# Fox-Li operator, Laser Theory and Wiener-Hopf Theory

Sergei Grudsky

CINVESTAV, Mexico City, Mexico

International Workshop "Analisis, Differential Equations and Control theory", Morelia, Mexico, 18-20 January, 2012.

Sergei Grudsky (CINVESTAV, Mexico) Eigenvalues Wiener–Hopf operators

# This talk is based on joint work with Albrecht Böttcher and Arieh Iserles.

Albrecht Böttcher, Sergei Grudsky and Arieh Iserles. *Spectral theory of large Wiener-Hopf operators with complex- symmetric kernels and rational symbols.* Mathematical Proceedings of Cambridge Philosophical Society, 151 (2011), 161-191 pp.

A truncated Wiener-Hopf operator is of the form

$$(K_{\tau}f)(t):=f(t)+\int_0^{ au}\mathrm{k}(t-s)f(s)ds,\qquad t\in(0, au).$$

We suppose that k is a function in  $L^2(\mathbb{R})$ , so that the integral operator in (1) is a Hilbert–Schmidt operator and thus compact on  $L^2(0,\tau)$  for all  $\tau > 0$ . Let  $\operatorname{sp} K_{\tau}$  be the spectrum of  $K_{\tau}$ . Since  $K_{\tau} - I$  is compact, all points in  $\operatorname{sp} K_{\tau} \setminus \{1\}$  are eigenvalues. We are interested in the location and the asymptotic behaviour of these eigenvalues as  $\tau$  tends to infinity.

The basic assumptions stipulated in this reports are that the kernel k(t-s) is complex-symmetric, which means that k is a complex-valued function satisfying k(t) = k(-t) for all  $t \in \mathbb{R}$ , and that the so-called *symbol* of the operator,

$$\mathsf{a}(x) := 1 + \int_{-\infty}^{\infty} \mathrm{k}(t) \, e^{\mathrm{i} x t} dt, \quad x \in \mathbb{R},$$

is complex-symmetric also.

A.G. Fox and T. Li *Resonant modes in a Maser Interferometer*. Bell, System Tech. J 40, 1961.



The problem about the

#### PROPER WAVES (RESONANT MODES)

of this waveguide.

$$\int\limits_{-a}^{a}k(x-s)u(s)ds=\lambda u(x),\quad x\in(-a,a)$$

$$a(\mu) = (\Phi K)(\mu) = k rac{(1 - e^{2ib\sqrt{k^2 - \mu^2}})}{\sqrt{k^2 - \mu^2}}$$

k = w/c- wave number.

э

If  $|\mu| \ll |k|$ , then

$$b\sqrt{k^2-\mu^2}=kb\sqrt{1-(\mu/k)^2}pprox bk(1-(\mu/k)^2+rac{3}{8}((\mu/k)^4)$$

If  $b|k^{-3}||\mu|^4\ll 1$ , then

$$\sqrt{k^2 - \mu^2} \approx k - \mu^2 / k$$

and

$$egin{aligned} &a^*(\mu) = (1 - e^{ikb - irac{b}{k}\mu^2}) \ &a_0(\mu) = e^{-iw\mu^2} <=>k(x) = e^{iwx^2} \end{aligned}$$

Strongly oscillating symbol <=> kernel.

イロト 不得下 イヨト イヨト 二日

A. Böttcher, H. Brunner, A. Iserles, and S. Nørsett, *On the singular values and eigenvalues of the Fox–Li and related operators.* New York J. Math., to appear.



A. Böttcher, H. Brunner, A. Iserles, and S. Nørsett, *On the singular values and eigenvalues of the Fox–Li and related operators.* New York J. Math., to appear.



The are a lot articles (numerical) that devoted to the case  $a_0(\mu) = e^{iw\mu^2}$ . But there exist very few rigorous mathematical results. The change a(t) by  $a^*(t)$ .

