn → 0 strongly. This implies (25). Because

WnAnWn = Tn(ã) + WnKWn + PnLPn + WnCnWn

and ‖Wn‖ = 1, (26) is a consequence of (25).

Theorem (Silbermann 1981)

The spaces S(C) and S(C)/N are C∗-subalgebras of S and S/N,
respectively.
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Proof. As the quotient map S→ S/N is clearly a (continuous)
∗-homomorphism and S(C) is the pre-image of S(C)/N, it suffices to
show that S(C)/N is a C∗-algebra of S/N.
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We first show that S(C)/N is closed. So let

{Ai
n}ν = {Tn(ai ) + PnKi Pn + WnLi Wn}ν (i = 1, 2, . . .)

be a Cauchy sequence in S(C)/N. Then, given ε > 0, there is an
I = I(ε) > 0 such that

‖{Ai
n}ν − {Aj

n}ν‖ < ε for all i , j ≥ I.

From (25) we obtain that

‖T (ai ) + Ki − T (aj)− Kj‖ ≤ lim inf
n→∞

‖Ai
n − Aj

n‖

≤ lim sup
n→∞

‖Ai
n − Aj

n‖ = ‖{Ai
n}ν − {Aj

n}ν‖ < ε.

This shows that {T (ai ) + Ki}∞i=1 is a Cauchy sequence. By (15)

‖ai − aj‖∞ = ‖T (ai − aj)‖ess ≤ ‖T (ai )− T (aj) + Ki − Kj‖,

and hence {ai}∞i=1 is a Cauchy sequence. It follows that ai converges in
L∞ to some a ∈ L∞. Since {T (ai ) + Ki}∞i=1 is a Cauchy sequence, we now
see that {Ki}∞i=1 is also a Cauchy sequence. Hence, there is a K ∈ K(l2)
such that Ki → K uniformly.
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Now consider {WnAi
nWn}. Since ‖Wn‖ = 1, we have

‖{WnAi
nWn}ν − {WnAj

nWn}ν‖ ≤ ‖{Ai
n}ν − {Aj

n}ν‖ < ε

for all i , j ≥ I. This shows that {WnAi
nWn}ν is Cauchy sequence. Using

(26) instead of (25), we obtain as above that Li converges uniformly to
some L ∈ K(l2). In summary,

{Ai
n}ν → {Tn(a) + PnKPn + WnLWn}ν as n→∞.

This completes the proof of the closedness of S(C)/N.
It is clear that S(C)/N is invariant under the two linear operations and the
involution. It remains to show that the product of two elements of
S(C)/N is again in S(C)/N. From Propositions above we infer that if
a, b ∈ C , then

{Tn(a)}ν{Tn(b)}ν ∈ S(C)/N.
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Now let a ∈ C and K ∈ K(l2). Then

{Tn(a)}ν{PnKPn}ν = {PnT (a)PnKPn}ν

= {PnT (a)KPn}ν − {PnT (a)QnKPn}ν ,

where Qn = I − Pn (recall (8)). Obviously, T (a)K ∈ K(l2). Since
Qn = Q∗n → 0 strongly, it follows that QnK → 0 uniformly, whence
{PnT (a)QnKPn} ∈ N. Thus,

{Tn(a)}ν{PnKPn}ν = {PnT (a)KPn}ν ∈ S(C)/N.

If a ∈ C and L ∈ K(l2), we have

{Tn(a)}ν{WnLWn}ν = {PnT (a)WnLWn}ν

= {WnWnT (a)WnLWn}ν = {WnT (ã)PnLWn}ν

= {WnT (ã)LWn}ν − {WnT (ã)QnLWn}ν ,

and it results as above that {WnT (ã)QnLWn}ν ∈ N, whence

{Tn(a)}ν{WnLWn}ν = {WnT (ã)LWn}ν ∈ S(C)/N.

The remaining cases can be checked similarly.
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Corollary

A sequence {An} ∈ S(C) is stable if and only if {An}ν is invertible in
S(C)/N.

Proof. This is an immediate consequence of Silbermann Theorem.

Thus, for the sequences {An} we are interested in we have reduced the
stability problem to an invertibility problem in the C∗-algebra S(C)/N.
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Stability Criteria

We now begin with the harvest from this Theory.
For {An} ∈ S(C), let A and Ã be as in ( 25)-(26). It is clear that the maps

ψ0 : S(C)/N→ B(l2), {An}ν 7→ A,

ψ1 : S(C)/N→ B(l2), {An}ν 7→ Ã

are well defined ∗-homomorphisms.

Theorem (Silbermann 1981)

A sequence {An} in the algebra S(C) is stable if and only if the two
operators A and Ã are invertible.
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Proof. Consider the ∗-homomorphism

ψ = ψ0 ⊕ ψ1 : S(C)/N→ B(l2)⊕ B(l2), {An}ν 7→ (A, Ã). (27)

Note that B(l2)⊕ B(l2) stands for the C∗-algebra of all ordered pairs
(A,B) (A,B ∈ B(l2)) with componentwise operations and the norm

‖(A,B)‖ = max(‖A‖, ‖B‖).

We claim that ψ is injective. Indeed, if

A = T (a) + K = 0, Ã = T (ã) + L = 0,

then a = 0 and hence K = L = 0, which implies that {An}ν = 0. We now
deduce that ψ preserves spectra: {An}ν is invertible if and only if A and Ã
are invertible. As the invertibility of {An}ν is equivalent to the stability of
{An}, we arrive at the assertion.
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Corollary (Baxter 1963)

Let a ∈ C. The sequence {Tn(a)} is stable if and only if T (a) is invertible.

Proof. Since Ã = T (ã) is the transpose of A = T (a) and thus invertible if
and only if A = T (a) is invertible, this corollary is an immediate
consequence of Theorem Silbermann.

Corollary

The finite section method is applicable to every invertible Toeplitz
operator with a continuous symbol.
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Asymptotic Inverses

The following result reveals the structure of the inverse of matrices of the
form (23) for large n.

Theorem (Widom 1976 and Silbermann 1981)

Let
{An} = {Tn(a) + PnKPn + WnLWn + Cn} ∈ S(C)

and suppose T (a) + K and T (ã) + L are invertible. Then for all
sufficiently large n,

A−1
n = Tn(a−1) + PnXPn + WnYWn + Dn, (28)

where ‖Dn‖ → 0 as n→∞ and the compact operators X and Y are given
by

X = (T (a) + K )−1 − T (a−1), Y = (T (ã) + L)−1 − T (ã−1).
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Proof. If T (a) + K and T (ã) + L are invertible, then {An}ν is invertible in
S(C)/N by virtue of stability Criteria. Hence, A−1

n is of the form

A−1
n = Tn(b) + PnXPn + WnYWn + Dn (29)

with b ∈ C , X ∈ K(l2), Y ∈ K(l2), {Dn} ∈ N. Rewriting (29) in the form

Pn = An(Tn(b) + PnXPn + WnYWn + Dn),

Pn = WnAnWn(Tn(b̃) + WnXWn + PnYPn + WnDnWn).

We obtain

I = (T (a) + K )(T (b) + X ), I = (T (ã) + L)(T (b̃) + Y ),

whence

X = (T (a) + K )−1 − T (b), Y = (T (ã) + L)−1 − T (b̃).
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Finally, we deduce that

I = T (a)T (b) + KT (b) + T (a)X + KX = T (ab) + compact operator,

and we have that ab = 1.
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Norms

In what follows we let A and Ã always stand for the two operators given by
(25) and (26).

Theorem

If {An} ∈ S(C), then

lim
n→∞

‖An‖ = max(‖A‖, ‖Ã‖).

