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Abstract

The trace-class property of Hankel Operators (and their derivatives with
respect to the parameter) with strongly oscillating symbol is studied. The
approach used is based on Peller's criterion for the trace-class property of
Hankel operators and on the precise analysis of the arising tripe integral
using the saddle-point method. Apparently, the obtained results are
optimal. They are used to study the Cauchy problem for the Korteweg-de
Vries equation. Namely, a connection between the smoothness of the
solution and the rate of decrease of the initial data at positive infinity is
established.
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Hankel Operators

H(px) := JP~ @ PT : H*(N) — H?(N),

where H?(IM) is Hardy space in the upper half-plane
M:={AeCl|lmA>0};
J - is the reflection operator defined by:
(UH(A) =f(=A), N eR,
and P¥ are the analytic projections defined by

(FRE = [ 1o

27

(P7¢) (&) = (JPTJp) (9),
which act on the space L>(R).
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Note that is & belongs to the real axis R, then the above integral is
understood as the limit value almost everywhere over non-tangential
directions in the upper half-plane T1.
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Symbol of Hankel Operator

Px(A) = T(A) G- (N) O, (2)

Here
d(\, x) =8tA3 4+ 2x)\, t >0, x € R. (3)

The function G_(\) can be represented as the Fourier integral over the
half-axis:

G_(N) :/e_Qi’\sg(s) ds, (4)
0

where g(s) € L1 (R4, (1 4 5)?), is nonegative-valued almost everywhere,
ie.

/g )(1+s)%ds < o0, «a>0. (5)
0

T(\) € H=(N).
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Main Result

Let &1 denote the set of all trace-class operators acting on the space
H?(IM). Recall that a compact operator A belong to &1, if the sequence of
its singular numbers {sj(A)}fil is summable. The norm of an operator A
in &1 is defined as

o
IAle, == Isi(A)l.
j=1

Along with the operator (1) we consider its derivatives with respect to
the parameter x. It is easy to see that

el
—H(p) = H(;.0), (6)
where

Pix(N) = (2iYNpy()), j=0,1,2,.... (7)
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If o € L°(R) => H(¢) is bounded on H?()
H(h — ¢o0) = H(po), h € H>(N).

It should be noted that ¢ and h could be unbounded.
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Theorem

If the function ¢x(X) is of the form (2)-(5) with
g(s) € L1 (Ry(1+s)/?), j €N, then

é)k
——H(py , k=0,1,...j,
Oxk (90)661 0 J
and .
0 Ll, x>0
(o, <
‘3Xk ((p)el_{ L1+ [x))*?, x<o0,

where the constants L1 and L, are independent of x € R.
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Peller‘'s Theorem

We say that a function f(£) analytic in I belongs to the space Al(N) if
and only if

Ly = [ [ 196+ iga)| déx da -+ sup {F(©)le2 = 1) < o
0 —©

where & = &1 + i&> is a complex variable belonging to the complex plane C.
we introduce the following modification of an analytic projection:

(F)10=5 | (e v e

—00
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Theorem (V.Peller, 1980)

Let ¢ € L(R), Then H(p) € &1 if and only if

(P¥%) (&) € AL(M).
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Lemma

Let ¢ = hy1, where h € H*(), and 1 € Lo(R). If the operator H(¢1)
belongs &1, then so does the operator H(yp), and

[H(P)lle; < Al [H(p1)lle,

Remark

The symbol ¢j () contains the multiplier T(X\) € H*(M). Therefore, in
what follows, we consider the symbol

Ph(A) = N G_(A)e/*) (8)

v
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Applying Pellier's Theorem to the Hankel operator with this symbol of the
form, we must first estimate the integrals

o

(&%) = ok | (e~ 1) PG (M)e ) dr,

Eel, j=0,1,2,...,

1 T #C (Rei®rx)
@, )-—m./T ((22)3 dr, ¢en, j=0,1,2,.... (9)
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The Saddle-Point Method

