On the Trace-Class Property of Hankel Operators Arising in the Theory of the Kortewegde Vries Equation

S. M. Grudsky

CINVESTAV del I.P.N, México

International Workshop on Operator Theory and its Applications (IWOTA 2019) Lisbon, Portugal July 22-26, 2019

S. M. Grudsky (CINVESTAV)

On the Trace-Class Hankel Operators

Lisbon, Portugal 1/31

This work is based on joint work with

ALEXEY RYBKIN

S. M. Grudsky (CINVESTAV)

On the Trace-Class Hankel Operators

Lisbon, Portugal 2/31

3. 3

(日)

The trace-class property of Hankel Operators (and their derivatives with respect to the parameter) with strongly oscillating symbol is studied. The approach used is based on Peller's criterion for the trace-class property of Hankel operators and on the precise analysis of the arising tripe integral using the saddle-point method. Apparently, the obtained results are optimal. They are used to study the Cauchy problem for the Korteweg-de Vries equation. Namely, a connection between the smoothness of the solution and the rate of decrease of the initial data at positive infinity is established.

Hankel Operators

$$\mathbb{H}(\varphi_{\mathsf{X}}) := J P^{-} \varphi_{\mathsf{X}} P^{+} : H^{2}(\mathsf{\Pi}) \to H^{2}(\mathsf{\Pi}),$$

where $H^2(\Pi)$ is Hardy space in the upper half-plane

$$\Pi := \left\{ \lambda \in \mathbb{C} \left| \operatorname{Im} \lambda > 0
ight\}$$
 ;

J - is the reflection operator defined by:

$$(Jf)(\lambda) = f(-\lambda), \ \lambda \in \mathbb{R},$$

and P^{\pm} are the analytic projections defined by

$$\left(P^+f\right)(\xi)=rac{1}{2\pi i}\int\limits_{-\infty}^{\infty}rac{f(au)}{ au-\xi}\,d au,\quad \xi\in\overline{\Pi},$$

$$(P^{-}\varphi)(\xi) = (JP^{+}J\varphi)(\xi),$$

which act on the space $L_2(\mathbb{R})$.

S. M. Grudsky (CINVESTAV)

(1)

Note that is ξ belongs to the real axis \mathbb{R} , then the above integral is understood as the limit value almost everywhere over non-tangential directions in the upper half-plane Π .

Symbol of Hankel Operator

$$\varphi_{x}(\lambda) = T(\lambda) \ G_{-}(\lambda) \ e^{i\Phi(\lambda,x)}.$$
(2)

Here

$$\Phi(\lambda, x) = 8t\lambda^3 + 2x\lambda, \ t > 0, \ x \in \mathbb{R}.$$
 (3)

The function $G_{-}(\lambda)$ can be represented as the Fourier integral over the half-axis:

$$G_{-}(\lambda) = \int_{0}^{\infty} e^{-2i\lambda s} g(s) \, ds, \qquad (4)$$

where $g(s) \in L_1(\mathbb{R}_+, (1+s)^{\alpha})$, is nonegative-valued almost everywhere, i.e.

$$\int_{0}^{\infty} g(s)(1+s)^{\alpha} ds < \infty, \quad \alpha \ge 0.$$

$$T(\lambda) \in H^{\infty}(\Pi).$$
(5)

• □ ▶ < □ ▶ < □ ▶</p>

Main Result

Let \mathfrak{S}_1 denote the set of all trace-class operators acting on the space $H^2(\Pi)$. Recall that a compact operator A belong to \mathfrak{S}_1 , if the sequence of its singular numbers $\{s_j(A)\}_{j=1}^{\infty}$ is summable. The norm of an operator A in \mathfrak{S}_1 is defined as

$$\|A\|_{\mathfrak{S}_1} := \sum_{j=1}^{\infty} |s_j(A)|.$$

Along with the operator (1) we consider its derivatives with respect to the parameter x. It is easy to see that

$$\frac{\partial^{j}}{\partial x^{j}}\mathbb{H}(\varphi_{x}) = \mathbb{H}(\varphi_{j,x}), \tag{6}$$

where

$$\varphi_{j,x}(\lambda) = (2i)^j \lambda^j \varphi_x(\lambda), \quad j = 0, 1, 2, \dots$$
(7)

