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Abstract

The asymptotic behavior of the spectrum of large Toeplitz matrices has
been studied for almost one century now. Among this huge work, we can
find the Szegd theorems on the eigenvalue distribution and the
asymptotics for the determinants, as well as other theorems about the
individual asymptotics for the smallest and largest eigenvalues.

Results about uniform individual asymptotics for all the eigenvalues and
eigenvectors appeared only five years ago. The goal of the present lecture
is to review this area, to talk about the obtained results, and to discuss
some open problems.

This review is based on joint works with Manuel Bogoya, Albrecht
Bottcher, and Egor Maximenko.
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Main object.

Spectral properties of larger finite Toeplitz matrices

ao a—1 a-oz2 ... a,(n,l)
ai dao a—-i1 ... a,(n,z)
-1
An = (aj—«k f,k:o = a a a ... a_(p-3)
dp—-1 4ap-2 @an-3 ... a0
0 .
a(t)y= > ajt/, t € T-symbol of {A,}°°,
j=—00

Eigenvalues, eigenvectors singular values, condition numbers, invertibility
and norms of inverses, e.t.c.
n ~ 1000 is a business of numerical linear algebra.

Statistical physics - n = 107 — 10'2 - is a business of asymptotic theory.
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[. Two parameters:
n- dimensions of matrices;
J- number of eigenvalue

1</j<n

Asymptotics by n uniformly in j.
Il. Distance between \; and A;y1 is small:

1
IAj—Ajp1| =0 (n) — normal case

1
IAj —Aj1l =0 (rﬂ) — special case

Aj = Ajy1 — exceptional case
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Main results-simple loop case

For o > 0, we denote by W the weighted Wiener algebra of all
functions a : T — C whose Fourier coefficients satisfy

o0
lallar="> lajl(ljl +1)* < co.

j==00

Let m be the entire part of . It is readily seen that if a € W then the
function g defined by g(c):= a(e’”) is a 2n-periodic C™ function on R. In
what follows we consider real-valued simple-loop functions in W®. To be
more precise, for o > 2, we let SL* denote the set of all a € W such that
g has the following properties: the range of g is a segment [0, M] with
M >0, g(0) = g(27) =0, g”(0) = g”"(27) > 0, and there is a
©o € (0,27) such that g(wo) = M, g’(0) > 0 for o € (0,40), g'(c) <0
for o € (o, 27), and g” (o) < 0.
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Let a € SL®. Then for each A € [0, M], there are exactly one
©1(A) € [0, o] such that g(¢1(A)) = A and exactly one @a(\) € [po, 27]
satisfying g(¢2(X)) = A. For each X € [0, M], the function g takes values
less than or equal to A on the segments [0, ¢1(\)] and [p2(A), 27]. Denote
by ¢(A) the arithmetic mean of the lengths of these two segments,

1

(= 3100 ~ p2(V) + 7 = sufo € 0,27 g(0) <A},

where p is the Lebesgue measure on [0, 27]. The function

¢ : [0, M] — [0, 7] is continuous and bijective. We let ¢ : [0, 7] — [0, M]
stand for the inverse function.

Put

a1(s) = p1(¥(s)) and o2(s) = p2(¥Y(s)).
Then
g(o1(s)) = g(o2(s)) = ¥(s).
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Let further

(g(0) —1(s))e”
(eia _ eial(s))(e—io _ e—iag(s))
¥(s) — g(o)

 4sin 0_021(5) sin 0_022(5) ‘

Blo,s):=

We will show that 3 is a continuous and positive function on
[0,27] x [0, 7]. We define the function 7 : [0, 7] — R by

27 o
n(s):= 0(v(s)) = 1/0 log5(o,5) 1/0 log i) 4

Cam tan 7‘77‘;2(5) 4r tan 2=21(5)

the integrals taken in the principal-value sense.
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Theorem

Let a € SL® with o« > 2 and let )\:(L") <...< )\g,") be the eigenvalues of
Tn(a). If n is sufficiently large, then

(i) the eigenvalues of T,(a) are all distinct, i.e., )\gn) < )\gn) <...<Am
(ii) the numbers s(").— 1,!)()\5-”)) (J=1,...,n) satisfy

(n+1)5” +n(s") = mj + A" ()
with A (j) = o(1/n%2) as n — oo, uniform/y with respect to j,

(iii) this equat/on has exactly one solution s € [0, ] for each
j=1...,
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To write down the individual asymptotics of the eigenvalues, we
introduce the parameter )
__™
n+1
Note that the dependence of d on j and n is suppressed.