Proof. We observed that the ∗-homomorphism (27) is injective. From
Theorem about ∗-homomorphism we therefore deduce that

max(‖A‖, ‖Ã‖) = ‖ψ({An}ν)‖ = ‖{An}ν‖ = lim sup
n→∞

‖An‖.

On the other hand, we know that

‖A‖ ≤ lim inf
n→∞

‖An‖, ‖Ã‖ ≤ lim inf
n→∞

‖An‖

(note that ‖WnAnWn‖ = ‖An‖).
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We remark that if An = Tn(a), then Ã = T (ã) is the transpose of
A = T (a), so that ‖T (ã)‖ = ‖T (a)‖. Thus in this case last Theorem
yields the equality

lim
n→∞

‖Tn(a)‖ = ‖T (a)‖, (30)

which can, of course, also easily be shown directly (and even for every
a ∈ L∞).
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Norms of Inverses

A simple C∗-algebra argument gives the following result.

Theorem

If {An} ∈ S(C), then

lim
n→∞

‖A−1
n ‖ = max(‖A−1‖, ‖Ã−1‖).
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Proof. Suppose first that ‖A−1‖ =∞ or ‖Ã−1‖ =∞. If

lim inf
n→∞

‖A−1
n ‖ <∞, (31)

then {An} contains a stable subsequence {Ank}, and it is clear that
{Wnk Ank Wnk} is also stable.So we have that ‖A−1‖ <∞ and
‖Ã−1‖ <∞. Thus, (31) cannot hold and we have indeed lim ‖A−1

n ‖ =∞.
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Now suppose that A and Ã are invertible. Then {An} is stable and hence
{An}ν is invertible in S(C)/N. Let {Bn}ν ∈ S(C)/N be the inverse.
Then

lim
n→∞

‖Bn‖ = max(‖B‖, ‖B̃‖),

and as AnBn → I uniformly as n→∞, we see that

lim
n→∞

‖Bn‖ = lim
n→∞

‖A−1
n ‖, B = A−1, B̃ = Ã−1.
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Corollary

If a ∈ C, then
lim

n→∞
‖T−1

n (a)‖ = ‖T−1(a)‖.

Proof. Because Ã = T (ã) is the transpose of A = T (a), this is immediate
from last Theorem.
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Condition Numbers

The (spectral) condition number κ(B) of an operator is defined by

κ(B) = ‖B‖ ‖B−1‖.

Theorem

If {An} ∈ S(C), then

lim
n→∞

κ(An) = max(‖A‖, ‖Ã‖) max(‖A−1‖, ‖Ã−1‖). (32)

From (30) and last Corollary we infer that

lim
n→∞

κ(Tn(a)) = κ(T (a))

for every a ∈ C . However, for {An} ∈ S(C), the right-hand side of (32)
may be larger than max(κ(A), κ(Ã)) and thus in general larger than κ(A).
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Example

Let An = Pn + PnKPn + WnLWn with

K = diag
(

0,−3
4 , 0, 0, . . .

)
, L = diag

(
2,−1

2 , 0, 0, . . .
)
.

Thus,

An = diag

1, 1
4 , 1, . . . , 1︸ ︷︷ ︸

n−4

,
1
2 , 3

 .
It follows that

‖An‖ = 3, ‖A−1
n ‖ = 4,

‖A‖ = ‖I + K‖ = 1, ‖A−1‖ = ‖(I + K )−1‖ = 4,
‖Ã‖ = ‖I + L‖ = 3, ‖Ã−1‖ = ‖(I + L)−1‖ = 2,

whence

lim
n→∞

κ(An) = 12, max(κ(A), κ(Ã)) = 6, κ(A) = 4.
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Eigenvalues of Hermitian Matrices

Let {En}∞n=1 be a sequence of sets En ⊂ C. The uniform limiting set

lim inf
n→∞

En

is defined as the set of all numbers λ ∈ C for which there are λ1 ∈ E1,
λ2 ∈ E2, λ3 ∈ E3, . . . such that λn → λ, and the partial limiting set

lim sup
n→∞

En

is the set of all λ ∈ C for which there are λn1 ∈ En1 , λn2 ∈ En2 , λn3 ∈ En3 ,
. . . such that nk →∞ and λnk → λ. For example, if En = {0} for odd n
and En = {1} for even n, then lim inf En = ∅ and lim sup En = {0, 1}.
Clearly, we always have

lim inf
n→∞

En ⊂ lim sup
n→∞

En.
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Theorem

If {An} ⊂ S(C), then

lim inf
n→∞

sp An ⊂ lim sup
n→∞

sp An ⊂ sp A ∪ sp Ã, (33)

and if {An} ∈ S(C) is a sequence of Hermitian matrices, An = A∗n, then

lim inf
n→∞

sp An = lim sup
n→∞

sp An = sp A ∪ sp Ã. (34)
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Proof. Let λ /∈ sp A ∪ sp Ã. Then A− λI and (A− λI )̃ = Ã− λI are
stability Criteria implies that there are n0 and M <∞ such that

‖(An − λI)−1‖ ≤ M for all n ≥ n0.

It follows that the spectral radius of (An − λI)−1 is at most M, which gives

U1/M(0) ∩ sp (An − λI) = ∅ for all n ≥ n0,

where Uδ(µ) := {λ ∈ C : |λ− µ| < δ}.
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Consequently,
U1/M(λ) ∩ sp An = ∅ for all n ≥ n0,

whence λ /∈ lim sup An. This completes the proof of (33).
Now suppose An = A∗n for all n. Then A and Ã are selfadjoint and all
spectra occurring in (34) are subsets of the real line. We are left with
showing that if λ ∈ R and λ /∈ lim inf sp An, then λ /∈ sp A ∪ sp Ã. But if λ
is real and not in the uniform limiting set of sp An, then there exists a
δ > 0 such that

Uδ(λ) ∩ sp Ank = ∅ for infinitely many nk ,

that is,
Uδ(0) ∩ sp (Ank − λI) = ∅ for infinitely many nk .

As Ank − λI is Hermitian, the spectral radius and the norm of the operator
(Ank − λI)−1 coincide, which gives

‖(Ank − λI)−1‖ ≤ 1
δ

for infinitely many nk .
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It follows that {Ank − λI} and thus also {Wnk (Ank − λI)Wnk} is stable. So
A− λI and Ã− λI are invertible.

Corollary

If a ∈ C, then

lim inf
n→∞

sp Tn(a) ⊂ lim sup
n→∞

sp Tn(a) ⊂ sp T (a),

and if a ∈ C is real-valued, then

lim inf
n→∞

sp Tn(a) = lim sup
n→∞

sp Tn(a) = sp T (a) = [min a,max a].

Proof. From (17) we see that sp T (ã) = sp T (a) for every A ∈ C and that
sp T (a) is the line segment [min a,max a] if a ∈ C is real-valued.
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Singular Values

The singular values of an operator B ∈ B(H) on some Hilbert space H are
the nonnegative square-roots of the numbers in the spectrum of the
nonnegative operator B∗B. We denote the set of the singular values of B
by Σ(B). Thus,

Σ(B) = {s ≥ 0 : s2 ∈ sp (B∗B)}.

Theorem

If {An} ∈ S(C), then

lim inf
n→∞

Σ(An) = lim sup
n→∞

Σ(An) = Σ(A) ∪ Σ(Ã). (35)

Proof. Since {A∗nAn} ∈ S(C) whenever {An} ∈ S(C), (35) is a
straightforward consequence of (34).
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Corollary

If a ∈ C, then

lim inf
n→∞

Σ(Tn(a)) = lim sup
n→∞

Σ(Tn(a)) = Σ(T (a)) ∪ Σ(T (ã)).

