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DOUBLE BARRIER OPTION

Let S; be stock price at the instant of time ¢, and ¢ : (0, 00) —
[0, 00) be a measurable function.

Definition 1 An Up-Down-And-QOut barrier option is an agree-
ment between two persons (Writer and Holder) at time instant
t according to which Writer is obliged to pay to Holder the
amount p(St) at the future instant of time T (expiry date) if
and only if during the option life (between t and T'), S is
always within the interval (S1, S2) (here 0 < 81 < 53 are some
levels, i.e., barriers, of the stock price).

Note that if there exists some instant of time ;2 < 1" such that
St = Sa or Sy, < S| then the option expires worthless.

Consider a market model which consists of a bond with a con-
stant riskless rate of return r > ()
A(t) = exp{—rt}, and of a stock with price Sy = exp{ X} where
X is a Lévy process.



LEVY PROCESSES

Let (2, F.P) be a probability space, where

() 1s the space of elementary events and F is a
o-algebra of subsets of (2.

Definition 2 . An F-adapted process X; is
called a Lévy process if the following condi-
tions hold:

1L
2.

5.

Xg=0a.e.

X; has stationary increment, that is, for
arbitrary t > s > 0 the distribulion of
(X; — X) coincides with the distribution
of Xi_s.

X; has independent increments, that is,
for arbitrary 0 < t1 <ty < ... < t,, the
random variables

Xll? Xf-? o Xffl? L EE JX'f-n. o Xf--n.—l

are independent.

. For each w € §) the function X; = X(w)

is right-continuous on (0,00) and there
exists a left limat at all € > 0.

X, 1s stochastically continuous, that is,
for everyt > 0 and € > 0

ImP[| X, — Xy| > ¢ =0
s—t
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If X; is a Lévy process, then according to the Lévy-Khintchine

formula .
Eplet¥t] = et ©  ¢eR, (1)

where the function ¥ (£) has the representation

W) = 5% —ipg — [ (€~ 1 - ibul 1)) @

with ¢ = 0, 4 € R, and Il is a measure on R satisfying the

u
— 0

1, Jul <1
It = { 0, |u|>1.

The expectation of exponent Ep[e®*] is called the characteristic
function, the function ¥ (€) is called the characteristic exponent
of X; (under the probability measure P), the triplet (a,,Il) is
called the generating triplet of X.

< 00, (3)



EQUIVALENT MARTINGALE
MEASURE (EMM)

Let (2, F, F;, P) be a probability space
Sy =e*t,  A(t) = exp(—rt)
Sf = e 5; - discounted price process.

Definition. A new probability measure Q) on
same measure space (Q, F) is called EMM if

a) Q) is absolutely continuously respect to P
(historic measure);

b) St = EQ[SH| F], 1<t

Typically there are infinitely many EMM
Eberlian and Jacod [1997] give general de-
scription of all EMM for wide class of Lévy pro-
cess.



OPTION PRICE

Ula,t) = B |eTg(Xr) Loy | X: =1

Fi
where g(z) = p(e”)

n=:inf{r >t, X, € (—o0,r1)U(x2,00)} -
is hitting time

Sy =exp{x1}, So=exp{xs}
SoU(x,t) — is Option Price

Let be

(F.

E\H
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/ Fl&)e < de

Fourier Transform.



PARTIAL PSEUDODIFFERENTIAL PROBLEM

THEOREM 2.13 (Boyarchenko S.1., Levendorskii Sergei. Non-
Gaussian Merton-Black-Scholes theory. 2002) ‘
Let g(z)(:= @(e*)) € Loo(x1, x2) and let the process X; satisfy
the ACP-condition then the price (justified) of the
UP-DOWN-AND-OUT OPTION
the function U(z, t) is a bounded solution of the following problem.

oU(z,t)

ot
H(E:-T) = g(a:), S (331:332)1 (5

— (r — LOWU(z,t) =0, z € (z1,33), t < T, (4)

)

Ule, 1) =0, »eR\(ri22), t<T. (6)
)

Here the pseudodifferential operator L2 (acting on the variable
is given by the formula

(L&) (=) = (F (=N F (=), (7)

where 1%®(€) is the characteristic exponent of the Lévy process X,
under the EMM @,
Definition 2.4 We will say that the Lévy process X; satisfies

the (ACP)-condition if the function
o0
U (@) = g f e~ £(X,) | Xo = ]
0

is continuous for every f € Ly(R).