Theorem

Let a € SL® with a > 2 and let 5}") be as in previous Theorem. Then

[o]—

(n) _ Pe(d) | A)
5" =d+ Z s 1F 7220
k=1
where A(n)( =0 (1/n*"t) as n — oo uniformly in j,
/

pi(d) = —n(d), p2 = n(d)n'(d). [«] is integer part of .
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That is for 2 < o < 3 we have

(n) _ . 77(3) 1 a—1 o 7Tj
s =d = T s o1/m ), d=

For 3 < oo < 4 we have

(n _ n(a)  n(d)n'(d) o
E R I P +old/m,

e.t.c.
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Theorem
Let « > 2 and a € SL%. Then

(n) S ald) L
YRELICIESY CER () (1)
k=1

where Agn)(j) = o (d(m —d)/n*"1) as n — oo, uniformly in

j=1,2,...,n, and
ci(d) = —¢/(d)n(d),
co(d) = ¥"(d)n*(d)/2 + ¢'(d)n(d)n'(d).
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Here is the result for the extreme eigenvalues.

Corollary

Let a € SL* with some o > 3.
(i) Ifj/(n+ 1) — O then

2 i2

(n) _  CyJ CoJ (n)/.
NS ate T e T8 U
where cs = m2g"(0)/2, c5 = —m2g"(0)n/(0), and AL (j) = o(j/n%) as
n — oQ.

(ii) Ifj/(n+1) — 1 then

ca(n+1-j)2 c(n+1-—))>

A — AP
J LI r1p TR U)
where c; = m2g"(0)/2, cg = —2g" (o)n'(m), and
Aén)(j) =o(n+1—j/n%) asn— oco.
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This theorem is close to a result by Widom 1958, who considered the
case where g is an even function and j is fixed.
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Local nature of the asymptotics

Symmetric symbol: () = g() = (a(e’?))

mj
n+1

. Cl nﬂj
PENERIELC I

1. Normal case: g'(p) #0 (e <

< 7 — ¢€). Inner eigenvalues

n+1 n+1

Distance between next eigenvalues is

°(3)
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j .
—n+1) < e. Extreme eigenvalue

(n) _ j 1 T
A _g<n—i—1>+o<n3>7 ntl-°

Distance between next eigenvalues is
1

ol =

2

Asymptotics: is define by behavior of function g(¢) in neighborhood of
point g, where eigenvalues are located.

2. Exceptional case: (
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More general restriction

1. Normal case:

g(p) — g(po) = (¢ — o) E(¢), &(p) € W(= WO).

That is g(¢) € Wt

2. Exceptional case:

g(e) — g(wo) = (¢ — ¢0)* &(v), &(p) € W(= WO).
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Main ideas of the Proof

Lemma

Let a€ SLY « >2 and n>1. A number A\ = 1)(s) is an eigenvalue of
Tn(a) if and only if

where, for every k > 1, the functions © and (:)k are defined by
@k(ta 5):: [Tl:l(b('vs))XO](t)’ ék(t7s):: [lel(E('as))XO](t_l)a

and b(t,s):= b(1/t,s), xe(t) = t¢, xo(t) = 1.

Sergei Grudsky (CINVESTAV) Simple-loop Veracruz, November, 2015 21 /41



Proof. We are searching for all values of A belonging to [0, M] such that

the equation T,(a)X = AX has non-zero solutions X in Lgn). Using the
change of variable A = v(s) we can rewrite the latter equation as

Ta(a = 4(s))X =0. (2)
Equation (2) is equivalent to
Pnb(-,s)p(-,s)X =0, (3)

where p(t,s):= e~ (t — e/1())(t~1 — e=/72(s)). Multiply (3) by the
function x1 to get

(Pnt+1— P1)b(:, s)xap(:,s)X = 0. (4)
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Here P,11 — P1 is just one way to write the orthogonal projection of the
space L(T) onto the span of x1,...,xs. Note that x1p(:,s)X € L§"+2)
and put

Y= Topa(a=()xiX = Pasab(-,$)x1p(- )X = Tasa(b(-, $))x1p(-, $)X.