Let V : l2 → l2 be the map given by (Vx)j = xj . Since

sp VBV = sp B, sp (B∗B) ∪ {0} = sp (BB∗) ∪ {0} (36)

for every B ∈ B(H) and because VT (a)V = T (ã), we obtain

(Σ(T (a)))2 = sp T (a)T (a) = sp VT (a)T (a)V
= sp VT (a)VVT (a)V = sp T (ã)T (ã) = (Σ(T (ã)))2,

that is, Σ(T (ã)) = Σ(T (a)). This and the second equality of (36) imply
that

Σ(T (a)) ∪ {0} = Σ(T (ã)) ∪ {0}.
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In general, the sets Σ(T (a)) and Σ(T (ã)) need not coincide: if a(t) = t,
then

T (a) =


0 0 0 . . .
1 0 0 . . .
0 1 0 . . .
. . . . . . . . . . . .

 , T (ã) =


0 1 0 . . .
0 0 1 . . .
0 0 0 . . .
. . . . . . . . . . . .



T ∗(a)T (a) =


1 0 0 . . .
0 1 0 . . .
0 0 1 . . .
... ... ... . . .

 , T ∗(ã)T (ã) =


0 0 0 . . .
0 1 0 . . .
0 0 1 . . .
... ... ... . . .

 ,
whence Σ(T (a)) = {1} and Σ(T (ã)) = {0, 1}.
The set Σ(T (a)) is available in special cases only. Sometimes the
following is useful.
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Proposition

If a ∈ C, then

[min |a|,max |a|] ⊂ Σ(T (a)) ⊂ [0,max |a|].

Proof.There is a K ∈ K(l2) such that

(Σ(T (a)))2 = sp T (a)T (a) = sp (T (|a|2) + K )

⊃ sp ess(T (|a|2) + K ) = sp essT (|a|2) = [min |a|2,max |a|2],

and from (15) we get
(Σ(T (a)))2 = sp T (a)T (a) ⊂ [0, ‖T (a)‖2] = [0,max |a|2].
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Thus if a ∈ C and T (a) is not Fredholm, which implies that min |a| = 0,
then

Σ(T (a)) ∪ Σ(T (ã)) = [0,max |a|].

However, if a ∈ C and T (a) is Fredholm, in which case min |a| > 0, the
question of finding

(Σ(T (a)) ∪ Σ(T (ã))) ∩ [0,min |a|)

is difficult.
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The first Szegö Theorem

First-Order Trace Formulas

The trace tr A of an n × n matrix A = (ajk)n
j,k=1 is defined as usual:

tr A = a11 + a22 + . . .+ ann.

Denoting by λ1(A), . . . , λn(A) the eigenvalues of A, we have

tr Ak = λk
1(A) + . . .+ λk

n(A)

for every natural number k. The trace norm of A is defined by

‖A‖tr = σ1(A) + . . .+ σn(A),

where σ1(A), . . . , σn(A) are the singular values of A. It well know that

‖ABC‖tr ≤ ‖A‖2‖B‖tr‖C‖2. (37)
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It is also well known that
|tr A| ≤ ‖A‖tr. (38)

Finally, we denote by O the collection of all sequences {Kn}∞n=1 of
complex n × n matrices Kn such that

1
n ‖K‖tr → 0.

Theorem
Lemma If a and b are Laurent polynomials, then

{Tn(a)Tn(b)− Tn(ab)} ∈ O.

Sergei M. Grudsky (CINVESTAV,Mexico) Eigenvalues of lager Toeplitz matrices Moscow, October 2010. 81 / 148



Proof. We have that

Tn(a)Tn(b)− Tn(ab) = −PnH(a)H(b̃)Pn −WnH(ã)H(b)Wn.

The matrices H(a)H(b̃) and H(ã)H(b) have only finitely many nonzero
entries. Thus, since ‖Pn‖2 = ‖Wn‖2 = 1, inequality (37) yields

1
n ‖PnH(a)H(b̃)Pn‖tr ≤

1
n ‖Pn‖2‖H(a)H(b̃)‖tr‖Pn‖2 = o(1),

1
n ‖WnH(ã)H(b)Wn‖tr ≤

1
n ‖Wn‖2‖H(ã)H(b)‖tr‖Wn‖2 = o(1).

Theorem
Lemma If b is a Laurent polynomial and k ∈ N, then

{T k
n (b)− Tn(bk)} ∈ O.
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Proof. The assertion is trivial for k = 1. Now suppose the assertion is true
for some k ∈ N. Then

T k+1
n (b) = T k

n (b)Tn(b) = Tn(bk)Tn(b) + KnTn(b)

with some {Kn} ∈ O. Since

‖KnTn(b)‖tr ≤ ‖Kn‖tr‖Tn(b)‖2 ≤ ‖Kn‖tr‖b‖∞,

it is clear that {KnTn(b)} ∈ O. We have that

{Tn(bk)Tn(b)− Tn(bk+1)} ∈ O.

This gives that {T k+1
n (b)− Tn(bk+1)} ∈ O.

Theorem

Let b be a Laurent polynomial and k ∈ N. Then

lim
n→∞

1
n

n∑
j=1

λk
j (Tn(b)) =

1
2π

∫ 2π

0
(b(eiθ))kdθ. (39)
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Proof. First notice that

1
n

n∑
j=1

λk
j (Tn(b)) =

1
n tr T k

n (b).

We have,
1
n tr T k

n (b) =
1
n tr Tn(bk) +

1
n tr Kn

with {Kn} ∈ O. Since

1
n tr Tn(bk) =

1
n
(

(bk)0 + . . .+ (bk)0
)

=
1
n n(bk)0

= (bk)0 =
1

2π

∫ 2π

0
(b(eiθ))kdθ

and, by (38), ∣∣∣∣1n tr Kn

∣∣∣∣ ≤ 1
n‖Kn‖tr = o(1),

we arrive at (39).
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Theorems of the Szegö type say that, under certain conditions on a and F ,
including that a be real-valued,

lim
n→∞

1
n

n∑
j=1

F (λj(Tn(a))) =
1

2π

∫ 2π

0
F (a(θ)) dθ, (40)

where λ1(A) ≤ . . . ≤ λn(A) are the eigenvalues of a Hermitian n × n
matrix A, while theorems of the Avram-Parter type state that, again under
appropriate assumptions on a and F ,