If
$$\varphi \in L^{\infty}(R) => \mathbb{H}(\varphi)$$
 is bounded on $H^{2}(\Pi)$
 $\mathbb{H}(h - \varphi_{0}) = H(\varphi_{0}), h \in H^{\infty}(\Pi).$

It should be noted that φ and h could be unbounded.

-

э

Theorem

If the function $\varphi_x(\lambda)$ is of the form (2)-(5) with $g(s) \in L_1(\mathbb{R}_+(1+s)^{j/2}), j \in \mathbb{N}$, then

$$\frac{\partial^k}{\partial x^k} \mathbb{H}(\varphi_x) \in \mathfrak{S}_1, \quad k = 0, 1, \dots j,$$

and

$$\left\|rac{\partial^k}{\partial x^k}\mathbb{H}(arphi_x)
ight\|_{\mathfrak{S}_1} \leq \left\{egin{array}{c} L_1, & x>0\ L_2\left(1+|x|
ight)^{k/2}, & x<0, \end{array}
ight.$$

where the constants L_1 and L_2 are independent of $x \in \mathbb{R}$.

S. M. Grudsky (CINVESTAV)

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A

Peller's Theorem

We say that a function $f(\xi)$ analytic in Π belongs to the space $A_1^1(\Pi)$ if and only if

$$\|f\|_{A_1^1(\Pi)} := \int\limits_0^\infty \int\limits_{-\infty}^\infty |f''(\xi_1 + i\xi_2)| d\xi_1 d\xi_2 + \sup \{f(\xi)|\xi_2 \ge 1\} < \infty,$$

where $\xi = \xi_1 + i\xi_2$ is a complex variable belonging to the complex plane \mathbb{C} . we introduce the following modification of an analytic projection:

$$\left(\widetilde{P^{+}}f\right)(\xi) = \frac{1}{2\pi i}\int_{-\infty}^{\infty}\left(\frac{1}{\tau-\xi}-\frac{\tau}{1+\tau^{2}}\right)f(\tau)\,d\tau.$$

S. M. Grudsky (CINVESTAV)

Theorem (V.Peller, 1980)

Let $\varphi \in L_{\infty}(\mathbb{R})$, Then $\mathbb{H}(\varphi) \in \mathfrak{S}_1$ if and only if

$$\left(\widetilde{P^{+}}\overline{\varphi}\right)(\xi)\in A_{1}^{1}(\Pi).$$

3

(日) (四) (日) (日) (日)

Lemma

Let $\varphi = h\varphi_1$, where $h \in H^{\infty}(\Pi)$, and $\varphi_1 \in L_{\infty}(\mathbb{R})$. If the operator $\mathbb{H}(\varphi_1)$ belongs \mathfrak{S}_1 , then so does the operator $\mathbb{H}(\varphi)$, and

 $\|\mathbb{H}(\varphi)\|_{\mathfrak{S}_1} \leq \|h\|_{L_{\infty}} \|\mathbb{H}(\varphi_1)\|_{\mathfrak{S}_1}$

Remark

The symbol $\varphi_{j,x}(\lambda)$ contains the multiplier $T(\lambda) \in H^{\infty}(\Pi)$. Therefore, in what follows, we consider the symbol

$$\varphi_{j,x}^{0}(\lambda) = \lambda^{j} \mathcal{G}_{-}(\lambda) e^{i\Phi(\lambda,x)}$$
(8)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Applying Pellier's Theorem to the Hankel operator with this symbol of the form, we must first estimate the integrals