- The spectrum (general speaking) in not stable under (even small) perturbation.
- **②** The symbol  $a_0(\mu)$  is strongly oscillation including the point  $\mu \to \infty$ . The symbol

$$a(\mu) = k rac{(1 - e^{2ib\sqrt{k^2 - \mu^2}})}{\sqrt{k^2 - \mu^2}}$$

is strongly oscillating only for  $|\mu| \ll k$  and continuous in  $\mu \to \infty$ 

$$a(\infty) = 0$$

That is the symbol  $a(\mu)$  in point of view Wiener-Hopf operator theory is more simple.

Böttcher/Widom 1994. If K(t) is complex-symmetric and  $a(\mu) \in C(\dot{R})$  then

$$\limsup_{\tau\to\infty} K_{\tau} = \operatorname{Im} a(\mu), \quad (\mu \in R)$$

Asymptotics of eigenvalues by

 $\tau \to \infty$  ?

4 E b

3

Let k(t) is complex-symmetric and  $a(\mu)$  is rational, then

$$\mathrm{k}(t) = \left\{ egin{array}{cc} \sum_{\ell=1}^m p_\ell(t) \mathrm{e}^{-\lambda_\ell t} & ext{for} \quad t>0, \ \sum_{\ell=1}^m p_\ell(-t) \mathrm{e}^{\lambda_\ell t} & ext{for} \quad t<0, \end{array} 
ight.$$

where  $\lambda_{\ell}$  are complex numbers with  $\operatorname{Re} \lambda_{\ell} > 0$  and  $p_{\ell}(t)$  are polynomials with complex coefficients. As k(t) = k(-t) for all  $t \in \mathbb{R}$  if and only if a(x) = a(-x) for all  $x \in \mathbb{R}$ , the Wiener–Hopf operators considered here are just those with even rational symbols. Moreover,  $k \in L_2(\mathbb{R})$  implies that  $\lim_{|x|\to\infty} a(x) = 1$ . Therefore we may write

$$a(x) = \prod_{j=1}^{r} \frac{x^2 - \zeta_j^2}{x^2 + \mu_j^2}, \quad x \in \mathbb{R},$$
(2)

where  $\zeta_j \in \mathbb{C}$ ,  $\mu_j \in \mathbb{C}$ ,  $\operatorname{Re} \mu_j > 0$ , and  $-\zeta_j^2 \neq \mu_k^2$  for all j, k. To indicate the dependence of  $K_{\tau}$  on the symbol a and in accordance with the literature, we henceforth denote  $K_{\tau}$  by  $W_{\tau}(a)$ .

Sergei Grudsky (CINVESTAV, Mexico)

We provide here asymptotic expansions for individual eigenvalues. Under additional hypotheses, namely that the set  $\mathcal{R}(a)$  is a curve without self-intersections and that the roots of certain polynomials are all simple, we prove the following. We associate a number  $\beta > 0$  with *a*, consider the half-stripe

$$S_{\tau} := \{ z \in \mathbb{C} : \operatorname{Re} z > 0, \quad |\operatorname{Im} z| \le \beta/\tau \},$$

and show that, for  $\tau$  large enough, all the eigenvalues of  $W_{\tau}(a)$  are contained in  $a(S_{\tau})$ .

We consider the segments

$$I_{k, au} := \left[ \left(k - rac{1}{2}
ight) rac{\pi}{ au}, \left(k + rac{1}{2}
ight) rac{\pi}{ au} 
ight]$$

In this way we obtain family of rectangles

$$S_{k,\tau} := \{z \in S_{\tau} : \operatorname{Re} z \in I_{k,\tau}\}.$$

We prove that if  $\tau$  is sufficiently large then each set  $a(S_{k,\tau})$  contains exactly one eigenvalue, and the eigenvalue  $\lambda_{k,\tau}$  in  $a(S_{k,\tau})$  has an asymptotic expansion

$$\lambda_{k, au} \sim \mathsf{a}(k\pi/ au) + rac{c_1(k\pi/ au)}{2\mathrm{i} au} + rac{c_2(k\pi/ au)}{(2\mathrm{i} au)^2} + \dots$$

with computable coefficients  $c_1(k\pi/\tau), c_2(k\pi/\tau), \ldots$  We also show that eigensubspaces are all one-dimensional and describe the structure of the eigenfunctions.