Convolution equation and classes of symbols
Introduce the Laplace transform (LT) by variable 7 = T'— ¢ and
denote

v(z,w) ;= (Lu)(z,w) = fnm e T 7)dr. (8)

Thus we pass from problem (4)-(6) to the following problem

(=L +r+wv(z,w) =g(z), =€ (0,a), (9)
v(z,w) =0 z & R\(0,a), a=x - x_ (10)

we can rewrite the problem (9)-(10) as the following equation,

Poo(F @E) +r + w)Flu(z, w) = g(z),z € (0,a), (11)

U9(E) = 5% — ik + p(¢)

where 0 > 0, u € R, and

o@) =~ [ (€ -1 —igul o)) (12

oo

with the measure [ satisfying the condition

0o 'L-:2
| f 2 1%(du)
e

< 0. (13)

g >0, ¢Q(§)”—2“= (14)
o =0, lsv<2, &g~ (15)
g =0 =0 Upel, S~ g,  (18)
c =0 p#0, 0<v<l, PUE~E (17)



Example 1 (Kobol Family) For Lévy processes from this fam-
ily the characteristic exponent (&) can have the following forms,

B(E) = i + e D=V — (A — i€}
Fe D(=2)N — (Ap + €)' (18)

Example 2 (Normal Tempered Stable Lévy Processes)
In this case the characteristic exponent is

Y(€) = —ipg +d[(0” — (B+i€)*)" — (& — B2 (19)
where v € (0,2), p € R, 0 >0, 8 € R, a > ||

Example 3 (Normal Inverse Gaussian Processes) If we
put in (19) v = 1 we obtain the characteristic exponent of a normal
inverse Gaussian Process

B(E) = ~ipg +6[(a” — (B+i€))'2 — (o - V7] (20)



MODIFIED WIENER-HOPF EQUATION

vi(z, w) +F " E) + 7 +w)Fu(z, w) + vz, w) = g(z) (21)

where
g(z) € H*(0,a) (22)
vi(z,w) € H*(a,o0) (23)
vo(z,w) € H®*2(—00,0) (24)

Apply the Fourier transform to equation (21). Denote

@, (&, w) := (Fv)(§,w) (€ Lo(R,s1);  (25)
e %0 (€, w) = (Fuy)(&, w) (€ Ly(R, 53);  (26)
O (€, w) 1= (Fup)(§, w) (€ Lo(R, s9));  (27)
9(€) = (Fg)(6) (€ Lo(R, s2); (28)

where Ls(RR, s) is Hilbert space with the norm

o= [ 10(©P0 +)de

00

Thus we obtain the following boundary value problem

e %D (&, w) + a(é, w)®; (€, w) + T(&,w) = §(¢).  (29)

This problem is called the modified Wiener-Hopf equation and its
solution is a triple (&=, @, ®*) of unknown functions.

a(é,w) = (PO&) + 7+ w)
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TOEPLITZ OPERATORS

P F—l}({{}]mjf and P = F_lj{{_m’{}}j:.
The projectors P* are bounded linear operators in the spaces
Ly(R, s) for s € (—1/2,1/2).
Denote
L5 (R, s) = PE(Ly(R, 5)).
The operator

T(a) == PTaP" : L}(R, s) — Li (R, s)

is called a Toeplitz operator with symbol a(z). If a € Ly(R) then
T'(a) is a bounded operator on L3 (R, s) (for s € (—1/2,1/2)) and
the conjugate operator 7*(a) = T'(a).