$$I_{j}(\xi, x) := \frac{1}{2\pi i} \int_{-\infty}^{\infty} \left(\frac{1}{\tau - \xi} - \frac{\tau}{1 + \tau^{2}} \right) \tau^{j} \overline{G_{-}(\tau)} e^{-i\Phi(\tau, x)} d\tau,$$

$$\xi \in \Pi, j = 0, 1, 2, \dots,$$

$$I_{j}^{(2)}(\xi,x) := \frac{1}{\pi i} \int_{-\infty}^{\infty} \frac{\tau^{j} \overline{G_{-}(\tau)} e^{-i\Phi(\tau,x)}}{(\tau-\xi)^{3}} d\tau, \quad \xi \in \Pi, \ j = 0, 1, 2, \dots$$
(9)

Image: A matrix

The Saddle-Point Method

Using (4) we obtain

$$\overline{G_{-}(\tau)} = \int_{0}^{\infty} e^{i2\tau s} g(s) \, ds.$$

Here and further, we assume that $g(s) \ge 0$ almost everywhere and $g(s) \in L_1\left(\mathbb{R}_+, (1+s)^{j/2}\right)$. Thus, the integral (9) can be written as

$$I_{j}(\xi,x) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \left(\frac{1}{\tau-\xi} - \frac{\tau}{1+\tau^{2}} \right) \tau^{j} e^{-i\Phi(\tau,x)} \left(\int_{0}^{\infty} g(s) e^{i2\tau s} ds \right) d\tau.$$

$$(10)$$

S. M. Grudsky (CINVESTAV)

Changing the order of integration, we obtain

$$I_j(\xi,x)=\frac{1}{2}\int\limits_0^\infty g(s)J_j(s,\xi,x)\,ds,$$

where

$$J_j(s,\xi,x) := \frac{1}{\pi i} \int_{-\infty}^{\infty} \left(\frac{1}{\tau-\xi} - \frac{\tau}{1+\tau^2} \right) \tau^j e^{-i\Phi(\tau,x-s)} d\tau,$$
$$\Phi(\tau,x-s) = 8t\tau^3 + 2(x-s)\tau.$$

S. M. Grudsky (CINVESTAV)

On the Trace-Class Hankel Operators

H 5 Lisbon, Portugal 15/31

э

Let us make the following change of variables

$$au=eta(s)u,\quad \xi=eta(s)\xi',\quad ext{where}\quad eta(s)=\left(rac{(s-x)}{12t}
ight)^{1/2}.$$

Setting

$$S(u) = rac{u^3}{3} - u, \quad \Lambda(s,x) := \Lambda(s) := rac{(s-x)^{3/2}}{(3t)^{1/2}}$$

we obtain

$$J_j(s,\xi,x) := \widetilde{J}_j(s,\xi',x) = eta^j(s)\widetilde{l}_j(s,\xi',x) - eta^{j+2}(s)\widehat{l}_j(s,x),$$

where

$$\widetilde{I}_{j}(s,\xi',x) = \frac{1}{\pi i} \int_{-\infty}^{\infty} \frac{u^{j} e^{-i\Lambda(s)S(u)}}{u-\xi'} du$$
(11)

$$\widehat{I}(s,x) = \frac{1}{\pi i} \int_{-\infty}^{\infty} \frac{u^{j+1} e^{-i\Lambda(s)S(u)}}{1 + \beta^2(s)u^2} \, du.$$
(12)

Image: A marked bit is a standard st

S. M. Grudsky (CINVESTAV)

On the Trace-Class Hankel Operators

H 5 Lisbon, Portugal 16/31

3

Let us find a saddle-point contour for the integral (12). The critical points u_{\pm} can be found from the equation

$$S'(u) = u^2 - 1 = 0, \quad u_{\pm} = \pm 1.$$

It is easy to calculate that

$$S(u_{\pm}) = \mp \frac{2}{3}, \quad S''(u_{\pm}) = \pm 2, \quad S'''(u_{\pm}) = 2.$$