lim
n→∞

1
n

n∑
j=1

F (sj(Tn(a))) =
1

2π

∫ 2π

0
F (|a(θ)|) dθ, (41)

where s1(A) ≤ . . . ≤ sn(A) are the singular values of an n × n matrix A.
The function F in (40) and (41) is called a test function. Throughout this
paper we assume that F is real-valued and that F is continuous on R,
F ∈ C(R), when considering (40) and continuous on [0,∞), F ∈ C [0,∞),
when dealing with (41).
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Formula (40) goes back to Szegö [1920] who proved it for real-valued
functions a in L∞ := L∞(0, 2π) and compactly supported continuous
functions F on R.
Formula (41) was first established by Parter [1986] for all F ∈ C [0,∞)
under the assumptions that a is in L∞ and that a is locally selfadjoint,
which means that a = bc with a continuous 2π-periodic function c and a
real-valued function b. Avram [1988] subsequently proved (41) for all
F ∈ C [0,∞) and all a ∈ L∞.
Then Tyrtyshnikov [1994-1996] showed that (40) and (41) hold for all
continuous functions F with compact support if a is merely required to be
in L2 := L2(0, 2π) and to be real-valued when dealing with (40).
Zamarashkin and Tyrtyshnikov [1997-1998] were finally able to prove that
(40) and (41) are true whenever F is continuous and compactly supported
and a is in L1, again requiring that a be real-valued when considering (40).
A very simple proof of the Zamarashkin-Tyrtyshnikov result was given by
Tilli [1998], who also extended (40) and (41) to all uniformly continuous
functions F and all a ∈ L1, assuming that a is real-valued in the case of
(40).
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Eventually Serra Capizzano [2002] derived (41) under the assumption that
a ∈ Lp := Lp(0, 2π) (1 ≤ p <∞) and F ∈ C [0,∞) satisfies F (s) = O(sp)
as s →∞. Serra Capizzano’s result implies in particular that (41) is valid
for all a ∈ L1 under the sole assumption that F (s) = O(s), which includes
all the results concerning (41) listed before.
In [A.Böttcher, S.Grudsky and M.Schwartz. Some problems concerning
the test functions in the Szegö and Avram-Parter theorems. Operator
Theory: Advances and Applications, Volum 187 (2008), 81-93 pp.],
we raised the question whether (40) and (41) are true whenever they make
sense. To be more precise and to exclude “∞−∞” cases, the question is
whether (40) and (41) hold for all symbols a ∈ L1 (being real-valued in
(40)) and all nonnegative and continuous test functions.
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Here we make the following convention: we denote the functions under the
integrals in (40) and (41), that is, the functions θ 7→ F (a(θ)) and
θ 7→ F (|a(θ)|), by F (a) and F (|a|), respectively, and if these functions are
not in L1, we define the right-hand sides of (40) and (41) to be ∞ and
interpret (40) and (41) as the statement that the limit on the left-hand
side is ∞. It turns out that the answer to the question cited in the
preceding paragraph is negative:
in [A.Böttcher, S.Grudsky and E.Maksimenko. Pushing the Envelope of
the Test Functions in the Szegö and Avram-Parter Theorems. Linea
Algebra and its Applications 429(2008), pp. 346-366],
we constructed a positive a ∈ L1 and a continuous F : R→ [0,∞) such
that (40) and (41) are false.
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In this work we also have proved the following result.

Theorem

Let a ∈ L1 be real-valued, let Φ± : [0,∞)→ [0,∞) be monotonously
increasing and convex functions such that Φ−(0) = Φ+(0), and suppose
Φ+(a+) and Φ−(a−) are in L1. Let F : R→ [0,∞) be a continuous
function such that F (λ) ≤ Φ+(λ) and F (−λ) ≤ Φ−(λ) whenever λ > λ0.
Then we have that (40) is truth.
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Limit spectral set-complex case.

Trivial case

1. Triangular matrixes:

a1(t) =
∞∑

j=0
ajt j

or
a2(t) =

∞∑
j=0

ajt−j
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Tn(a1) =


a0 0 0 . . . 0
a1 a0 0 . . . 0
a2 a1 a0 . . . 0
...

...
... . . . ...

an−1 an−2 an−3 . . . a0

 .

spTn(a1,2) = {a0}

lim inf
n→∞

spTn(a) = lim sup
n→∞

spTn(a) = {a}
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2. Tridiagonal Toeplitz Matrices:
By a tridiagonal Toeplitz matrix we understand a matrix of the form

T (a) =


a0 a−1 0 0 . . .
a1 a0 a−1 0 . . .
0 a1 a0 a−1 . . .
0 0 a1 a0 . . .
. . . . . . . . . . . . . . .

 .

The symbol of this matrix is a(t) = a−1t−1 + a0 + a1t. Suppose
a−1 6= 0 and a1 6= 0. We fix any value α =

√
a−1/a1 and define√

a1/a−1 := 1/α and √a1a−1 := a1α. Recall that Tn(a) is the
principal n × n block of T (a).
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Theorem

The eigenvalues of Tn(a) are

λj = a0 + 2√ a1a−1 cos πj
n + 1 (j = 1, . . . , n), (42)

and an eigenvector for λj is xj = ( x (j)
1 . . . x (j)

n )> with

x (j)
k =

(√
a1

a−1

)k

sin kπj
n + 1 (k = 1, . . . , n). (43)
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Proof. Put b(t) = t + α2t−1. Thus,

T (b) =


0 α2 0 0 . . .
1 0 α2 0 . . .
0 1 0 α2 . . .
0 0 1 0 . . .
. . . . . . . . . . . . . . .

 .
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Since, obviously, Tn(a) = a0 + a1Tn(b), it suffices to prove that Tn(b) has
the eigenvalues

µj = 2α cos πj
n + 1 (j = 1, . . . , n)

and that xj = ( x (j)
1 . . . x (j)

n )> with

x (j)
k = α−k sin kπj

n + 1 (k = 1, . . . , n)

is an eigenvector for µj . This is equivalent to proving the equalities

α2x (j)
2 = µjx (j)

1 ,

x (j)
k + α2x (j)

k+2 = µjx (j)
k+1 (k = 1, . . . , n − 2) (44)

x (j)
n−1 = µjx (j)

n .
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But these equalities can be easily verified: for example, (44) amounts to

α−k sin kπj
n + 1+α2α−k−2 sin (k + 2)πj

n + 1 = 2αα−k−1 cos πj
n + 1 cos (k + 1)πj

n + 1 ,

which follows from the identity

sinβ + sin γ = 2 cos β − γ2 sin β + γ

2 .

Example

Let b(t) = t + α2t−1, where α ∈ (0, 1). The eigenvalues of Tn(b) are
distributed along the interval (−2α, 2α), which is the interval between the
foci of the ellipse b(T). Also notice that the eigenvectors are localized,
that exponentially decaying, for α ∈ (0, 1) (non-Hermitian case, b(T) is a
non-degenerate ellipse) and that they are extended for α = 1 (Hermitian
case, b(T) degenerates to [−2, 2]).
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Polynomial case

P.Schmidt and F. Spitzer. The Toeplitz matrices of an arbitrary Laurent
polynomial. Math. Scand. 8 (1960) 15–38.

Because things are trivial in the case where T (b) is triangular, we will
throughout this charter assume that

b(t) =
s∑

j=−r
bjt j , r ≥ 1, s ≥ 1, b−r 6= 0, bs 6= 0.

As first observed by Schmidt and Spitzer, it turns out that the eigenvalue
distribution of Toeplitz band matrices is in no obvious way related to the
spectrum of the corresponding infinite matrices. To see this, choose
% ∈ (0,∞) and put

b%(t) =
s∑

j=−r
bj%

jt j .
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Clearly, b%(T) = b(%T). We have

Tn(b%) = diag (%, %2, . . . , %n) Tn(b) diag (%−1, %−2, . . . , %−n), (45)

and hence
sp Tn(b%) = sp Tn(b). (46)

Λs(b) := lim inf
n→∞

sp Tn(b)

as the set of all λ ∈ C for which there exist λn ∈ sp Tn(b) such that
λn → λ, and we let

Λw (b) := lim sup
n→∞

sp Tn(b)

stand for the set of all λ ∈ C for which there are n1 < n2 < n3 < . . . and
λnk ∈ sp Tnk (b) such that λnk → λ. Obviously, Λs(b) ⊂ Λw (b).
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Lemma

We have
Λs(b) ⊂ Λw (b) ⊂ sp T (b).

Proof. Let λ0 /∈ sp T (b). Then, {Tn(b − λ0)} is stable, that is,
‖T−1

n (b − λ0)‖2 ≤ M <∞ for all n ≥ n0. It follows that if
|λ− λ0| < 1/(2M), then ‖T−1

n (b − λ)‖2 ≤ 2M for all n ≥ n0, which
shows that λ0 has a neighborhood U(λ0) such that U(λ0) ∩ sp Tn(a) = ∅
for all n ≥ n0. Consequently, λ0 /∈ Λw (b).

