Theory of Toeplitz Operators: THE CONJECTURES CAN BE INCORRECT!

S. Grudsky (México, 11.02.2004)

Dedicated to the fond memory of

OLGA GRUDSKAYA

(16.05.1955 - 10.02.2004)

- Böttcher A., Grudsky S.M. On the composition of Muckenhoupt weights and inner functions. J. London Mathematical Society, (2) 58, N 1, 1998, 172–184.
- Böttcher A., Grudsky S. and Spitkovsky I. The spectrum is discontinuous on the manifold of Toeplitz operators. Archiv d. Math. (Basel), **75**, N 1, 2000, 46–52.
- Böttcher A., Grudsky S.M. Asymptotic spectra of dense Toeplitz matrices are unstable. Numerical Algorithms, **33**, 2003, 105–112.

On the composition of Muckenhoupt weights and inner functions

$$\mathbb{T} := \{ z \in \mathbb{C} : |z| = 1 \}$$
$$f \in L^p(\mathbb{T}) \iff \left(\int_{\mathbb{T}} |f(t)|^p |dt| \right)^{1/p} < \infty, \ 1 \le p \le \infty$$

Definition 1 A measurable function

$$w: \mathbb{T} \to [0,\infty]$$

is called weight if the set $w^{-1}(\{0,\infty\})$ has measure 0.

Definition 2 A weight w is said to belong to the Muckenhoupt class A_p (1 if $<math>w \in L^p(\mathbb{T}), (1/w) \in L^q(\mathbb{T}), (1/p + 1/q = 1)$ and

$$\begin{split} \sup_{I} \left(\frac{1}{|I|} \int_{I} w^{p}(t) |dt| \right)^{1/p} \left(\frac{1}{|I|} \int_{I} w^{-q}(t) |dt| \right)^{1/q} < \infty, \\ where the supremum is taken over all arcs \\ I \subset \mathbb{T}, \text{ and } |I| \text{ denotes the length of } I. \\ H^{p}(\mathbb{T}) := \{ f \in L^{p}(\mathbb{T}) : f_{n} = 0, n < 0 \}, \text{ where} \\ f_{n} \text{ is } n\text{-th Fourier coefficient of } f \end{split}$$

Definition 3 A nonconstant function $u \in H^{\infty}(\mathbb{T})$ is called *inner function* if |u(t)| = 1 a.e.

PROBLEM: Let $w \in A_p$ and u is inner function. Does the superposition

 $(\mathbf{w} \circ \mathbf{u})(\mathbf{t}) = \mathbf{w}(\mathbf{u}(\mathbf{t}))$

belong A_p ?

The conjecture was that the answer is **YES**.

WHY?

1. If p = 2 then $(w \circ u)(t) \in A_2$.

2. If $u(t) = \exp\left\{\lambda \frac{t+1}{t-1}\right\}, \lambda > 0$, then $(w \circ u)(t) \in A_p$ for $p \in (1, \infty)$.

3.

$$B(t) = \prod_{k=-\infty}^{\infty} \frac{|z_k|}{z_k} \cdot \frac{z_k - t}{1 - \overline{z}_k t}, \quad |z_k| < 1.$$

For several classes of Blaschke product $(w \circ B)(t) \in A_p$ for $p \in (1, \infty)$.

Littlwood's subordination theorem. If $f \in L^p(\mathbb{T})(H^p(\mathbb{T}))$ for arbitrary inner function u and for $p \in (1, \infty)$ we have $f \circ u \in L^p(\mathbb{T})(H^p(\mathbb{T})).$

1. Boundedness of the Cauchy singular integral operator in weight spaces

$$(Sf)(t) = \frac{1}{\pi i} \text{v.p.} \int_{\mathbf{T}} \frac{f(\tau)}{\tau - t} d\tau \quad (t \in \mathbb{T})$$

Theorem 1 (Hunt, Muckenhoupt and Wheeden, 1973)

S is bounded operator on the weight Lebesgue space $L^p(\mathbb{T}, w)$ with the norm

$$\|f\|_{p,w} := \left(\int_{\mathbb{T}} |f(t)|^p w^p(t) |dt|
ight)^{1/p}$$

if and only if $w \in A_p$ (1 .

Reformulation 1 Let S is bounded on $L^p(\mathbb{T}, w)$ and u is inner function. Is S bounded on $L^p(\mathbb{T}, w \circ u)$?