Thus, the saddle-point contours are determined by the equations

$$S(u) + \frac{2}{3} = (u-1)^2 + \frac{1}{3}(u-1)^3 = -iv^2, \ v \in \mathbb{R},$$
(13)

$$S(u) - \frac{2}{3} = -(u+1)^2 + \frac{1}{3}(u-1)^3 = -iv^2, v \in \mathbb{R}.$$
 (14)

S. M. Grudsky (CINVESTAV)

It is easy show that Esq. (13) and (14) are uniquely solvable for any $v \in \mathbb{R}$. We denote their solutions by $u_{\pm}(v)$ and introduce the saddle-point counters

$$\Gamma_{\pm} := \{ z = u_{\pm}(v) | v \in \mathbb{R} \}.$$

It is easy to see that, in a neighborhood of the critical points $(u_{\pm}(0) = \pm 1)$, the following asymptotic relations hold:

$$\begin{aligned} u &:= u_+(v) = 1 + e^{-i\frac{\pi}{4}}v + O(v^2), \quad v \in [-\varepsilon, \varepsilon] \\ u &:= u_-(v) = -1 + e^{i\frac{\pi}{4}}v + O(v^2), \quad v \in [-\varepsilon, \varepsilon] \end{aligned}$$

Moreover, it is easy to see that, for sufficiently large v, we have

$$\begin{array}{cccc} u_{+}(v) \sim \sqrt[3]{3} & e^{i\frac{\pi}{2}} & |v|^{2/3}, & v \to -\infty \\ u_{+}(v) \sim \sqrt[3]{3} & e^{-i\frac{\pi}{6}} & v^{2/3}, & v \to +\infty \\ u_{-}(v) \sim \sqrt[3]{3} & e^{i\frac{\pi}{2}} & v^{2/3}, & v \to +\infty \\ u_{-}(v) \sim \sqrt[3]{3} & e^{i\frac{\pi}{6}\pi} & |v|^{2/3}, & v \to -\infty \end{array} \right)$$

Estimation of the Second Term of Peller Theorem

Lemma

The integral (12) can be estimated as

$$|\widehat{l_j}(s,x)| \leq rac{\mathrm{const}}{eta^2(s) \Lambda^{1/2}(s)},$$

where "const" is independent of s and x.

Lemma

The integral (11) can be represented as

$$\widetilde{I_j}(s,\xi',x) = \widetilde{I_j^+}(s,\xi',x) + \widetilde{I_j^-}(s,\xi',x) + \widetilde{I_j}_{,\mathrm{Res}}(s,\xi',x)$$

where

$$\begin{split} \left|\widetilde{I_{j}^{\pm}}(s,\xi',x)\right| &\leq \operatorname{const} \left\{ \begin{array}{ll} \frac{1}{|\xi'\mp 1|\Lambda^{1/2}(s)}, & |\xi'\mp 1|\Lambda^{1/2}(s) \geq 1, \\ 1, & |\xi'\mp 1|\Lambda^{1/2}(s) \leq 1, \end{array} \right. \\ \left|\widetilde{I_{j,\mathrm{Res}}^{0}}(s,\xi',x)\right| &\leq \operatorname{const}, \end{split}$$
and "const", is independent of s, ξ' and x.

S. M. Grudsky (CINVESTAV)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem

Let $I_j(\xi, x)$ be the expression given by (10), and let $g(s) \in L_1(\mathbb{R}_+, (1+s)^{j/2})$. Then, for j = 0, 1, ...,

$$|I_j(\xi,x)| \leq \left\{egin{array}{cl} c_1, & x \geq 0 \ c_1 + c_2 |x|^{j/2}, & x < 0, \end{array}
ight.$$

where c_1 and c_2 are independent of ξ and x.