Let  $U \subset \mathbb{C}$  be a sufficiently small open neighbourhood of  $\mathcal{R}(a)$  and take a point  $\lambda \in U \setminus \{a(0), 1\}$  such that the roots  $\omega_2(\lambda), \ldots, \omega_r(\lambda)$  are all distinct. We then have

$$\frac{a(x)-\lambda}{1-\lambda}=\frac{(x-\xi_1(\lambda))\dots(x-\xi_{2r}(\lambda))}{(x^2+\mu_1^2)\dots(x^2+\mu_r^2)}=\prod_{j=1}^r\frac{x^2-\omega_j(\lambda)^2}{x^2+\mu_j^2}.$$

Thus,  $\xi_1(\lambda), \ldots, \xi_{2r}(\lambda)$  are simply the roots  $\pm \omega_1(\lambda), \ldots, \pm \omega_r(\lambda)$  labelled in a different manner.

ヘロト 人間 トイヨト イヨト 二日

A. Böttcher, 1989:

det 
$$W_{\tau}\left(\frac{a-\lambda}{1-\lambda}\right) = e^{\kappa\tau} \sum_{M} W_{M} e^{w_{M}\tau}$$
 (3)

where  $\kappa = \kappa(\lambda)$  is some constant, the sum is over all subsets  $M \subset \{\xi_1, \ldots, \xi_{2r}\}$  of cardinality r, and, with  $M^c := \{\xi_1, \ldots, \xi_{2r}\} \setminus M$  and  $R := \{\mu_1, \ldots, \mu_r\}$ ,

$$\begin{split} w_M &:= \sum_{\xi_j \in M^c} i\xi_j, \\ W_M &:= \frac{\prod_{\xi_j \in M^c, \mu_m \in R} (i\xi_j + \mu_m) \prod_{\mu_\ell \in R, \xi_k \in M} (\mu_\ell - i\xi_k)}{\prod_{\mu_\ell \in R, \mu_m \in R} (\mu_\ell + \mu_m) \prod_{\xi_j \in M^c, \xi_k \in M} (i\xi_j - i\xi_k)}. \end{split}$$

The point  $\lambda$  belongs to sp  $W_{\tau}(a)$  if and only if (3) is zero, whereby its algebraic multiplicity is its multiplicity as a zero of (3).

医静脉 医黄脉 医黄脉 一直

The dominant terms in (3) are those for which

$$\operatorname{Im} w_{\mathcal{M}} = \sum_{\xi_j \in \mathcal{M}^c} \operatorname{Im} \xi_j \tag{4}$$

is minimal.

The two candidates for sets M with minimal values (4) are given by

$$M_1^c := \{-\omega_1, -\omega_2, \dots, -\omega_r\}, \quad M_2^c := \{\omega_1, -\omega_2, \dots, -\omega_r\},$$
$$e^{-\kappa\tau} \det W_\tau \left(\frac{a-\lambda}{1-\lambda}\right) = W_{M_1} e^{w_{M_1}\tau} + W_{M_2} e^{w_{M_2}\tau} + \sum_{\substack{M \neq M_1, M_2}} W_M e^{w_M\tau}, \quad (5)$$

Sergei Grudsky (CINVESTAV, Mexico)

