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A truncated Wiener—Hopf operator is of the form
(K.£)(t) +/ K(t— s)f(s)ds,  t€(0,7). (1)

We suppose that k is a function in L2(R), so that the integral operator
in (1) is a Hilbert—Schmidt operator and thus compact on L2(0, 7) for all
7 > 0. Let sp K; be the spectrum of K. Since K; — | is compact, all
points in sp K; \ {1} are eigenvalues. We are interested in the location
and the asymptotic behaviour of these eigenvalues as 7 tends to infinity.

The two basic assumptions stipulated in this paper are that the kernel
k(t — s) is complex-symmetric, which means that k is a complex—valued
function satisfying k(t) = k(—t) for all t € R, and that the so-called
symbol of the operator,

a(x) —1+/ )eXtdt, xR,

is a rational function.
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These two assumptions are equivalent to the requirement that

m
Zpg(t)e_)‘” for t>0,
k(t) =< Gt
Zpg(—t)e/\” for t<0,
/=1

where Ay are complex numbers with Re Ay > 0 and py(t) are polynomials
with complex coefficients. As k(t) = k(—t) for all t € R if and only if
a(x) = a(—x) for all x € R, the Wiener—Hopf operators considered here
are just those with even rational symbols. Moreover, k € Ly(R) implies
that lim|,| o a(x) = 1. Therefore we may write

1 XS

where (; € C, pj € C, Repj > 0, and —¢7 # pij for all j, k. To indicate
the dependence of K on the symbol a and in accordance with the
literature, we henceforth denote K, by W;(a).
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This work was motivated by numerous papers dedicated to Fox—Li
operators. The Fox-Li operator is (1) with the kernel k(t) = ei*. Clearly,
k(t — s) is complex-symmetric, and although the function k is not in
L2(R), the Fox-Li operator can be shown to be the identity plus a trace
class operator. Its symbol is

a(x) =1+ e/ e XA, (3)

Numerical computations and arguments from physics indicate that the
eigenvalues of W;(a) line up along a spiral commencing near the point
1+ \/ﬁei’r/4 and rotating clockwise to the point 1. However
mathematically rigorous and at the same time satisfactory results are very
sparse. These include Henry Landau’s analysis of the pseudo-eigenvalues
of the Fox-Li operator and Henry Landau and Harold Widom's paper,
1980 provides deep insight into the singular values of the Fox—Li operator.
Of course, (3) is far from being a rational function, but we think that
exploring the case of even rational symbols might well be a first step
towards gaining an understanding of the situation for the Fox—Li

symbol (3).
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We extend a from the real line R to R := R U {£o0} by defining

a(+00) := 1. Let R(a) := a(R). By our assumptions, R(a) is an analytic
curve in the plane such that when x moves from —oo to 0, the symbol
a(x) traces out this curve from 1 to a(0), and when x goes further from 0
to oo then a(x) follows this curve back from a(0) to 1. The winding
number of the function a about any point outside R(a) is zero.

Classical results on the finite section method for Wiener—Hopf operators
show that if U C C is any open neighbourhood of R(a), then

sp Wr(a) C U for all sufficiently large 7. In A. Béttcher and H. Widom,
1994 the limit of sp W;(a) in the Hausdorff metric was determined for
arbitrary rational symbols a. In the case of even rational symbols, the
result of this paper implies that sp W, (a) converges to R(a) in the
Hausdorff metric.
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The results of this paper are different from those cited in the previous
paragraph. We provide here asymptotic expansions for individual
eigenvalues. Under additional hypotheses, namely that the set R(a) is a
curve without self-intersections and that the roots of certain polynomials
are all simple, we prove the following. We associate a number 5 > 0 with
a, consider the half-stripe

S;:={zeC:Rez>0, |[Imz|<pj/7},

and show that, for 7 large enough, all the eigenvalues of W;(a) are
contained in a(S;).
We consider the segments

o= |(2) T (2) ]