Substituting representation (4) into (9), we see that

$$I_{j}^{(2)}(\xi, x) = \frac{1}{\pi i} \int_{-\infty}^{\infty} \frac{\tau^{j} e^{-i\Phi(\tau, x)}}{(\tau - \xi)^{3}} \left(\int_{0}^{\infty} g(s) e^{i2\tau s} ds \right) d\tau.$$
(15)

Changing the order of integration, we obtain the representation

$$I_{j}^{(2)}(\xi,x) = 2 \int_{-\infty}^{\infty} g(s) J_{j}^{(2)}(s,\xi,x) ds,$$

where

$$J_{j}^{(2)}(s,\xi,x) := \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{\tau^{j} e^{-i\Phi(\tau,x-s)}}{(\tau-\xi)^{3}} d\tau.$$
(16)

A D N A B N A B

Making the same change of variables in the integral (16), we see that

$$J_{j}^{(2)}(s,\xi,x) = \beta(s)^{j-2} \widetilde{I_{j}^{(2)}}(s,\xi',x),$$

where

$$\widetilde{I_{j}^{(2)}}(s,\xi',x) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{u^{j} e^{-i\Lambda(s)S(u)}}{(u-\xi')^{3}} du.$$
(17)

Image: A matrix

э

Lemma

The integral (17) can be represented as

$$\widetilde{I_{j}^{(2)}}(s,\xi',x) = \widetilde{I_{j,+}^{(2)}}(s,\xi',x) + \widetilde{I_{j,-}^{(2)}}(s,\xi',x) + \widetilde{I_{j,Res}^{(2)}}(s,\xi',x),$$

where

$$\begin{split} |\widetilde{I_{j,\pm}^{(2)}}(s,\xi',x)| &\leq \mathrm{const} \left\{ \begin{array}{ll} \frac{1}{|\xi'\mp 1|^3\Lambda^{1/2}(s)}, & |\xi'\mp 1|\Lambda^{1/2}(s) \geq 1\\ \Lambda(s), & |\xi'\mp 1|\Lambda^{1/2}(s) \leq 1 \end{array} \right. \\ |\widetilde{I}_{j,Res}^{(2)}(s,\xi',x)| &\leq \mathrm{const} \left\{ \Lambda(s)^{-\frac{j-2}{3}} |\xi''|^{j-2} \left(|\xi''|^6 + |\xi''|^3 + 1 \right) e^{-c|\xi''|^3} \right\} \\ here \ \xi'' &= \xi'\Lambda^{1/3}(s), c > 0 \ and \ "\mathrm{const}" \ are \ independent \ of \ s, x \ and \\ \xi' \in \Pi \setminus (D_1 \cup D_{-1}). \end{split}$$

Theorem

Let $I_j^{(2)}(\xi',x)$ be the function given by (15), and let $g(s) \in L_1(\mathbb{R}_+,(1+|s|)^{j/2})$. Then

$$A(x) := \int\limits_{\Pi} |I_j^{(2)}(\xi, x)| d\xi \leq \left\{ egin{array}{c} c_3, \ x \geq 0 \ c_3 + c_4 |x|^{j/2}, \ x < 0, \end{array}
ight.$$

where c_3 and c_4 are independent of x.

くぼう くほう くほう しゅ

Applications to the Korteweg-de Vries Equation

$$\frac{\partial u(x,t)}{\partial t} - 6u(x,t)\frac{\partial u(x,t)}{\partial x} + \frac{\partial^3 u(x,t)}{\partial x^3} = 0, \quad t \ge 0, x \in \mathbb{R}.$$
$$u(x,0) = q(x),$$
inf Spec (\mathbb{L}_q) = $-a^2 > -\infty$ (is bounded below); (18)
$$\int_{-\infty}^{\infty} (1+|x|)^N |q(x)| \, dx < \infty, \quad N \ge 1 \quad (\text{decreases at} + \infty).$$
$$L_q = -\partial_x^2 + q - \text{Schrödinger operator.}$$

The condition

$$\sup_{|I|=1}\int_{I}\max(-q(x),0)dx<\infty$$

is sufficient for (18).