э

< □ > < 同 >

Fix an open neighborhood  $U \subset \mathbb{C}$  of  $\mathcal{R}(a)$ . Then  $\operatorname{sp} W_{\tau}(a) \subset U$  for all sufficiently large  $\tau$ . Let  $\Pi = \{z \in \mathbb{C} : |\operatorname{Im} z| < \delta, a(z) \in U\}$ . For  $z \in \Pi$  consider the two functions

$$egin{aligned} Q(z) &:=& \prod_{\ell=1}^r (z-\mathrm{i}\mu_\ell), \ P(z) &:=& \prod_{\ell=2}^r [z-\omega_\ell(a(z))] \end{aligned}$$

and set

$$b(z) := rac{Q(-z)^2}{Q(z)^2} \cdot rac{P(z)^2}{P(-z)^2}.$$

17 / 34

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

It be  $\lambda = a(z)$  with  $z = \omega_1 = \omega_1(\lambda)$  in  $\Pi$ . The equation det  $W_{\tau}((a - \lambda)/(1 - \lambda)) = 0$  may be written in the form

$$e^{2i\tau z} = b(z)(1 + \varphi_{\tau}(z)) \tag{6}$$

4 E b

where

$$\varphi_{\tau}(z) = \sum_{M \neq M_1, M_2} W_{M_1}^{-1} W_M \mathrm{e}^{(w_M - w_{M_1})\tau}.$$

#### Lemma

If  $0 \notin \Pi$  or if  $0 \in \Pi$  but the roots  $\omega_2(a(0)), \dots, \omega_r(a(0))$  are distinct, then  $\varphi_{\tau}(z) = O(e^{-2\delta\tau})$  and  $\varphi'_{\tau}(z) = O(\tau e^{-2\delta\tau})$ uniformly in  $z \in \Pi$ .

#### Theorem (1)

Let clos I be the closure of I in  $[0, \infty]$  and suppose that for  $\lambda$  in a(clos I) the roots  $\omega_2(\lambda), \ldots, \omega_r(\lambda)$  are distinct. Then there exists a  $\tau_0$  such that the following is true for every  $\tau > \tau_0$ .

- (a) If  $\lambda = a(z) \in U$  is an eigenvalue of  $W_{\tau}(a)$  such that  $\operatorname{Re} z \in I_{k,\tau}$  for some  $k \in \mathcal{K}_{\tau}(I)$ , then  $z \in S_{k,\tau}$ .
- (b) For each  $k \in \mathcal{K}_{\tau}(I)$ , the set  $a(S_{k,\tau})$  contains exactly one eigenvalue  $\lambda_{k,\tau}$  of the operator  $W_{\tau}(a)$ . The algebraic multiplicity of this eigenvalue is 1.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

#### Theorem (1)

(c) The function

$$\Phi_{k,\tau}(z) := \frac{k\pi}{\tau} + \frac{1}{2\mathrm{i}\tau}\log b(z)$$

is a contractive map of  $S_{k,\tau}$  into itself and, letting

$$z_{k, au}^{(0)} := rac{k\pi}{ au}, \quad z_{k, au}^{(n)} := \Phi_{k, au}(z_{k, au}^{(n-1)}) \qquad (n \ge 1),$$

we have

$$\lambda_{k, au}= extsf{a}(z_{k, au}^{(n)})+O(1/ au^{n+1})$$
 as  $au
ightarrow\infty$ 

uniformly in  $k \in \mathcal{K}_{\tau}(I)$ , that is, there exist constants  $C_n < \infty$  independent of k and  $\tau$  such that

$$|\lambda_{k,\tau} - a(z_{k,\tau}^{(n)})| \leq C_n/\tau^{n+1}$$

for all  $\tau > \tau_0$  and all  $k \in \mathcal{K}_{\tau}(I)$ .

3

イロト イポト イヨト イヨト

#### Corollary

If the points  $\omega_2(1), \ldots, \omega_r(1)$  are distinct then  $W_{\tau}(a)$  has infinitely many eigenvalues for every sufficiently large  $\tau$ .