Using (4) we obtain

o0
/ e:2ng
0

Here and further, we assume that g(s) > 0 almost everywhere and
g(s)e Ly <R+, (1+ s)j/2>. Thus, the integral (9) can be written as

1 r 1 T j —i®P(7T,x r i27s
(&, x) = o <T—§ — 1+7_2>7'Je &(7,x) /g(s)e2 ds | dr.
0

—00

(10)
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Changing the order of integration, we obtain

ifg Ji(s, & x) ds,
0

where

1 7/ 1 N
o J o—iP(7,x—5)
Jjls: & x) = ﬂ//<7—§ 1+T2>7’e a,

— 00

®(1,x — 5) = 8t7° +2(x — ).
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Let us make the following change of variables

/ (5 — X) V2
- 5(5),.]7 é‘ — B(s)€7 where 5(5) = ( 12t ) ’
Setting 5 3/2
we obtain

Ji(s,6,x) := Ji(s,€,x) = F(s)Ij(s, €, x) — BH3(s) (s, x),

where
- 1 T e iNs)S(u)
Ij(57€/’x) = ; / ﬁdu (11)
. 1 T ftle—iNs)s(u)
I(S,X) = ; / Wdu (12)
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Let us find a saddle-point contour for the integral (12). The critical points
u4 can be found from the equation

S(u)=uv®>—1=0, uy==l

It is easy to calculate that

S(Ui) = :Fg, S//(Ui) = :|:2, Slll(u:t) = 2.

Thus, the saddle-point contours are determined by the equations

5(u)+§:(u—1)2+%(u—1)3:—iv2, vER, (13)
5(u)—§:—(u+1)2+%(u—1)3:—iv2, veR. (14)
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It is easy show that Esq. (13) and (14) are uniquely solvable for any
v € R. We denote their solutions by uy(v) and introduce the saddle-point

counters
My :={z=us(v)lveR}

It is easy to see that, in a neighborhood of the critical points
(ux(0) = £1) , the following asymptotic relations hold:

= ur(v)= 14+efv+0(v?), vel--ecé
ui= u_(v)= —1+etv+0(?), vel--ee

Moreover, it is easy to see that, for sufficiently large v, we have

uy(v) ~v3 ez |v]?/3, vV — —00
up(v) ~ 3 e7’s v/3, v — 400
u_(v) ~ V3 ez V3, v — 400
(v)~V3 eis™ lv|?/3, vV — —00
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Estimation of the Second Term of Peller Theorem

Lemma
The integral (12) can be estimated as

const

|/Aj(s,x)\ < m,

where "const” is independent of s and x.
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Lemma

The integral (11) can be represented as

Ii(s,€,x) = [7(5,€, %) + 17 (5,8, x) + |, Res (5, €', %),
where

9

s _ 1 / 1/2
|1E(s, €, x)| < const { EFIN)’ € F 1AY2(s) > 1
: L, & F1AY?(s) < 1

)

‘Ij(?Res(57 5/7 X)‘ < COHSt,

and "const”, is independent of s, &' and x.
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Theorem

Let I;(&, x) be the expression given by (10), and let
g(s) € L1 (R4, (1 +s)j/2). Then, for j =0,1,...,

C1, XZO
C1+C2‘X|J/2, x < 0,

156, %)| g{

where ¢; and ¢y are independent of £ and x.
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Substituting representation (4) into (9), we see that

(r—¢&)?

i
—0o0

(2) _ 1 [ e i2rs
I; (§,x)_/ g(s)e'“™*ds | dr.
0

Changing the order of integration, we obtain the representation

[e.e]

126x) =2 [ g(s) 40560005,

—00

where

@) _i 7_jefi<1>(7—,xfs)
J; (s,&,x) = i / 7(7—{)3 dr.