S. M. Grudsky (CINVESTAV)

Inverse Scattering Method (GGKM-Gardner, Green, Kruskal, Miuro)

Solving the Schrödinger equation $\mathbb{L}_q u = k^2 u$ we find $S_0 = \{R(k), (\kappa_n, c_n)\}$, where $R(k), k \in \mathbb{R}$, is the reflection coefficient and $(\kappa_n, c_n), n = 1, 2, ..., N$, are the so-called data on bound states associated with the eigenvalues, $-\kappa_n^2$.

Step 3 reduces to solving the inverse scattering problem for recovering the potential u (x, t) (which now depends on t ≥ 0) from S(t). This procedure leads to the following explicit formula, which is usually called the Dyson determinant:

$$u(x,t) = -2\partial_x^2 \log \det \left(I + \mathbb{H}(x,t)\right).$$

くロッ くぼう くほう くほう 二日

Symbol of the Hankel Operator

$$\varphi_{x,t}(k) = R(k)\xi_{x,t}(k) + \int_0^a \frac{\xi_{x,t}(is)d\rho(s)}{s+ik},$$

where $-a^2$ is the lower bound of the spectrum of \mathbb{L}_q and $\rho(s)$ is a measure with the properties

Supp
$$\rho \subseteq [0, a], \quad d\rho \ge 0, \quad \int_0^a d\rho < \infty.$$

 $\mathbb{H}(x,t) = \mathbb{H}(\Phi_{x,t}) + \mathbb{H}(\xi_{x,t}R_0),$

where $\Phi_{x,t}$ is a meromorphic function in the upper half-plane (its particular form is inessential) and R_0 is the reflection coefficient of q bounded on $(0, \infty)$.

For R_0 we have the representation

$${{\it R}_{0}}\left(\lambda
ight) = {\it T}\left(\lambda
ight) \int_{0}^{\infty } {{e^{ - 2i\lambda s}}g\left(s
ight) ds},$$

where $T \in H^{\infty}(\Pi)$, so that $T(\lambda) = O(1/\lambda)$, $|\lambda| \to \infty$, g is a function subject to the only constraint

$$\left| g\left(s
ight)
ight| \leq \left| q\left(s
ight)
ight| +const\int_{s}^{\infty }\left| q
ight| .$$

S. M. Grudsky (CINVESTAV)

On the Trace-Class Hankel Operators

Lisbon, Portugal 29 / 31

Global Classical Solution of KDV

 Ø Main Theorem implies: For the operator 𝔑(ξ_{x,t} R₀), we proved that if

$$\int^{\infty}\left(1+\left|s\right|\right)^{N}\,\left|q\left(s\right)\right|ds<\infty,$$

then

$$\frac{\partial^{n+m}}{\partial x^n \partial t^m} \mathbb{H}\left(\xi_{x,t} R_0\right) \in \mathfrak{S}_1$$

for all n and m, satisfying the condition

$$n+3m\leq 2N-1.$$

S. M. Grudsky (CINVESTAV)

Theorem

Suppose that the (real) initial profile q satisfies the condition

$$\inf \operatorname{Spec}\left(\mathbb{L}_q\right) = -a^2 > -\infty$$
 (is bounded below),

$$\int^{\infty}\left(1+|x|
ight)^{N}\left|q\left(x
ight)
ight|dx<\infty,\quad N\geq1\quad (\textit{decreases}+\infty).$$

Then the function $\tau(x,t) := \det(1 + \mathbb{H}(x,t))$ is well defined on $\mathbb{R} \times \mathbb{R}_+$, and its classical derivatives $\partial^{n+m}\tau(x,t) / \partial x^n \partial t^m$ exist provided that $n + 3m \le 2N - 1$. Moreover, for $N \ge 3$ the Cauchy problem has a global (in time) classical solution which is given by

$$u(x,t) = -2 \frac{\partial^2}{\partial x^2} \log \tau (x,t), \quad t > 0.$$

S. M. Grudsky (CINVESTAV)

< □ > < □ > < □ > < □ > < □ > < □ >