Definition 3 The operator A acting on Hilbert space is called
normally solvable if the subspace ImA is closed, i.e., InA =
- ImA.

Lemma 1If the operator A is normally solvable, then the
Hilbert space H may be represented as the following direct sum,

ImA @ ker A* = H,

Definition 4 An operator A acting in Hilbert space H is called
left-(right)- invertible if there exists an operator A;' (A:!)
bounded on H such that A7'A =1 (AA-1=1).

[t should be noted that a one-side invertible operator is norrnall'y
solvable. Moreover if A is left-invertible, then ker A = {0}; if A is
vight-invertible, then ImA = H,
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SECTORIALITY

Definition 5 A linear bounded operator acting on a Hilbert
space H s called a sectorial operator if

inf Re(Az,z):=¢>0 (30)

I/l =1
where (Az,y) denotes the scalar product in H.

If a(z) € Loo(R) then the Toeplitz operator with symbol oper-
ator a(z) in the space Lo(R, s) is sectorial if and only if

essinf Rea(x) =& > 0. (31)

relk

Definition 6 We will call a function a(z) € L(R) sectorial if
exists a number 6 € (—m, ) such that for the function ay(z) =
ea(z) the condition (81) holds.

We formulate the famous result of Brown and Halmos.

Theorem 4 Let A be a sectorial operator on a Hilbert space
H. Then the operator A is invertible and,

| A7 | < 267

where € is the value from (30).
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Let now G be a subspace of the Hilbert space Ly (R, s) and let
P be the orthoprojector onto the space (. This means that an
arbitrary function f(z) € LI (IR, s) can be represented uniquely in
the form

f(z) = gi(z) + g2(2) (32)
where gi(z) € G, go(x) € G*, and G* denotes the orthogonal
complement of the space G in Ly (R, s).

Pt =Pg + Pg
Consider the operator
D = Pg + PtaPs : LI(R,s) — L3 (R, s) (33)
where the function a belongs to L (R).

Theorem 5 Let function a(€ Lo(R)) be sectorial. Then the
operator D (88) is invertible and for the solution x of the equa-
tion
Dz=f, feLiR,s), (34)
there holds the following estimate,
|z1ll o) < 267 N fullamos) (35)

where T, = Pgx, fL = Paf, and € is the value from (31).
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REDUCING TO THE TOEPLITZ (ABSTRACT) PROBLEM

e %D (€, w) + al€, w)®; (€, w) + OH(E, w) = §(€)  (36)
OE(g, w) = DT(=€E,w), BF(E,w) =P, (—&,w).

Then we can rewrite (36) in the form

XDt (£, w) + (1 + £2)7/%¢(€, w)BH (€, w) + B (€, w) = (=€),

o (37)
O*(¢,w) € L3 (R, —v/2 + s); (38)
®f (6, w) € Li(R,v/2 +5). (39)

Consider the so-called Wiener-Hopf factorization of the function

() = (1 + )2,
() = (L+i8)2(1 — €)% := 7.():+(6).
Divide all terms of (37) by v-(§) and write

U w) = 14(6)F (€, w); (40)
+
v = =25 (1)

14



Then we obtain

e u(E) U (€, w) + EE, w) Vg (€, w) + V7 (€, w)

where : ) i
g A aasys
o V5 (lHE) i
e oy € W)
(6 w) = 7= (&

[t is easy to see that

i) € Li(R,s);
=€) € Ly(R,s).