Corollary

We even have
Λs(b) ⊂ Λw (b) ⊂

⋂
%∈(0,∞)

sp T (b%). (47)
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We will show that all inclusions of (47) are actually equalities. At the
present moment, we restrict ourselves to giving another description of the
intersection occurring in (47). Forλ ∈ C, put

Q(λ, z) = z r (b(z)− λ) = b−r + . . .+ (b0 − λ)z r + . . .+ bsz r+s

and denote by z1(λ), . . . , zr+s(λ) the zeros of Q(λ, z) for fixed λ:

Q(λ, z) = bs

r+s∏
j=1

(z − zj(λ)).

Label the zeros so that

|z1(λ)| ≤ |z2(λ)| ≤ . . . ≤ |zr+s(λ)|

and define
Λ(b) = {λ ∈ C : |zr (λ)| = |zr+1(λ)|}. (48)
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Proof. T (b)− λ is invertible if and only if b(z)− λ has no zeros on T and
wind(b− λ) = 0. As wind(b− λ) equals the difference of the zeros and
the poles of b(z)− λ in D := {z ∈ C : |z | < 1} and as the only pole of

b(z)− λ = b−r z−r + . . .+ (b0 − λ) + . . .+ bszs

is a pole of the multiplicity r at z = 0, it results that T (b)− λ is invertible
if and only if b(z)− λ has no zeros on T and exactly r zeros in D.
Equivalently, T (b)− λ is invertible exactly if Q(λ, z) has no zeros on T
and precisely r zeros in D.
Analogously, T (b%)− λ is invertible if and only if Q(λ, z) has no zero on
%−1T and exactly r zeros in %−1D.
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Now suppose λ /∈ Λ(b). Then |zr (λ)| < |zr+1(λ)|. Consequently, there is a
% such that |zr (λ)| < % < |zr+1(λ)|. It follows that Q(λ, z) has no zero on
%T and exactly r zeros in %D. Thus, T (b1/% − λ) is invertible and
therefore λ /∈

⋂
%∈(0,∞) sp T (b%).

Conversely, suppose there is a % ∈ (0,∞) such that λ /∈ sp T (b%). Then,
by what was said above, Q(λ, z) has no zeros on %−1T and precisely r
zeros in %−1D. This implies that |zr (λ)| < %−1 < |zr+1(λ)|, whence
λ /∈ Λ(b).

Theorem (Schmidt and Spitzer)

We have
Λs(b) = Λw (b) = Λ(b).
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Towards the Limiting Measure
If λ /∈ Λ(b), then, by definition (48), there is a real number % satisfying

|zr (λ)| < % < |zr+1(λ)|. (49)
As usual, let Dn(a) = det Tn(a).

Lemma

There is a continuous function

g : C \ Λ(b)→ (0,∞)

such that
lim

n→∞
|Dn(b − λ)|1/n = g(λ)

uniformly on compact subsets of C \ Λ(b). If % is given by (49), then

g(λ) = exp
∫ 2π

0
log |b%(eiθ)− λ| dθ

2π . (50)
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Theorem
(Hirschman) The measures dµn converge weakly to the measure which is
supported on Λ(b) and equals

1
2π

1
g

∣∣∣∣ ∂g
∂n1

+
∂g
∂n2

∣∣∣∣ ds on Λ(b). (51)

In other terms,

1
n

n∑
j=1

ϕ(λj(Tn(b)))→ 1
2π

∫
Λ(b)

ϕ(λ)
1

g(λ)

∣∣∣∣ ∂g
∂n1

(λ) +
∂g
∂n2

(λ)

∣∣∣∣ ds(λ)

(52)
for every ϕ ∈ C(C) with compact support.
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The ranges b(T) for two Laurent polynomials
and the eigenvalues of the matrices Tn(b).
(Legacy of Olga Grudskaya)
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The ranges b(T) for two Laurent polynomials
and the eigenvalues of the matrices Tn(b).
(Legacy of Olga Grudskaya)
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The ranges b(T) for two Laurent polynomials
and the eigenvalues of the matrices Tn(b).
(Legacy of Olga Grudskaya)
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Asymptotics of eigenvalues and eigenvectors
Much attention has been paid to the extreme eigenvalues, that is, to the
behavior of λ(n)

j as n→∞ and j or n − j remain fixed. The pioneering
work on this problem was done by Kac, Murdock, Szegö (1953), Widom
(1958) and Parter (1961).
Recent work on and applications of extreme eigenvalues include the
authors:

S.Serra Capizzano and P.Tilli 1996-1999,
C.Hurvich and Yi Lu 2005,
A.Novoseltsev and I.Simonenko 2005,
A.Böttcher, S.Grudsky and E.Maximenko 2008.

H.Widom (1958)
a = ā, g(ϕ) := a(eiϕ), g(0) = 0, g ′(0) = 0, g ′′(0) > 0

λ
(n)
j =

g ′′(0)

2

(
πj

n + 1

)2 (
1 +

w0
n + 1

)
+ O

( 1
n4

)
, j − fixed
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The purpose of this report is to explore the behavior of all λ(n)
j . That is the

asymptotics of λ(n)
j as n→∞ uniformly by parameter d := πj

n+1 ∈ (0, π).
1. Tridiagonal Toeplitz Matrices

a1(t) = a−1t−1 + a0 + a1t

λ
(n)
j = a0 + 2√a1a−1 cos πj

n + 1
2.

a2(t) =
1

a1(t)
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Real value symbols.

The function a is a Laurent polynomial

a(t) =
r∑

k=−r
aktk (t = eix ∈ T)

with r ≥ 1, ar 6= 0, and ak = a−k for all k. That is a is real-valued on T.
It may be assumed without loss of generality that a(T) = [0,M] with
M > 0 and that a(1) = 0 and a(eiϕ0) = M for some ϕ0 ∈ (0, 2π). We
require that the function g(x) := a(eix ) is strictly increasing on (0, ϕ0)
and strictly decreasing on (ϕ0, 2π) and that the second derivatives of g at
x = 0 and x = ϕ0 are nonzero. For each λ ∈ [0,M], there exist exactly
one ϕ1(λ) ∈ [0, ϕ0] and exactly one ϕ2(λ) ∈ [ϕ0 − 2π, 0] such that

g(ϕ1(λ)) = g(ϕ2(λ)) = λ;

.
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ϕ

λ = g(ϕ)

ϕ0ϕ0 − 2π 0

M

ϕ1(λ)ϕ2(λ)

λ

We put
ϕ(λ) =

ϕ1(λ)− ϕ2(λ)

2 .

Clearly, ϕ(0) = 0, ϕ(M) = π, ϕ is a continuous and strictly increasing
map of [0,M] onto [0, π].
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For λ ∈ C, we write a − λ in the form

a(t)− λ = t−r (ar t2r + . . .+ (a0 − λ)tr + . . .+ a−r )

= ar t−r
2r∏

k=1
(t − zk(λ)) (53)

with complex numbers zk(λ). We may label the zeros z1(λ), . . . , z2r (λ) so
that each zk is a continuous function of λ ∈ C. Now take λ ∈ [0,M].
Then a − λ has exactly the two zeros eiϕ1(λ) and eiϕ2(λ) on T. We put

zr (λ) = eiϕ1(λ), zr+1(λ) = eiϕ2(λ).
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For t ∈ T we have (53) on the one hand, and since a(t)− λ is real, we get

a(t)− λ = a(t)− λ = ar tr
2r∏

k=1

(1
t − zk(λ)

)

= ar

( 2r∏
k=1

zk(λ)

)
t−r

2r∏
k=1

(
t − 1

zk(λ)

)
(54)