In this way we obtain family of rectangles

Skr={z€ S5 :Reze I}
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We prove that if 7 is sufficiently large then each set a(Sk ;) contains
exactly one eigenvalue, and the eigenvalue Ay ; in a(Sk ;) has an
asymptotic expansion

ci(km/T) n co(km/T)

Akir o alkr/7) + 2iT (2i7)?2

with computable coefficients c1(kn/7), co(km/T),.... We also show that
eigensubspaces are all one-dimensional and describe the structure of the
eigenfunctions.
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The Wiener—Hopf determinant

Let U C C be a sufficiently small open neighbourhood of R(a) and take a
point A € U\ {a(0), 1} such that the roots wa(A),...,w,(A) are all
distinct. We then have

ax) =A _ (x=&) ... (x=&(N) _ ﬁ X2 —wi(A)?

1-X  (+pd).. (2 +ud) X2+ pi?

Jj=1

Thus, &1(A), ..., &(N) are simply the roots £wi(A), ..., tw,(A) labelled
in a different manner.
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A. Béttcher, 1989:

a—A KT wyT
det WT <1_)\> =e % VVMe M (4)

where kK = k(\) is some constant, the sum is over all subsets
M C {&1,...,&,} of cardinality r, and, with M€ :={&,..., &} \ M and

R :: {u17 AR 7Mr}1
wy = Z i§;,
geMe
HEJGMC,umeR(ifj + Hm) HueeR,gkeM(W — i)
HueeR,umeR(/M + Um) ngEMC,ékEM(iéj — i{k)

WM =

The point A belongs to sp W.(a) if and only if (4) is zero, whereby its
algebraic multiplicity is its multiplicity as a zero of (4).
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The dominant terms in (4) are those for which

Im wy, = Z Im

§eme

is minimal.
The two candidates for sets M with minimal values (5) are given by

M = {-wi,—wz,...,—w,}, M5 :={w1,—wa,...,—w},

- A
e "7 det W, (a ) = Wy,e"" 7 + Wj,e"M" + Z Wye"™MT

1= MMy, M>
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Fix an open neighborhood U C C of R(a). Then sp W,(a) C U for all
sufficiently large 7. Let M ={z € C: [Imz| < d,a(z) € U}. For z €N
consider the two functions

r

Q(z) = H(z—i,ug),
/=1

r

P(z) = ]]lz - wea(2))]

(=2

and set
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It be A = a(z) with z =w; = wi(A) in 1. The equation
det W;((a— A)/(1 — X)) = 0 may be written in the form

72 = b(z)(1+ ¢:(2))
where

A= X Wil
MMy, M,
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Lemma

If0 ¢ M orif 0 € N but the roots wz(a(0)),...,w.(a(0)) are distinct, then
pr(2) = O(7) and () = O(re~27)

uniformly in z € T1.
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Main results

Theorem (1)

Let clos | be the closure of | in [0, 00] and suppose that for A in a(clos /)
the roots wy(\), . ..,w,(A) are distinct. Then there exists a Ty such that
the following is true for every T > 1.

(a) IfX=a(z) € U is an eigenvalue of W,(a) such that Rez € I ; for
some k € K,(I), then z € Sy ;.

(b) For each k € K+(I), the set a(Sk ;) contains exactly one eigenvalue
Ak, of the operator Wr(a). The algebraic multiplicity of this
eigenvalue is 1.
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Theorem (1)

(c) The function
1
2ir

k
Oir(2) = -+ 5 log b(2)

is a contractive map of Sy , into itself and, letting

km n n—
Zo = gl =0(zn ) (=),

we have
M = a(zi) + O(1/7™1) as 7 — oo

uniformly in k € IC-(1), that is, there exist constants C, < oo
independent of k and T such that

A — a(zi)] < o/

for all T > 19 and all k € K, ().
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Corollary

If the points wa(1),...,w,(1) are distinct then W;(a) has infinitely many
eigenvalues for every sufficiently large T.

