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Condition number

|Al|p||A7|, , if A is invertible
o0 , if A is not invertible

() = {

MAIN PROBLEM.:
Behavior of k,(T,(a)) if n — oo

Spectral Theory of Toeplitz Operator
sp A = {) € C|(A — AI) is not invertible in B}

SPess A = {A € C|(A — AI) is not Fredholm in B}

3 A is Fredholm < im A = im A, and
d\ dim ker A < 0o and f := dim(B/im A) < oo and
indA=a-p

Theorem 1 Let a € C(T), then

i) T'(a) is Fredholm on the space l,(Z) if and only if

inf |a(t)| > 0 (1)

tell
if condition (1) holds then indT(a) = —wind a(t)

ii) T'(a) is invertible if and only if the condition (1)
holds and
wind a(t) =0 (2)



Corollary 1 If a € C(T), then

spT'la) = a(T) U{re C\a(T):
wind(a — A) # 0}.
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Figure 1: The set sp,,, 7'(a) = a(T) on the left and the set sp7'(a) on the
right.



Conditions numbers of Toeplitz operators

kp(T(a)) =
{ IT(@)lIT (@)l , if a(t) # 0 and wind a = 0
o0 , otherwice

I T'(a) is invertible: a(t) # 0 and
wind a = 0

1I T(a) is Fredholm: a(t) # 0 and
wind a =0
III T'(a) is not Fredholm: infa(t) =0
I. T(a) is invertible

Theorem 2 (Baxter, Gohrberg and Feldman) Let
a € C(T) and1 < p < oc0. Then

limsup ||, " (a)||, < oo if T'(a) is invertible

n—o0

limsup ||T;,*(a)|| = oo if T(a)is not invertible
n—oc

| Tw(a)l], < ||T(a)]], = limsup k,(Th(a)) < oo if T'(a)is invertible

n—oo



II. T(a) is Fredholm (a(t) # 0)

S

at) € Prs s alt) =Y ait!, rm>0, a, #0, a; #0

j=-T

+
a(f’) =t "(a_p +a_rpt+...+at’"")

K

&
a(t) =76, [ J(t = 0) [ ]t — o)

=]

where |§;| < 1 and |pz| > 1

6 = max(|8i],...,10,]), p=min(ul,. .., luxl).

Theorem 3 Let b be a Laurent polynomial and sup-
pose wind b # 0. Let further 1 < p < oo. Then for

every
: 1
a < min (log g,log u)

there is a constant C,, depending only on o (and b,p)
such that

Kp(Tn(b)p) = Coe™ for all n 2 1.



Figure 4.1 shows the norms ||T,; (b — A)||2
(5< n<80)forb(t)=t2+0.75-¢t"1 +0.65-t and
A = —0.5, 0.82, 0.83+0.7i (top pictures and left picture
in the middle) and for b(t) =t — 2¢~' + 1.25 - t* and
A\ = —3.405, 1.48, 0.995 + 3¢ (right middle picture
and bottom pictures). The curve b(T) and the point A

are indicated in the lower right corners of the pictures.




4.2, Exponential Growth is Generic
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Figure 4.1: Norms |77} (b — A)||z for two symbols b and three A’s.



UPPER BONDS FOR CASE 11

Example 1 a(t) = t. T,(t) is not invertible for arbi-
traryn € N

Generic case
bt) e D b(t)=bt™"(t—21)...(t — zr44)(t € T)
 where b, 20 and 0 < |z1]| < |22 < ... < |zr4s]

Theorem 4 Let1 < p < o00. Ifb € D, then there are
constants v € (0,00) and D., € (0,00) depending only
on b and p such that

||kp(Tn(b)) < Dye™
for alln > 1.
Theorem 5 Let 1 < p < oo and let € be the set of

all Laurent polynomials that have no zeros on T and
whose winding number s nonzero.

(a) EN D is a dense and open subset of the set £
(with the uniform metric).

(b) If b € €N D, then there are constants C1,C; €
(0,00) and 1,72 € (0,00) depending only on b
and p such that

01671”' g ﬁp(Tn(b)) S C’gefm’?1

for alln > 1




Example 2 Let

g 4" 0
-0 <4
=1 6 1.0

Then b(t) =t — 4t~! = ¢t~1(t — 2)(t + 2), which shows
that wind b = —1.
j2ntl — (=2)"*!| [ 2" if nis even,
2—(=2)] |0 ifnisodd

| Dn(b)| =

C1€%6 < ko(Too (b)) < Cye®™" for all even n,

and we have

ko(T,(b)) = oo for all odd n.




Arbitrary Fast Growth

Pick o € (0,1) and put
bt)=t+o*t =t t+ia){t—ia) (teT). (3

Since b(e”) = (1 + a?) cos @ + i(1 — a?) sin 6, we see
that b(T) is an ellipse with the foci —2a and 2a.
If A € (—2a,2a), then b — A has no zeros on T and

wind(b — A) € {—1, 1}.

Theorem 6 Let ¢ : N — N be any function, for
example, p(n) = exp(n”™), and let 1 < p < o0o. Then,
with b given by (3) , there exists a A € (—2a, 2a) such

that || T ' (b — M|, < 00 for alln > 1 and

oTilb = X)) > e (o)
for infinitely many n; € N.
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III. Symbols with Zeros: Lower Estimates

bit) = Z a;t’ - Laurent polynomial, b(ty) =0

(@)
blz)= : a(!t") (z —t0)*+ O ((z — to)**!), b*(to) #0

« - order of the zero

Theorem 7 Let b be a Laurent polynomial and sup-
pose b has a zero of order o at ty € T. Then there is

a constant C € (0,00) independent of n such that

ko(T, (b)) > Cn® for all n > 1.
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A class of good test polynomials.