—0o0
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Making the same change of variables in the integral (16), we see that

JO(s,6,%) = B(sY 2P (s,€', %),

where -
,(\21) , _i ujefi/\(s)S(u)
P60 =5 [ ey (17)
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Lemma

The integral (17) can be represented as

O s, x) = 10(s, €, ) + 1D(s, ¢, >+"Res(sf x),

where

1 !
@ PRy oy 1IAY2(s) > 1
“j(,i)(safl,x)! < const{ |€ F 1]3A/2(s)’ 1€ F 1] (s) >
/\(S), ‘6/:':”/\1/2(5) <1

[T esls: €', )] < const { A(s) ™5 [€"F=2 (J€|° + |¢" + 1) e~}

here £ = € N/3(s),c > 0 and "const” are independent of s,x and
§/ el \ (D1 U D_l).
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Theorem

Let lj(z)(f’, x) be the function given by (15), and let
g(s) € L1 (Ry, (1 +|s|)y/?). Then

Ax) = / 19(€,x)]dé < { &, x 20
Mn

c3 + axP/?, x <0,

where c3 and ¢4 are independent of x.
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Applications to the Korteweg-de Vries Equation

du (x,t) ou(x,t)  Bu(x,t)
_ = > .
T 6u(x,t) O + 93 0, t>0,xeR
u(x,0)=q(x),
inf Spec (Ly) = —a® > —0o  (is bounded below); (18)

/ (1+ [x)V |g(x)|dx < 00, N>1 (decreases at+ co).

Ly = —0? 4+ g — Schrodinger operator.

The condition

sup /max(—q(x),O)dx < 00
=11

is sufficient for (18).
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Inverse Scattering Method
(GGKM-Gardner, Green, Kruskal, Miuro)

@ Solving the Schradinger equation Lqu = k?u we find
So = {R(k),(kn,cn)}, where R(k), k € R, is the reflection
coefficient and (kp, ¢p), n=1,2,.., N, are the so-called data on

bound states associated with the eigenvalues, —r2.

@ S(t) = {R(k)exp (8ikt), rn,chexp (8k3t)}.

© Step 3 reduces to solving the inverse scattering problem for recovering
the potential u(x, t) (which now depends on t > 0) from S(t). This
procedure leads to the following explicit formula, which is usually
called the Dyson determinant:

u(x,t) = —202logdet (I + H(x, t)).
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Symbol of the Hankel Operator

éxt’Sdp )
prt( ) gxt s+ ik )

where —a? is the lower bound of the spectrum of L, and p(s) is a measure
with the properties

a
Suppp € [0,a], dp >0, /dp<oo.
0

H (X, t) = H((Dx,t) + H(gx,tR0)7

where ®, ; is a meromorphic function in the upper half-plane (its

particular form is inessential) and Ry is the reflection coefficient of g
bounded on (0, ).
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For Ry we have the representation
Ro() = T(N) [~ e (s)ds.
0

where T € H>®(IM), so that T (\) = O(1/A), |A| = oo, g is a function
subject to the only constraint

() < [a(s)] +consr/°° .
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Global Classical Solution of KDV

an+m
ox"otm

@ Main Theorem implies:
For the operator H(&, ¢Ro), we proved that if

(1) H(CDX,t) € G;.

oo
[ i) la@)lds < o,
then
8n+m
oxnotm
for all n and m, satisfying the condition

H (éx,¢Ro) € 61

n+3m<2N —1.
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Theorem
Suppose that the (real) initial profile q satisfies the condition

inf Spec (Ly) = —a® > —oco  (is bounded below),

/ W= gl 2 0m, W21 (cEmemsspes),

Then the function T (x, t) := det (1 + H(x, t)) is well defined on R x R,
and its classical derivatives 0"T™r (x, t) /Ox"0t™ exist provided that
n+3m < 2N — 1. Moreover, for N > 3 the Cauchy problem has a global
(in time) classical solution which is given by

2

u(x, t) = —2;)(2 log 7 (x,t), t>0.
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