The first three iterations in Theorem 1(c) give for A,

a(zo) + 2}7 '(z0)c1(z0) + ﬁ [a’(zo)cz(z )+ % 1(20)2}
"‘(217 [ '(z0)c3(20) + a"(20)c1(20)c2(20) + Al Z° c1(z0) } + O(T%) ,

where
alw) = ogb(a).  aln) = 5 logb(a),
a(z) = b/((Z(?)) log b(z0) + b”(ZO)b2(b(;o) o) (log b(20))>.
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If ais real valued, which occurs if and only if k(t) = k(—t) for all ¢, then
W;(a) is a selfadjoint operator. In this case |b(x)| =1 for x € R, hence
the function ®, - in Theorem 2(c) maps I - into itself and becomes

km 1
S (x) = — + > arg b(x)

for x € Iy . It follows in particular that all eigenvalues are real, as they
should be for a selfadjoint operator.
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Eigenfunctions

Theorem (2)

Suppose that the numbers p1, .. ., . are distinct. Let A\ be an eigenvalue
of Wy (a) and assume that the roots wa(A),...,w,(\) are distinct. Then

every eigenfunction o, € L?(0,7) of W,(a) corresponding to \ is of the

form
r

- (t) = [Cjeiwj(/\)t i Crﬂ_e—iw,-(x)t] : (8)
j=1

satisfies o, (T — t) = Op,(t) for all t € (0,7) with 0 € {£1},
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Theorem (2)

and can be rewritten in the form

Z2cjeiwf(>‘)7/2 cos <wj()\) (t - T>> for 0 =1,
Jj=1 2

Z2icjei“f()‘)T/2 sin (wj(A) (t - ;)) for 0 =—1.
j=1

(PT(t) -

The coefficients ¢; can be computed from the linear algebraic system.
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Numerical examples

alx) = —(16 + 68i) — (10 4 30i)x* — (34 2i)x* + x°
T 24160 £ (20 1 120)x2 (94X X (g
— 142y kP

U

where o = [-1,—i,—2] and p =[1,1+1i,3 —1].

Figure: The range R(a) is indicated on the left, while the range of b on (0, 00) is
indicated on the right. The latter is traced out clockwise, starting and

terminating at 1.
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Figure: The eigenvalues, denoted by small discs and overlaid on R(a), for
T = 20,50, 100.
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Speed of convergence

Table: The error |z,(("l — Ak,r| for =20, k =10,...,17 and the iterations

n=20,1,2,3,4.

10 11 12 13 14 15 17
01]984_¢p 7.69_¢p 6.02_9» 4.75_g» 3.80_g2 3.10_gp 2.19_q
1369 g3 268 93 195 g3 142 3 1.03_¢3 7.55 ¢4 4.11 4
2| 1.40_¢4 9.47_¢5 6.38_¢g5 4.26_g5 2.82_g5 1.84_g5 7.70_gs
3153306 355_06 2.09_¢ 1.28_¢ 7.70_g7 4.51_¢7 1.44_¢7
41203 _¢p7 1.18_¢7 6.85_gg3 3.86_9 2.10_g9g3 1.10 g3 2.71_g9
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Table: The error |z,(<"l — M| for 7 =100, k = 50,55, ...,85 and the iterations

n=20,1,2,3,4.

50 55 60 65 70 75 85
01]209 ¢p 1.62_¢p 1.26_¢g» 9.87_g3 7.86_g3 6.38_g3 4.48_¢3
1|166_gs2 119 g4 850 g5 6.11 o5 4.42 o5 3.21 _¢5 1.73 05
21132 06 8.69_¢7 5.75_¢97 3.79_97 248_97 1.62_g7 6.72_¢g
3] 1.05_¢pg 6.37_¢9 3.89 g9 235 99 1.40_g9 8.14_19 2.60_19
4183217 467_11 2.63_11 146_17 7.86_1» 4.10_1» 1.01_q»
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Figure: The speed of convergence of ai %0 for growmg n. The equispaced points

Z/E()z)o are denoted by white circles, the first iteration zk 20 by filled-in discs and the

eigenvalues Ai";o by white stars.
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