Comparing (53) and (54) we see that the zeros in C \ T may be relabeled
so that they appear in pairs zk(λ), 1/zk(λ) with |zk(λ)| > 1. Put
uk(λ) = zk(λ) for 1 ≤ k ≤ r − 1. We relabel zr+2(λ), . . . , z2r (λ) to get
z2r−k(λ) = 1/uk(λ) for 1 ≤ k ≤ r − 1. In summary, for λ ∈ [0,M] we have

Z := {z1(λ), . . . , zr−1(λ), eiϕ1(λ), eiϕ2(λ), zr+2(λ), . . . , z2r (λ)}
= {u1(λ), . . . , ur−1(λ), eiϕ1(λ), eiϕ2(λ), 1/ur−1(λ), . . . , 1/u1(λ)}. (55)
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Put

hλ(z) =
r−1∏
k=1

(
1− z

uk(λ)

)
, σ(λ) =

ϕ1(λ) + ϕ2(λ)

2 ,

d0(λ) = (−1)r ar eiσ(λ)
r−1∏
k=1

uk(λ). (56)

For t ∈ T we then may write

a(t)− λ = d0(λ)eiϕ(λ)
(

1− t
eiϕ1(λ)

)(
1− eiϕ2(λ)

t

)
hλ(t)hλ(t).
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Widom’s formula

H.Widom proved that if λ ∈ C and the points z1(λ), . . . , z2r (λ) are
pairwise distinct, then the determinant of Tn(a − λ) is

det Tn(a − λ) =
∑

J⊂Z,|J|=r
CJW n

J (57)

where the sum is over all subsets J of cardinality r of the set Z given by
(55) and, with J := Z \ J ,

CJ =
∏
z∈J

z r ∏
z∈J,w∈J

1
z − w , WJ = (−1)r ar

∏
z∈J

z .
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Lemma (1)
Let λ ∈ (0,M) and put

J1 = {u1, . . . , ur−1, eiϕ1}, J2 = {u1, . . . , ur−1, eiϕ2}.

Then

WJ1 = d0eiϕ, CJ1 =
d1ei(ϕ+θ)

2i sinϕ ,

WJ2 = d0e−iϕ, CJ2 = −d1e−i(ϕ+θ)

2i sinϕ .

Where d0 := d0(λ) = (−1)r ar eiσ(λ)∏r−1
k=1 uk(λ); ϕ(λ) := ϕ = ϕ1−ϕ2

2 .
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d := d1(λ) =
1

|hλ(eiϕ1(λ))hλ(eiϕ2(λ))|

r−1∏
k,s=1

(
1− 1

uk(λ)us(λ)

)−1
(58)

Θ(λ) :=
hλ(eiϕ1(λ))

hλ(eiϕ2(λ))
=

r−1∏
k=1

1− eiϕ1(λ)/uk(λ)

1− eiϕ2(λ)/uk(λ)
.

θ := θ(λ) := arg Θ(λ).

Theorem (A)
For every λ ∈ (0,M) and every δ < δ0,

det Tn(a − λ) =
d1(λ)dn

0 (λ)

sinϕ(λ)

[
sin
(

(n + 1)ϕ(λ) + θ(λ)
)

+ O(e−δn)
]
.
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Lemma (2)
There is a natural number n0 = n0(a) such that if n ≥ n0, then the
function

fn : [0,M]→ [0, (n + 1)π], fn(λ) = (n + 1)ϕ(λ) + θ(λ)

is bijective and increasing.
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Main result.

Theorem (1)
If n is sufficiently large, then the function

[0,M]→ [0, (n + 1)π], λ 7→ (n + 1)ϕ(λ) + θ(λ)

is bijective and increasing. For 1 ≤ j ≤ n, the eigenvalues λ(n)
j satisfy

(n + 1)ϕ(λ
(n)
j ) + θ(λ

(n)
j ) = πj + O(e−δn),

and if λ(n)
j,∗ ∈ (0,M) is the uniquely determined solution of the equation

(n + 1)ϕ(λ
(n)
j,∗ ) + θ(λ

(n)
j,∗ ) = πj ,

then |λ(n)
j − λ

(n)
j,∗ | = O(e−δn).
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Iteration procedure.

Here is an iteration procedure for approximating the numbers λ(n)
j,∗ and thus

the eigenvalues λ(n)
j . We know that ϕ : [0,M]→ [0, π] is bijective and

increasing. Let ψ : [0, π]→ [0,M] be the inverse function. The equation

(n + 1)ϕ(λ) + θ(λ) = πj

is equivalent to the equation

λ = ψ

(
πj − θ(λ)

n + 1

)
.

We define λ(n)
j,0 , λ

(n)
j,1 , λ

(n)
j,2 , . . . iteratively by

λ
(n)
j,0 = ψ

(
πj

n + 1

)
, λ

(n)
j,k+1 = ψ

πj − θ(λ
(n)
j,k )

n + 1

 for k = 0, 1, 2, . . . .

Put γ = supλ∈(0,M)

∣∣∣ θ′(λ)
ϕ′(λ)

∣∣∣ .
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Theorem (2)
There is a constant γ0 depending only on a such that if n is sufficiently
large, then

|λ(n)
j,k − λ

(n)
j,∗ | ≤ γ0

(
γ

n + 1

)k 1
n + 1

|θ(λ
(n)
j,0 )|

ϕ′(λ
(n)
j,0 )

for all 1 ≤ j ≤ n and all k ≥ 0.
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Asymptotics of the eigenvalues.

Theorem (3)
We have

λ
(n)
j = ψ(d)− ψ′(d)θ(ψ(d))

n + 1 + O
(

(θ(ψ(d)))2

n2

)
+ O

(
ψ′(d)θ(ψ(d))

n2

)
.

Where d = πj
n+1 and O(.) means that

O
(

(θ(ψ(d)))2 + ψ′(d)θ(ψ(d))

n2

)
≤ const (θ(ψ(d)))2 + ψ′(d)θ(ψ(d))

n2 .

Where ”const” does not depend of n and d ∈ (0, π). In particular

λ
(n)
j = ψ(d)− ψ′(d)θ(ψ(d))

n + 1 + O
( 1

n2

)
, (59)

uniformly in d from compact subsets of (0, π).
This is asymptotics for inner eigenvalues!
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Asymptotic for extreme eigenvalues.

Theorem (4)
If n→∞ and j/n→ 0, then

λ
(n)
j =

3∑
k=0

(−1)k ψ
(k)(d)

k!

(
θ(ψ(d))

n + 1

)k
+ O

( 1
n4

)
(60)

=
g ′′(0)

2

(
πj

n + 1

)2 (
1 +

w0
n + 1

)
+ O

(
j4

n4

)
(61)

=
g ′′(0)

2

(
πj

n + 1

)2
+ O

(
j3

n3

)
, (62)

w0 =
1
π

∫ π

−π

(g ′(x)

g(x)
− cot x

2 −
g ′′′(0)

3g ′′(0)

)
cot x

2 dx . (63)

(10) coincides with Widom’s formula. But (10) holds if d = πj
n+1 � 1,

while Widom’s formula holds for j is fixed.
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Even case.

Let be g(−ϕ) = g(ϕ), (g(ϕ) = a(eiϕ)), then
g(π) = M, ϕ1(λ) = −ϕ2(λ) ∈ [0, π], ϕ(λ) = ϕ1(λ)−ϕ2(λ)

2 = ϕ1(λ) and
function ψ(x) := ϕ−1(x) = g(x).
This the main formula has the form

λ
(n)
j = g(d)− g ′(d)θ(g(d))

n + 1 + O
( 1

n2

)
.

Remark

Starting with λ
(n)
j,2 , λ

(n)
j,3 , . . . instead of λ(n)

j,1 one can get as many terms of
the expansions (8) or (9) as desired.
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Examples.