For j,m € N, consider the Laurent polynomial

ph(e?) = (1+e?+... +e™) (4)

Obviously,

; J
pi (eiiﬁ') = 1 — eilm+1)8 _ im0 siny m+19
= It sin Q

2

(5)

From (4) we see that p/, € Pp,;j+1. Both (4) and (5)

immediately show that
“p]mHoo = (m + 1)j-
It’s easy to see that
1P |2 = 27 (12 + ... + 1) = 27(m + 1).

Corollary 2 Let b be a Laurent polynomial and as-

sume the zeros of b on T arety, ..., t; with the orders

ai,...,ar. Then
ko(T(b)) > C nmx@1-0%) for gll n > 1,

where C € (0,00) is a constant independent of n.

12




ITI. Symbols with Zeros: Upper Estimates

For B € Z.., we define the Laurent polynomials &g and

1 by
&p(t) = (1 - %)ﬁ = é(-l)J (f) t,
ns(t) = (1 —t)f = é(_l)j (f) i

Theorem 8 Let v,0 € Z, and let ¢ be a Laurent
polynomial without zeros on T and with winding num-
ber zero. Put b= &mn,c. Then T,(b) is invertible

for all sufficiently large n and there exists a constant

C = Cy;s. € (0,00) such that
ka(Tn(b)) < C 7™

for all n large enough.
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Inside the essential Spectrum
Throughout this section we assume that b is a
polynomial. We study the behavior of ||T,}(b — Al||2 in
the case where A € sp,,, T'(b) = b(T). Clearly,

A € b(T) if and only if (b — A) has zeros on T. We
by S(b) denote the points A for which (b — A) has
at least two distinct zeros on T. The points in S(b) are
met at least twice by b(t) as ¢ traces out the unit
circle T. If A € b(T) \ S(b), then b(T) is an (analytic)

arc in a sufficiently small neighborhood of A.
Theorem 9 Let A € b(T) \ S(b) and
b(t) — A = (t — tg)Pthc(t), teT,

where B € N, k € Z, c(t) #0 fort € T, and
wind (¢,0) = 0. Then

kn(T(O—A) =nf if —<Ek<0,

and there are constants C' € (0, 00) and a € (0, 00) such
that

kn(T(b—N) >Ce™" if k<—B or k>0. (6)
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Example 3 Consider the symbol
b(t) = (t — 1)*%(2.001 + ¢ + 0.49t71).

Figure 4.3 shows what happens in the five cases
k=-3,—-2,—1,0,1. In each picture we see the norm
| T:-1(b)||2 against n. We also plotted the shape of the
curve b(T) in the lower-right corner; the origin is
marked by a big dot. As predicted by Theorem 10, the
norms wncrease at least exponentially for k = —3 and
k =1, while the growth of the norms is polynomially
for =2 < k < 0. In the picture in the bottom, we

replaced values greater than 10* by the value 10'7.
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Chapter 4. Instability
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Figure 4.3: Norms ||T;;(b)|l2 for several symbols b with zeros.
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Semi Definite Matrices
A matrix A € C™*" is said to be positive semi-definite

if Re (Az,z) > 0 for all z € C" and is called positive
definite if there is an € > 0 such that

Re (Az,z) > ¢||z||? for all z € C®, where || - || is the

[2 norm. If a € C(T) and Re a(t) >0 forall t € T,
then T),(a) is positive semi-definite, and that if

a € C(T) and Re a(t) > ¢ > 0 for all t € T, then
T, (a) is positive definite.

For a € C(T), let R(a) = a(T) be the range of a,
let conv R(a) stand for the convex hull of R(a),
let conv R(a) denote the boundary of conv R(a), and
put

dist(0, convR(a)) := min{|z| : z € convR(a)}.

Proposition 1 Suppose a € C(T') does not vanish
identically and R(a) is not a line segment containing

the origin in its interior. If
0 ¢ convR(a) or 0€ 0 convR(a),

then T,(a) is invertible for all n > 1.
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Theorem 10 Let a € C(T) and suppose

d := dist(0, conv I;}It)) > 0.

Then T'(a) is invertible on I* and

1 42 Lo
1T (a)]]2 < g (1+\/1 Tallo ) <=

and T, (a) is invertible for alln > 1 and

1 d? 2
=1 = g =
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MAIN IDEA:

Let Re b(t) > 0, and exist function
g(t) = Z;:(ii) ajt! + Y 22,41 a;t’, such that
Re (b(t) + g(t)) > 0 Then T,(b) = T,(b + g) and we
can use Theorem 10.

Theorem 11 Let b be a Laurent polynomial and sup-
pose 0 € b(T). Assume that Re b >0 on T and that
Re b is not identically zero. Then Re b has a finite
number of zeros on T and the orders of these zeros

are all even. If 2a is the mazimal order of the zeros
of Re b on T, then

sl Tu(b)) = Dn* forall n>1

with some constant D € (0,00) independent of n.

Theorem 12 Let b be a real-valued Laurent polyno-
mial and suppose b is not constant. Then R(b) =
(m, M] with m < M. If X\ € {m, M} and the mazi-
mal order of the zeros of b— X\ on T is 2a, then

1T, (6 = N)ll2 = n*.
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