The first three iterations in Theorem 1(c) give for  $\lambda_{k,\tau}$ 

$$\begin{aligned} & \mathsf{a}(z_0) + \frac{1}{2\mathrm{i}\tau} \mathsf{a}'(z_0) c_1(z_0) + \frac{1}{(2\mathrm{i}\tau)^2} \left[ \mathsf{a}'(z_0) c_2(z_0) + \frac{\mathsf{a}''(z_0)}{2} c_1(z_0)^2 \right] \\ & + \frac{1}{(2\mathrm{i}\tau)^3} \left[ \mathsf{a}'(z_0) c_3(z_0) + \mathsf{a}''(z_0) c_1(z_0) c_2(z_0) + \frac{\mathsf{a}'''(z_0)}{6} c_1(z_0)^3 \right] + O\left(\frac{1}{\tau^4}\right), \end{aligned}$$

where

$$c_1(z_0) = \log b(z_0), \qquad c_2(z_0) = \frac{b'(z_0)}{b(z_0)} \log b(z_0),$$
  
$$c_3(z_0) = \frac{b'(z_0)^2}{b(z_0)^2} \log b(z_0) + \frac{b''(z_0)b(z_0) - b'(z_0)^2}{2b(z_0)^2} (\log b(z_0))^2.$$

Sergei Grudsky (CINVESTAV, Mexico)

22 / 34

If a is real valued, which occurs if and only if k(t) = k(-t) for all t, then  $W_{\tau}(a)$  is a selfadjoint operator. In this case |b(x)| = 1 for  $x \in \mathbb{R}$ , hence the function  $\Phi_{k,\tau}$  in Theorem 1(c) maps  $I_{k,\tau}$  into itself and becomes

$$\Phi_{k, au}(x) = rac{k\pi}{ au} + rac{1}{2 au} rg b(x)$$

for  $x \in I_{k,\tau}$ . It follows in particular that all eigenvalues are real, as they should be for a selfadjoint operator.

#### Theorem (2)

Suppose that the numbers  $\mu_1, \ldots, \mu_r$  are distinct. Let  $\lambda$  be an eigenvalue of  $W_{\tau}(a)$  and assume that the roots  $\omega_2(\lambda), \ldots, \omega_r(\lambda)$  are distinct. Then every eigenfunction  $\varphi_{\tau} \in L^2(0, \tau)$  of  $W_{\tau}(a)$  corresponding to  $\lambda$  is of the form

$$\varphi_{\tau}(t) = \sum_{j=1}^{r} \left[ c_{j} \mathrm{e}^{\mathrm{i}\omega_{j}(\lambda)t} + c_{r+j} \mathrm{e}^{-\mathrm{i}\omega_{j}(\lambda)t} \right], \tag{7}$$

イロト イポト イヨト イヨト 二日

24 / 34

satisfies  $\varphi_{ au}( au-t)= heta arphi_{ au}(t)$  for all  $t\in (0, au)$  with  $heta\in \{\pm 1\}$ ,

#### Theorem (2)

and can be rewritten in the form

$$\varphi_{\tau}(t) = \begin{cases} \sum_{j=1}^{r} 2c_{j} \mathrm{e}^{\mathrm{i}\omega_{j}(\lambda)\tau/2} \cos\left(\omega_{j}(\lambda)\left(t-\frac{\tau}{2}\right)\right) & \text{for} \quad \theta = 1, \\ \sum_{r}^{r} 2\mathrm{i}c_{j} \mathrm{e}^{\mathrm{i}\omega_{j}(\lambda)\tau/2} \sin\left(\omega_{j}(\lambda)\left(t-\frac{\tau}{2}\right)\right) & \text{for} \quad \theta = -1. \end{cases}$$

The coefficients  $c_j$  can be computed from the linear algebraic system.