We consider Tn(a), denote by λ(n)
j the jth eigenvalue, by λ(n)

j,∗ the
approximation to λ(n)

j given by Theorem (1), and by λ(n)
j,k the kth

approximation to λ(n)
j delivered by the iteration procedure. We put

∆
(n)
∗ = max

1≤j≤n
|λ(n)

j − λ
(n)
j,∗ |, ∆

(n)
k = max

1≤j≤n
|λ(n)

j − λ
(n)
j,k |.

We let w0 be the constant (63), denote by

λ
(n)
j,W =

g ′′(0)

2

(
πj

n + 1

)2 (
1 +

w0
n + 1

)
Widom’s approximation for the jth extreme eigenvalue given by (61), and
put

∆
(n)
j,W =

(n + 1)4

π4j4 |λ(n)
j − λ

(n)
j,W |.
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Example (1)
(A symmetric pentadiagonal matrix) Let
a(t) = 8− 5t − 5t−1 + t2 + t−2. In that case

g(x) = 8− 10 cos x + 2 cos 2x = 4 sin2 x
2 + 16 sin4 x

2 ,

a(T) = [0, 20], and for λ ∈ [0, 20], the roots of a(z)− λ are e−iϕ(λ),
eiϕ(λ), u(λ), 1/u(λ) with

ϕ(λ) = arccos 5−
√

1 + 4λ
4 = 2 arcsin

√√
1 + 4λ− 1
2
√

2
,

u(λ) =
5 +
√

1 + 4λ
4 +

√
5 + 2λ+ 5

√
1 + 4λ

2
√

2

and we have

g ′′(0) = 2, w0 =
4

u(0)− 1 = 2
√

5− 2.
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Example (1)

The errors ∆
(n)
∗ are

n = 10 n = 20 n = 50 n = 100 n = 150
∆

(n)
∗ 5.4 · 10−7 1.1 · 10−11 5.2 · 10−25 1.7 · 10−46 9.6 · 10−68

and for ∆
(n)
k and ∆

(n)
j,W we have

n = 10 n = 100 n = 1000 n = 10000
∆

(n)
1 9.0 · 10−2 1.1 · 10−4 1.1 · 10−6 1.1 · 10−8

∆
(n)
2 2.2 · 10−4 2.8 · 10−7 2.9 · 10−10 2.9 · 10−13

∆
(n)
3 1.1 · 10−5 1.5 · 10−9 1.5 · 10−13 1.5 · 10−17
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Example (1)
n = 10 n = 100 n = 1000 n = 10000 n = 100000

∆
(n)
1,W 1.462 1.400 1.383 1.381 1.381

∆
(n)
2,W 0.997 1.046 1.034 1.033 1.033

∆
(n)
3,W 0.840 0.979 0.970 0.968 0.968
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Example (2)
(A Hermitian heptadiagonal matrix)

a(t) = 24 + (−12− 3i)t + (−12 + 3i)t−1 + it3 − it−3,

g(x) = 48 sin2 x
2 + 8 sin3 x .

n = 10 n = 20 n = 50 n = 100 n = 150
∆

(n)
∗ 6.6 · 10−6 1.2 · 10−10 7.6 · 10−24 1.4 · 10−45 3.3 · 10−67

n = 10 n = 100 n = 1000 n = 10000
∆

(n)
1 1.0 · 10−2 1.4 · 10−4 1.5 · 10−6 1.5 · 10−8

∆
(n)
2 3.2 · 10−4 5.8 · 10−7 5.9 · 10−10 5.9 · 10−13

∆
(n)
3 1.4 · 10−5 2.4 · 10−9 2.5 · 10−13 2.6 · 10−17
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Example (2)
n = 10 n = 100 n = 1000 n = 10000 n = 100000

∆
(n)
1,W 5.149 7.344 7.565 7.587 7.589

∆
(n)
2,W 4.106 7.386 7.623 7.645 7.647

∆
(n)
3,W 2.606 7.370 7.633 7.656 7.658
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New problems

1. Extremums of higher orders
I a(1) = 0 and a(e ix ) = M, ϕ0 ∈ (0, 2π);

g(x) =: a(e ix ) iz strictly increasing on (0, ϕ0) and strictly decreasing
on (ϕ0, 2π) and
g ′(0) = g ′′(0) = g ′′′(0) = g ′(ϕ0) = g ′′(ϕ0) = g ′′′(ϕ0) = 0
with g IV (0) 6= 0 and g IV (ϕ0) 6= 0;

I Several extremums of different orders;

I Complex values even symbols a(e ix ) = a(e−ix ), x ∈ (0, π).
Limit spectral set Λ(a) = Im(a).

2. Continuous case.
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Eigenvectors

The adjugate matrix adj B of an n × n matrix B = (bjk)n
j,k=1 is defined by

(adj B)jk = (−1)j+k det Mkj

where Mkj is the (n − 1)× (n − 1) matrix that results from B by deleting
the kth row and the jth column. We have

(A− λI) adj (A− λI) = (det(A− λI))I.

Thus, if λ is an eigenvalue of A, then each nonzero column of adj (A− λI)
is an eigenvector. For an invertible matrix B,

adj B = (det B)B−1. (64)

Formulas for det Tn(b) and T−1
n (b) were established by Widom and

Trench, respectively.
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Theorem

Let b(t) =
∑q

k=−p bktk = bpt−q ∏p+q
j=1 (t − zj) (t ∈ T)

where p ≥ 1, q ≥ 1, bp 6= 0, and z1, . . . , zp+q are pairwise distinct nonzero
complex numbers. If n > p + q and 1 ≤ m ≤ n, then the mth entry of the
first column of of adj Tn(b) is

[adj Tn(b)]m,1 =
∑

J⊂Z,|J|=p
CJW n

J
∑
z∈J

Sm,J,z (65)

where Z = {z1, . . . , zp+q}, the sum is over all sets J ⊂ Z of cardinality p,
and, with J := Z \ J,

CJ =
∏
z∈J

zq ∏
z∈J,w∈J

1
z − w , WJ = (−1)pbp

∏
z∈J

z ,

Sm,J,z = − 1
bp

1
zm

∏
w∈J\{z}

1
z − w .
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Formulas for the eigenvectors
(in the case a(e iϕ) = a(e−iϕ))
Introduce the vectors y (n)

k with the following coordinates:

y (n)
k,m := sin

(
mϕ(λ) +

θ(λ)

2

)
−

r−1∑
j=1

Qj(λ)

(
1

uj(λ)m +
(−1)k+1

uj(λ)n+1−m

)
,

where Qj(λ) =
|hλ(eiϕ(λ))| sinϕ(λ)

(uj(λ)− eiϕ(λ))(uj(λ)− eiϕ(λ))h′λ(uj(λ))
, λ = λ

(n)
k .

Let w (n)
k be the normalized vector y (n)

k and vk
n be normalized eigenvector.

Theorem (5)

%(v (n)
k ,w (n)

k ) ≤ Ce−nδ,

where C and δ depend only on the symbol.

In the nonsymmetric case the formulas for y (n)
k are a little more

complicated.
Sergei M. Grudsky (CINVESTAV,Mexico) Eigenvalues of lager Toeplitz matrices Moscow, October 2010. 134 / 148



Numerical results

Given Tn(a), determine the approximate eigenvalue λ(n)
j,∗ from the equation

(n + 1)ϕ(λ
(n)
j,∗ ) + θ(λ

(n)
j,∗ ) = πj .

Put

w (n)
j,∗ =

w (n)
j (λ

(n)
j,∗ )

‖w (n)
j (λ

(n)
j,∗ )‖2

.