2. Spectral theory of Toeplitz operators

 $\mathbb{P} := (I+S)/2$ is analytical projector

$$\mathbb{P}: L^{p}(\mathbb{T}) \to H^{p}(\mathbb{T}), \sum_{n=-\infty}^{\infty} f_{n}t^{n} \to \sum_{n=0}^{\infty} f_{n}t^{n}$$
$$T(a) := \mathbb{P}a\mathbb{P}: H^{p}(\mathbb{T}) \to H^{p}(\mathbb{T})$$
$$a \ (\in L^{\infty}(\mathbb{T})) \text{ is symbol of Toeplitz operator}$$
$$T(a)$$

Theorem 2 (Simonenko) T(a) is invertible on $H^p(\mathbb{T})$ if and only if symbol a is invertible in $L^{\infty}(\mathbb{T})$ and function a/|a| can be represented in the form

$$\frac{a}{|a|} = \frac{\overline{h}}{\overline{h}},$$

where

i) $h \in H^p(\mathbb{T}), (1/h) \in H^q(\mathbb{T}), 1/p+1/q = 1,$ and

ii) $|h| \in A_p$.

Reformulation 2 If operator T(a) is invertible on $H^p(\mathbb{T})$ and u is inner function is operator $T(a \circ u)$ invertible on $H^p(\mathbb{T})$?

Really,

$a \circ u$	$\overline{h \circ u}$
$\overline{ a \circ u } =$	$\overline{h \circ u}$.

According to Littlwood Theorem we have i)

$$h \circ u \in H^p(\mathbb{T})$$
 and $\left(\frac{1}{h \circ u}\right) \in H^q(\mathbb{T})$
But $|\mathbf{h} \circ \mathbf{u}| \stackrel{?}{\in} \mathbf{A}_{\mathbf{p}}.$

The superposition $a \circ u$ generates wide class of oscillating symbols

$$e(t) = \exp\left(\lambda \frac{t+1}{t-1}\right) \iff \exp\{i\lambda x\}, \quad x \in \mathbb{R}.$$

If $a(t) \in C(\mathbb{T}) \Longrightarrow a(\exp\{i\lambda x\}) \in \Pi_{\lambda}(\mathbb{R}).$
 $\Pi_{\lambda}(\mathbb{R})$ is class of continuous $\frac{2\pi}{\lambda}$ -periodic
functions.

ANSWER THE MAIN QUESTION

Theorem 3 (Böttcher, Grudsky).

- 1. If $w \in A_2$ and u is inner function then $w \circ u \in A_2$.
- 2. Let $p \in (1,2) \cup (2,\infty)$ and $\frac{1}{p} + \frac{1}{q} = 1$. Further, let σ be any number in interval $\begin{pmatrix} \frac{1}{p}, \frac{1}{q} \end{pmatrix}$ if 1 , OR any number in $interval <math>\begin{pmatrix} -\frac{1}{q}, -\frac{1}{p} \end{pmatrix}$ if 2 . Then $<math>w(t) := |t-1|^{-\sigma}$

is a weight in A_p , but there is Blaschke product B_M such that

 $w(B_M(t)) = |B_M(t) - 1|^{-\sigma}$

is not a weight in A_p .

Construction of $\mathbf{B}_{\mathbf{M}}(\mathbf{t})$

$$B_{M}(t) = \prod_{k=-\infty}^{\infty} \frac{|z_{k}|}{z_{k}} \cdot \frac{z_{k} - t}{1 - \overline{z}_{k} t}, \quad z_{k} = r_{k} \exp(i\theta_{k})$$

$$\theta_{k} = \begin{cases} (\operatorname{sign} k) \exp(-|k|), & k \neq 0, \\ -1, & k = 0, \end{cases} \quad r_{k} = \frac{1 - \delta_{k}/M}{1 + \delta_{k}/M},$$
where
$$\delta_{k} := \min \left\{ \left(\frac{\Delta_{k}}{\log \Delta_{k}}\right)^{2}, \left(\frac{\Delta_{k-1}}{\log \Delta_{k}}\right)^{2} \right\},$$
and
$$\Delta_{k} = \left\{ \begin{array}{l} \theta_{k} - \theta_{k+1}, & k = 1, 2, 3, \dots, \\ \theta_{k-1} - \theta_{k}, & k = 0, -1, -2, \dots, \end{array} \right\}$$

M (> 0) is large enough.