< A 1

▶ < ∃ >

э

### Numerical examples

$$a(x) = \frac{-(16+68i) - (10+30i)x^2 - (3+2i)x^2 + x^6}{(12+16i) + (20+12i)x^2 + (9-4i)x^4 + x^6} = = 1+2\sum_{k=1}^{3} \frac{\alpha_k \mu_k}{x^2 + \mu_k^2}$$
(8)

where  $\boldsymbol{\alpha} = [-1, -\mathrm{i}, -2]$  and  $\boldsymbol{\mu} = [1, 1+\mathrm{i}, 3-\mathrm{i}].$ 



Figure: The range  $\mathcal{R}(a)$  is indicated on the left, while the range of b on  $(0, \infty)$  is indicated on the right. The latter is traced out clockwise, starting and terminating at 1.

Sergei Grudsky (CINVESTAV, Mexico)

Eigenvalues Wiener–Hopf operators

Mexico, January, 2012

26 / 34



Figure: The eigenvalues, denoted by small discs and overlaid on  $\mathcal{R}(a)$ , for  $\tau = 20, 50, 100$ .

Sergei Grudsky (CINVESTAV, Mexico)

Eigenvalues Wiener-Hopf operators

Mexico, January, 2012

27 / 34

# Speed of convergence

Table: The error  $|z_{k,\tau}^{(n)} - \lambda_{k,\tau}|$  for  $\tau = 20$ ,  $k = 10, \ldots, 17$  and the iterations n = 0, 1, 2, 3, 4.

|   | 10                  | 11                  | 12           | 13           | 14           | 15           | 17           |
|---|---------------------|---------------------|--------------|--------------|--------------|--------------|--------------|
| 0 | 9.84 <sub>-02</sub> | 7.69 <sub>-02</sub> | $6.02_{-02}$ | $4.75_{-02}$ | $3.80_{-02}$ | $3.10_{-02}$ | 2.19_02      |
| 1 | 3.69 <sub>-03</sub> | $2.68_{-03}$        | $1.95_{-03}$ | $1.42_{-03}$ | $1.03_{-03}$ | $7.55_{-04}$ | $4.11_{-04}$ |
| 2 | $1.40_{-04}$        | $9.47_{-05}$        | $6.38_{-05}$ | $4.26_{-05}$ | $2.82_{-05}$ | $1.84_{-05}$ | $7.70_{-06}$ |
| 3 | $5.33_{-06}$        | $3.55_{-06}$        | $2.09_{-06}$ | $1.28_{-06}$ | $7.70_{-07}$ | $4.51_{-07}$ | $1.44_{-07}$ |
| 4 | $2.03_{-07}$        | $1.18_{-07}$        | $6.85_{-08}$ | $3.86_{-08}$ | $2.10_{-08}$ | $1.10_{-08}$ | $2.71_{-09}$ |

Mexico, January, 2012

- 20

28 / 34

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Table: The error  $|z_{k,\tau}^{(n)} - \lambda_{k,\tau}|$  for  $\tau = 100$ , k = 50, 55, ..., 85 and the iterations n = 0, 1, 2, 3, 4.

|   | 50           | 55                  | 60           | 65                  | 70                  | 75           | 85           |
|---|--------------|---------------------|--------------|---------------------|---------------------|--------------|--------------|
| 0 | 2.09_02      | $1.62_{-02}$        | $1.26_{-02}$ | 9.87 <sub>-03</sub> | 7.86 <sub>-03</sub> | $6.38_{-03}$ | 4.48_03      |
| 1 | $1.66_{-04}$ | $1.19_{-04}$        | $8.50_{-05}$ | $6.11_{-05}$        | $4.42_{-05}$        | $3.21_{-05}$ | $1.73_{-05}$ |
| 2 | $1.32_{-06}$ | 8.69 <sub>-07</sub> | $5.75_{-07}$ | 3.79 <sub>-07</sub> | 2.48 <sub>-07</sub> | $1.62_{-07}$ | $6.72_{-08}$ |
| 3 | $1.05_{-08}$ | 6.37 <sub>-09</sub> | 3.89_09      | $2.35_{-09}$        | $1.40_{-09}$        | $8.14_{-10}$ | $2.60_{-10}$ |
|   |              | $4.67_{-11}$        |              |                     |                     |              |              |