We define the distance between the normalized eigenvector v (n)
j and the

normalized vector w (n)
j,∗ by

%(v (n)
j ,w (n)

j,∗ ) := min
τ∈T
‖τv (n)

j − w (n)
j,∗ ‖2 =

√
2− 2〈v (n)

j ,w (n)
j,∗ 〉

Sergei M. Grudsky (CINVESTAV,Mexico) Eigenvalues of lager Toeplitz matrices Moscow, October 2010. 135 / 148



and put

∆
(n)
∗ = max

1≤j≤n
|λ(n)

j − λ
(n)
j,∗ |,

∆(n)
v ,w = max

1≤j≤n
%(v (n)

j ,w (n)
j,∗ ),

∆(n)
r = max

1≤j≤n
‖Tn(a)w (n)

j,∗ )− λ(n)
j,∗w (n)

j,∗ ‖2.

The tables following below show these errors for three concrete choices of
the generating function a.
For a(t) = 8− 5t − 5t−1 + t2 + t−2 we have

n = 10 n = 20 n = 50 n = 100 n = 150
∆

(n)
∗ 5.4 · 10−7 1.1 · 10−11 5.2 · 10−25 1.7 · 10−46 9.6 · 10−68

∆
(n)
v ,w 2.0 · 10−6 1.1 · 10−10 2.0 · 10−23 1.9 · 10−44 2.0 · 10−65

∆
(n)
r 8.0 · 10−6 2.7 · 10−10 3.4 · 10−23 2.2 · 10−44 1.9 · 10−65
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If a(t) = 8 + (−4− 2i)t + (−4− 2i)t−1 + it − it−1 then

n = 10 n = 20 n = 50 n = 100 n = 150
∆

(n)
∗ 3.8 · 10−8 2.8 · 10−13 2.9 · 10−30 5.9 · 10−58 1.6 · 10−85

∆
(n)
v ,w 1.8 · 10−7 4.7 · 10−13 2.0 · 10−29 7.0 · 10−57 2.4 · 10−84

∆
(n)
r 5.4 · 10−7 1.3 · 10−12 2.7 · 10−29 6.7 · 10−57 1.9 · 10−84

In the case where a(t) = 24 + (−12− 3i)t + (−12 + 3i)t−1 + it3 − it−3

we get

n = 10 n = 20 n = 50 n = 100 n = 150
∆

(n)
∗ 6.6 · 10−6 1.2 · 10−10 7.6 · 10−24 1.4 · 10−45 3.3 · 10−67

∆
(n)
v ,w 1.9 · 10−6 1.3 · 10−10 2.0 · 10−23 7.2 · 10−45 2.8 · 10−66

∆
(n)
r 2.5 · 10−5 8.6 · 10−10 7.3 · 10−23 1.9 · 10−44 5.9 · 10−66
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Complex value case

a(t) = t−1(1− t)α f (t), α ∈ R+\N

where
1. f (t) ∈ H∞ ∩ C∞.
2. f can be analytically extended to a neighborhood of T\{1}.
3. The range of the symbol a R(a) is a closed Jordan curve without

loops and winding number -1 around each interior point.
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Figure: The map a(t) over the unit circle.
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Symbols with Fisher–Harturg singularity.

aα,β(t) = (1− t)α(−t)γ , 0 < α < |β| < 1.

Conjecture of
H.Dai, Z.Geary and L.P.Kadanoff, 2009

λ
(n)
j ∼ aα,β

(
wj · exp

{
(2α + 1)

log
n

})

where wj = exp
(
−i 2πj

n

)
.
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Lemma (3)

Let a(t) = t−1h(t) be a symbol that satisfies the following conditions:
1. h ∈ H∞.
2. R(a) is a closed Jordan curve in C without loops.
3. windλ(a) = −1, for each λ in the interior of sp T (a).

Then, for each λ in the interior of sp T (a), we have the equality

Dn(a − λ) = (−1)nhn+1
o

[ 1
h(t)− λt

]
n
,

for every n ∈ N.
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Proof.

Tn+1(h − λt) =



h0 0 0 · · · 0 0
h1 − λ h0 0 · · · 0 0
h2 h1 − λ h0 · · · 0 0
...

...
... . . . ...

...
hn−1 hn−2 hn−3 · · · h0 0
hn hn−1 hn−2 · · · h1 − λ h0


(66)

and

Tn(a − λ) =


h1 − λ h0 0 · · · 0
h2 h1 − λ h0 · · · 0
...

...
... . . . ...

hn−1 hn−2 hn−3 · · · h0
hn hn−1 hn−2 · · · h1 − λ

 .
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Applying Cramer’s rule to (66) we obtain

[
T−1

n+1(h − λt)
]

(n+1,1)
= (−1)n+2 Dn(a − λ)

Dn+1(h − λt)
. (67)

We claim that h(t)− λt is invertible in H∞. To see this, we must show
that h(t) 6= λt for all t ∈ D and each l ∈ D(a). Let l be a point in D(a).
For each t ∈ T we have h(t) 6= λt because λ /∈ ∂D(a) = R(a). By
assumption, windλ(a) = −1 and thus,

− 1 = wind0(a− λ) = wind0(t−1h(t)− λ) = wind0(t−1(h(t)− λt)
)

= wind0(t−1) + wind0(h(t)− λt) = −1 + wind0(h(t)− λt).
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It follows that wind0(h(t)− λt) = 0, which means that the origin does not
belong to the inside domain of the curve {h(t)− λt : t ∈ T} . As h ∈ H∞,
this shows that h(t) 6= λt for all t ∈ D and proves our claim.
If b is invertible in H∞, then T−1

n+1(b) = Tn+1(1/b). Thus the (n + 1, 1)

entry of the matrix T−1
n+1(h(t)− λt) is in fact the nth Fourier coefficient of

(h(t)− λt)−1, [
T−1

n+1(h(t)− λt)
]

(n+1,1)
=

[ 1
h(t)− λt

]
n
.

Inserting this in (67) we obtain

Dn(a−λ) = (−1)n+2Dn+1(h(t)−λt)

[ 1
h(t)− λt

]
n

= (−1)nhn+1
0

[ 1
h(t)− λt

]
n
,

which completes the proof.
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Theorem (6)

Let a be the symbol a(t) = t−1h(t) where h satisfies the following
conditions:

1. h ∈ H∞.
2. h(t) = (1− t)αf (t) with α ∈ R+\N and f

(
eiθ
)
∈ C∞(−π, π].

3. h has an analytic extension to a neighborhood W of T\{1}.
4. R(a) is a closed Jordan curve in C without loops.
5. windλ(a) = −1, for each λ in the interior of sp T (a).

Then for every small neighborhood Wo of zero in C and every
λ ∈ sp T (a) ∩ a(W ) not contained in Wo, is

Dn(a − λ) = (−ho)n+1
[

1
tn+2
λ a′(tλ)

− f (1)Γ(α + 1) sin(απ)

πλ2nα+1 + R9(n, λ)

]
,

where R9(n, λ) = O
(
n−α−αo−1), n→∞, uniformly with respect to λ in

a(W ). Here αo = min{α, 1}.
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Theorem (7)

Under the hypothesis of theorem (6) we have the following asymptotic
expression for λj :

λj = a(ωj) + (α + 1)ωja′(ωj)
log(n)

n +
ωja′(ωj)

n log
(

a2(ωj)

coa′(ωj)ω2
j

)

+O
( log(n)

n

)2
, n→∞.
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n = 4096
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Figure: The solid blue line is the range of a. The black dots are sp Tn(a)
calculated by Matlab. The red crosses and the green stars are the approximations,
for 1 and 2 terms respectively. Here we took α = 3/4.
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n = 4096
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Figure: The dotted red and solid green lines, are the errors of the approximations,
with 1 and 2 terms respectively. Here we took α = 3/4.
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