For p = 2 the answer is **YES**, for $p \neq 2$ the answer is **NO**.

THE SPECTRA IS DISCONTINUITY ON THE MANIFOLD OF TOEPLITZ OPERATORS

H is Hilbert space $\mathfrak{B}(H)$ is the set of all bounded linear operators on H $\operatorname{sp} A = \{\lambda \in \mathbb{C} : A - \lambda I \text{ is not invertible}\}\$ $\operatorname{sp}_{ess} A = \{\lambda \in \mathbb{C} : A - \lambda I \text{ is not Fredholm}\}\$ A is Fredholm $\iff \operatorname{im} A = \operatorname{im} A,$ $\dim \ker A < \infty \text{ and } \dim(H/\operatorname{im} A) < \infty$ $\{A_n\}_{n \in \mathbb{N}} \in \mathfrak{B}(H)$

 $\lim_{n \to \infty} \inf \operatorname{sp} A_n$ $= \{\lambda \in \mathbb{C} : \forall n \exists \lambda_n \in \operatorname{sp} A_n \text{ such that } \lim_{n \to \infty} \lambda_n = \lambda\}$ $\lim_{n \to \infty} \sup \operatorname{sp} A_n$ $= \{\lambda \in \mathbb{C} : \exists \{n_k\}_{k=1}^{\infty} \text{ such that } \lambda_{n_k} \in \operatorname{sp} A_{n_k}$ and $\lim_{k \to \infty} \lambda_{n_k} = \lambda\}$ $\lim_{n \to \infty} \inf \operatorname{sp} A_n \subset \limsup_{n \to \infty} \operatorname{sp} A_n \quad (1)$ $\lim_{n \to \infty} \|A_n - A\|_H = 0 \implies \limsup_{n \to \infty} \operatorname{sp} A_n \subset \operatorname{sp} A$ (2)
It is well known that in general neither in (1)
nor in (2) equality holds.

$$f(x) \in H^2(\mathbb{R}) \iff f(x) = \int_0^\infty g(t) e^{itx} dt, \ g \in L^2(0,\infty)$$

$$\begin{split} \mathbb{P} &: L^2(\mathbb{R}) \to H^2(\mathbb{R}) \text{ is orthogonal projector} \\ T(a)f &:= P(af) : H^2(\mathbb{R}) \to H^2(\mathbb{R}) \text{ is Toeplitz} \\ & \text{operator} \\ a \; (\in L^\infty(\mathbb{R})) \text{ is a symbol of the operator } T(a) \end{split}$$

 $||a_n - a||_{L^{\infty}} \to 0 \implies ||T(a_n) - T(a)||_{H^2} = 0$

Problem. Let $a_n \in L^{\infty}(\mathbb{R})$ and $||a_n - a||_{L^{\infty}} \to 0$. Does the following equality

 $\liminf_{n \to \infty} \operatorname{sp} T(a_n) = \operatorname{sp} T(a)$

hold?

D.R. Fanerick and W.Y. Lee. Hyponormality and spectra of Toeplitz operators. Trans. Amer. Math. Soc. 348, 4153–4174 (1996).

CONJECTURE of Fanerick and Lee: *The* answer is **YES**.

Particular cases

12

- 3. $C(\dot{\mathbb{R}}) + H^{\infty}(\mathbb{R})$
- 4. $PQC = ((H^{\infty}(\mathbb{R}) + C(\mathbb{R})) \cap (H^{\infty}(\mathbb{R}) + C(\mathbb{R})) \cup C(\mathbb{R})$ is class of the *piecewise quasicontinuous periodie*-functions.

5.

$$AP(\mathbb{R}) = \left\{ \overline{\sum_{k=1}^{n} c_k e^{i\lambda_k x}, \lambda_k \in \mathbb{R}, c_k \in \mathbb{C}} \right\}$$

is a class of the continuous almost periodic functions.

6. $AP(\mathbb{R}) + C(\dot{\mathbb{R}})$

For all these classes the answer the question by Fanerick and Lee is **YES**.

BUT: in general case the answer is NO!

 $SAP(\mathbb{R}) := AP(\mathbb{R}) \cup C(\overline{R})$ is class of the semi-almost periodic functions.