Mexico, January, 2012

4 E b

3

29 / 34

A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A



Figure: The speed of convergence of  $a_{k,20}^{(n)}$  for growing *n*. The equispaced points  $z_{k,20}^{(0)}$  are denoted by white circles, the first iteration  $z_{k,20}^{(1)}$  by filled-in discs and the eigenvalues  $\lambda_{k,20}^{(n)}$  by white stars.

Sergei Grudsky (CINVESTAV, Mexico)

## References

- M. Bogoya, A. Böttcher, and S. Grudsky, Asymptotics of individual eigenvalues of a class of large Hessenberg Toeplitz matrices. Preprint 2010-08, TU Chemnitz (http://www.tu-chemnitz.de/mathematik/ preprint/).
- A. Böttcher, *Wiener-Hopf determinants with rational symbols.* Math. Nachr. **144** (1989), 39–64.
- A. Böttcher, H. Brunner, A. Iserles, and S. Nørsett, *On the singular values and eigenvalues of the Fox–Li and related operators.* New York J. Math., to appear.
- A. Böttcher, S. Grudsky, D. Huybrechs, and A. Iserles, *First-order trace formulas for the iterates of the Fox–Li operator.* To appear.
- A. Böttcher, S. Grudsky, and E. A. Maksimenko, Inside the eigenvalues of certain Hermitian Toeplitz band matrices. J. Comput. Appl. Math. 233 (2010), 2245–2264.

- A. Böttcher and B. Silbermann, *Introduction to Large Truncated Toeplitz Matrices.* Springer-Verlag, New York, 1999.
- A. Böttcher and H. Widom, *Two remarks on spectral approximations for Wiener–Hopf operators.* J. Integral Equations Appl. 6 (1994), 31–36.
- H. Brunner, A. Iserles, and S. P. Nørsett, The spectral problem for a class of highly oscillatory Fredholm integral operators. IMA J. Numer. Analysis 30 (2010), 108ï£ · -130.
- H. Brunner, A. Iserles, and S. P. Nørsett, *The computation of the spectra of highly oscillatory Fredholm integral operators*. J. Integral Equations Appl., to appear.
- J. A. Cochran, *Analysis of Linear Integral Equations*. McGraw–Hill, New York, 1972.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- F. Gesztesy and K. A. Makarov, (Modified) Fredholm determinants for operators with matrix-valued semi-separable integral kernels revisited. Integral Equations Operator Theory 47 (2003), 457–497 and 48 (2004), 425–426.
- I. Gohberg and I. A. Feldman, *Convolution Equations and Projection Methods for Their Solution.* Amer. Math. Soc., Providence, RI, 1974.
  - H. Landau, The notion of approximate eigenvalues applied to an integral equation of laser theory. Quart. Appl. Math. 35 (1977/78), 165–172.
- H. Landau and H. Widom, Eigenvalue distribution of time and frequency limiting. J. Math. Analysis Appl. 77 (1980), 469–481.
- P. Tilli, *Some results on complex Toeplitz eigenvalues.* J. Math. Anal. Appl. **239** (1999), 390–401.

3

< □ > < □ > < □ > < □ > < □ > < □ >

- H. Widom, *On the eigenvalues of certain Hermitian forms.* Trans. Amer. Math. Soc. **88** (1958), 491–522.
- H. Widom, *Extreme eigenvalues of translation kernels*. Trans. Amer. Math. Soc. **100** (1961), 252–262.
- H. Widom, *Eigenvalue distribution of nonselfadjoint Toeplitz matrices and the asymptotics of Toeplitz determinants in the case of nonvanishing index.* Operator Theory: Adv. Appl. **48** (1990), 387–421.