15
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Apply the projector P* to all terms of equation (42). Then we

have

(T V), w) + P*(e(€, w)¥y (€, w) = fT(£)

where T, is the Toeplitz operator with symbol
ua(€) = e“*“u(f),

and

e = P(g(=6)/a=(S)),
U5 (6 w) € ker Ty,

H

L;(R,sj
(g, w) € L3 (R, s).

imT,, ® kerTy, = L (R,s) since T =

p“n (L:?i— (Ri ‘5)) = kerTﬂm

'Pd;(Lg'(R, 8))=imT,,
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Dy, = Pg + PTE(&, w)Py, : LT(R,s) — L (R, s). (51)

1

YE) = 50°6 —ipk + p(§). (52)
=il (53)
- hle)
for some M > 0 satisfies

. e Er
|§1|§w Rec(é) =€, > 0, (55)
it p£0 then 1< <2, (56)

if u=0 then 0<wv<2.
r+ Rew > g3 > 0. (57)

Lemma 2 Let the conditions (52)-(57) hold. Then the func-
tion ¢(-, &) is sectorial, and if the value ey in (57) is indepen-
dent of w then there ewists a number € indepen mt of w such
that

: : = |
églt[; Rec(&,w) > e >0 (58)
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MAIN THEOREMS

Theorem 6 Let the function ¢(§,w) satisfy conditions (52)-
(56) and w satisfies (57). Then the following statements are
true:

i) The operator D,, (51) is invertible
it)
The problem (87), has the unique solution

T 2 L -1 +Q( ’E) 5
(I)a. (gz 'LU) TE ’}"_'_(5) (‘PﬂuD P (Eg) ) (‘ g)
pesl s S Il 1 a6

Biew) = 70 (rariogrfS8); o
O=(§, w) = ¥-(§)V (¢, w); (61)

Uz, t) = /L f m??’:(g,w)e*'f”'f’*"‘”%d-uf (62)
g v/ o0

Uz, T —t) € C°([0,00), HT(0,a)), |s| < 1/2.
This means that for each fixed 7 < 0 w(-,7) € H7*5(0,a), and

the function F(7) := [|u(:, 7)|| g4+ 18 continuous on [0, 00) with
lim F(1)=0.
T—00
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Theorem 7 Letv € (0,2), let the function g(x) € H~71%(0,a),
for some s € (—1/2,1/2) and let the be characieristic exponent
under a EMM  Q, the function ¥2(€), such that the symbol
(€, w) satisfies the conditions (52)-(56).

Then the problem (4)-(6) has a unique solution in the space
C0([0,00), Ht)(0,a)) and this solution has the form (62).

v 1
5 & > 5 (63)
It is well known that in this case
Hz*%(0,a) C C[0, 4] (64)

Theorem 8 Let all conditions of Theorem 7 are hold and in-
equality (63) hold. Then the solution of the problem (4)-(6) is
bounded.

Finally suppose that g(z) is a piecewise smooth function on the
segment [0,a]. It is easy to see that in this case g(z) € H"(0,a)
1

for any pp < 5. For arbitrary 5 € (0,1) we always can choose

s € [0,1/2) such that condition (6.9) holds and moreover we have

—y+ <1
p=—ohs < 5

Thus in this case according to Theorem 8 the problems (4)-(6) have
bounded solutions. Since the Theorem 7 implies that this solution
is unique, it has the form (62).
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Conclusion

In this report we treat some power cases of characteristic func-
tions. These cases involve wide classes of Lévy processes which
are used in option theory. However, there exist many other cases
which could be considered with the help of the methods worked
out in this article.

1. The case o > 0 is important because it corresponds to the
processes with non trivial Gaussian components. This case
can be realized as the case v < 2 considered in these notes.

2. Thecaseo =0, p#0and 0 < v < 1.
3. Logarithmic cases,
4. Power logarithmic case, |

5. Rational case. In this case not only the solvability theory can
worked out but one can obtain the solution in explicit form.

6. Periodic case. The Poisson process generates a periodic char-
acteristic function. It is interesting to get explicit formulae
and to analyze them in this case. It is very interesting also
because here X; is sum of a Gaussian process and a discrete-
jumping process. In this area the theory of matrix Toeplitz
operators with periodic and almost periodic symbols (worked
out by Karlovich-Spitkovsky-Bottcher) could be applied.
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