Then (4) can be written as (P,+1 — P1)Y = 0. This means that Y has
the form

Y = yoxo + Ynt1Xni1-

Since Tpi2(b(:,s)) is invertible, it follows that
Trh(b(-,5))Y = x1p(-,5)X, that is,

Yol T2 (b(-s $))x0l(t) + Yara[ T, 5(b(-, $)xns1l(t) = tp(t, )X (t).  (5)
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Now recall notation (5). Taking into account the identity

W2 Toy2(b)Waio = Thio(b),

it is easy to verify that

[T, %(b(C,5))xns1l(t) = t" 1O p1a(t, 5).

Therefore (5) can be written as

YO@n+2(ta 5) + yn+1tn+1én+2(tv S) = tp(t, S)X(t)' (6)
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Thanks to the factor p(t,s), the right-hand side vanishes at both
t = e/1(5) and t = e/2(5). Consequently, yo and Yn+1 Must satisfy the
homogeneous system of linear algebraic equations given by
(eigl(s)a S)ynt1 =0,
(eiaz(s)’ S)yrH-l =0.

Ortale™ (), s)yp + "
@n+2(ei02(s)7 S)yo + ei(n+1)02(s)

(7)

én+2
én—|—2
If yo = ynt1 =0, then, by (6), the function X is zero. Therefore the initial

equation (2) has a non-trivial solution X if and only if the determinant of
system (7) is zero. [
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Recall that by (-, s) are the Wiener-Hopf factors of b(-, s):

b(t,s) = by(t,s)b_(t,s)

by(t,s) = Z ui(s)t and b_(t,s) = Z vi(s)t™
=0 j=0

T(b(-,s)) = b7 (-, s)Pb=1( 5),

[T7(b(:, 5))x0(t) = [b* (-, s)PbZ* (-, 5)Xol(t) = b1 (2, 5).
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Aﬁ”) 0 0O ... O Yy F
o A 0 ..o Ys F)
0 Ag") 0 Y3 | =| F
0 0 0 Al Ya Fn
Y =L,X, F=L,f.
Singular Value Decomposition.
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Example 1.

Consider the non-rational symbol

a(e”) = g(0) = go* +g30° + g0 P + g50°® + geo® +g70”, o €[0,27],

where 8 € [0,1) and the coefficients go, ..., g7 are chosen in such a
manner that

g2r)=g'(2r)=0 and  gW(2n)=gk(0) for k=234

Elementary computations yield

g = (24— 388+ 138% + 28° — p*)/(2n)?,

g3 = (24 — 508 + 3557 — 1068° + %)/(2r)?,

g4 = 240/(2m)**7,

gs = (360 + 425 — 2016 + 425° + 36*) /(2r)°,
g6 = (—216 + 663 + 20952 — 5453% — 54*) /(2r)°,
g7 = (48 — 208 — 5037 + 203° + 2*)/(2r)".
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1.6 0.015
0. /
0.005

o 0
™ 27 /4 )2 37/4 T

Figure: Graph of g(o) = a(e’”) (left), and n(s) (right) for 3 = 1/5.

° = = N
/N

—0.004 5.10—5 \
—0.00

\ / o
—0.01 —1.1074 \/

Figure: The functions c;(d) (left) and c(d) (right).
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n 64 128 512 1024 2048 4096
g(ml) 2.0-10% | 9.8-10°° | 25.1075 | 1.2.107°® | 6.2:1076 | 3.1.107°
(n+1)el»H | 1.3.1072 | 1.3.1072 | 1.3-1072 | 1.3-1072 | 1.3.1072 | 1.3.10°2
e(m2) 3.2.107% | 8.1-107° | 5.1.10710 | 1.3.10~10 | 3.2.10"1! | 8.1.10712
(n+1)2(2) | 14.107* | 1.4.107* | 1.4.107* | 1.4.107* | 1.4.107* | 1.4.10~*
e(n3) 2.3.10710 | 1.3.10" | 4.1.107%* | 2.2.10715 | 2.4.10716 | 3.0.10~17
(n+1)3%(3 | 62.107% | 2.8.107% | 5.5-107° | 2.4.10°% | 2.1.10°°% | 2.1.10°°
&m 2.3.10710 | 1.3.107% | 4.1.107% | 2.2.10715 | 1.2.10716 | 6.7.10"18
(n4+1)*260™ | 9.3.1073 | 9.6-107% | 9.8.1073 | 9.8:1073 | 9.9.1073 | 9.9.1073

Table: Maximum errors and normalized maximum errors for the eigenvalues of
T.(a) obtained with our formula (1), e(™?) with p = 1,2,3, and by fixed-point
iterations, &(", for different values of n. The data were obtained by comparison
with the solutions given by Wolfram Mathematica.

Note that Table 1 shows that &(") = O(1/(n + 1)*?) as n — oco.
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Eigenvectors

For v € R, we define ZZ as e 7 . Given a function f: T — C, let

fp be its pth Fourier coefficient, and for a vector X, let X}, stand for its
pth component. Let § = (Hp)z;ré be the vector in the first column of the

matrix Tnjrlz(b(-,s}n))). For t € C, we put

ioi(s")

0(t) =0 + 01t + - + O, t"L.

The following theorem describes the components of the eigenvectors of
Ta(a).
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Theorem

Let a € SL*. The vector

X () — pp(nd) o g (ng) 4 R(ny) (8)
whose p-th component, p =0,1,...,n—1, is given by
(nj)._ =2 _1\n—j, 2 P
Mp 21 |0 (21)| +(-1)"7z? Tl0(z)],
(3 / ) _6(t) -~ 6(z) ot
P 2711]9 z1)| t—21 t— 2 tpt1’
R,()n,j):: LE,,,B, :

(n

is an eigenvector of Tp(a) corresponding to the eigenvalue A j ). Moreover,

D= M

M) js conjugate symmetric, i.e., I\/I,(,"
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Theorem
Let a€ SL™. Fork =1,2, let 3, := €°*% ) and, for
p=0,1,....n—1, put

n—1 n—1
(). &) _ )n—j %
g !b+(21)| \b+(2z)!’
P _ b (2) He) - by (a)  biM(E) —biN(2) ) dt
b 27“!b+(21 | Jr t—2 t— 2 o1

A(nd). _j(ng)
Ry =L, _p

Then there is a vector an‘j) such that [Q(ln" lp = 0(1/n*3) as n — oo,

uniformly in j and p, and such that

X(“J) = M(”J) L L(”J) i R(”J) L Q(I”J) (9)
is an eigenvector of Tp(a) corresponding to the eigenvalue )\J(-").
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Symbols with Fisher—Harturg singularity.

aa 5(t) = (1 — t)*(—t)7, O<a<|fl <l

Conjecture of
H.Dai, Z.Geary and L.P.Kadanoff, 2009

)\J(.n) ~ anp (wj - exp {(2a +1) |og}> ,

n

2mj
where w; = exp (—/ ) .
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Complex value case

at)=t711 -t f(t), acR\N
where
1. f(t) € H® N C™.
2. f can be analytically extended to a neighborhood of T\{1}.

3. The range of the symbol a R(a) is a closed Jordan curve without
loops and winding number -1 around each interior point.
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Figure: The map a(t) over the unit circle.
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Lemma

Let a(t) = t~1h(t) be a symbol that satisfies the following conditions:
1. he H*.
2. R(a) is a closed Jordan curve in C without loops.
3. windy(a) = —1, for each X in the interior of sp T(a).
Then, for each X in the interior of sp T(a), we have the equality

Drfa =) = (-1)m+ [t i

for every n € N.
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Theorem

We have the following asymptotic expression for \;:

n w;a (w; a*(wj
A,-=a(wj)+(a+1)wf'a’(wf')log,f o ,S 7 os (C a’(g){))w2>
o I

log(n) >
+(9< - >,n—>oo,

C_ i 2mj
where w; = exp (—I T) .
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Figure: The solid blue line is the range of a. The black dots are sp T,(a)
calculated by Matlab. The red crosses and the green stars are the approximations,
for 1 and 2 terms respectively. Here we took oo = 3/4.
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New problems

1. Symbols of the kind:

a_
a(t) = Tl +ag + art + apt?

1
20(t) = - + t2
2. Symbols of the kind:

a_]_ 2
?+T+30+31t+32t

ap(t) = <1 —2—|—t>2
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3. No simpleloop case.
4. Fisher-Harturg general case

a(t) = (t — t)*t?, «a,8€ R (a,B €C).
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