 $a \in SAP(\mathbb{R}) \Rightarrow a(x) = u(x)a_r(x) + (1-u(x))a_l(x) + a_0(x),$ where

$$a_r(x), a_l(x) \in AP(\mathbb{R}),$$
$$u(x) \in C(\overline{\mathbb{R}})$$
with $u(+\infty) = 1$ and $u(-\infty) = 0,$
$$a_0(x) = C(\dot{\mathbb{R}})$$
with $a_0(\infty) = 0.$

Figure 2: $h(\lambda) = \lambda(\lambda + 1/4)^5(\lambda + i/2)^5(\lambda - 3/4 - i/2)^5(\lambda + 2/3 + i/3)^5$

Theorem 4 (Bö, Gru, Sp) There exist $\{a_n\}$ and a in $SAP(\mathbb{R})$ such that

 $\|a_n - a\|_{L^{\infty}} \to 0$ sp $T(a_n) = \operatorname{sp}_{ess} T(a_n) = \mathbb{T}, \operatorname{sp} T(a) = \operatorname{sp}_{ess} T(a) = \overline{\mathbb{D}}.$

 $\liminf_{n \to \infty} \operatorname{sp} T(a_n) = \limsup_{n \to \infty} T(a_n) = \mathbb{T}.$ $\mathbf{BUT!} \operatorname{sp} T(a) = \overline{\mathbb{D}}$ $b_{2k} = a_{2k}, \quad b_{2k+1} = a$ $\liminf_{n \to \infty} \operatorname{sp} T(b_n) = \mathbb{T} \neq \limsup_{n \to \infty} \operatorname{sp} T(b_n) = \mathbb{D}.$

Asymptotic spectra of Toeplitz matrices are unstable

 $a(t) \in L^{\infty}(\mathbb{T}), \ \mathbb{T} = \{t \in \mathbb{C} : |t| = 1\}$ $a(t) \sim \sum_{j=-\infty}^{\infty} a_j t^n \text{ is Fourier series of } a$ $T(a) = \{a_{j-k}\}_{j,k=0}^{\infty} \text{ is the infinite Toeplitz}$ matrix

 $T_n(a) = \{a_{j-k}\}_{j,k=0}^n$ is the finite Toeplitz matrix

$$T(a) = \begin{pmatrix} a_0 & a_{-1} & a_{-2} & \dots & a_{-n+1} & a_{-n} & | & a_{-n-1} \\ a_1 & a_0 & a_{-1} & \dots & a_{-n+1} & | & a_{-n} & \ddots \\ a_2 & a_1 & a_0 & \ddots & & | & a_{-n+1} & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots & | & \vdots & \ddots \\ \vdots & \ddots & \ddots & \ddots & a_{-1} & | & \vdots \\ a_n & a_{n-1} & a_{n-2} & \dots & a_1 & a_0 & | \\ - & - & - & - & - & - & \square & a_{-1} \\ a_{n+1} & a_n & a_{n-1} & & a_1 & a_0 & \ddots \\ & \ddots & \ddots & \ddots & & \ddots & \ddots & \ddots \end{pmatrix}$$

$$f \in L^2(\mathbb{T}) \Leftrightarrow \left(\sum_{j=-\infty}^{\infty} |f_j|^2\right)^{1/2} < \infty$$

$$\mathbb{P}\left(\sum_{j=-\infty}^{\infty} f_j t^j\right) = \sum_{j=0}^{\infty} f_j t^j, \quad \mathbb{P}_n\left(\sum_{j=-\infty}^{\infty} f_j t^j\right) = \sum_{j=0}^n f_j t^j$$

 $T(a):=\mathbb{P}a\mathbb{P}:H^2(\mathbb{T})\to H^2(\mathbb{T})$

 $T_n(a) := \mathbb{P}_n a \mathbb{P}_n : H_n^2(\mathbb{T}) \to H_n^2(\mathbb{T})$

 $a \in C(\mathbb{T}) \Rightarrow spT(a) = \{\lambda \in \mathbb{C} \mid \exists t \in \mathbb{T}, a(t) = \lambda\} \bigcup$ $\{\lambda \in \mathbb{C} \mid \min_{t \in \mathbb{T}} |a(t) - \lambda| > 0 \text{ and } wind (a(t) - \lambda) \neq 0\}$

 $\Lambda(a) = \limsup_{n \to \infty} spT_n(a)$

18

 $a(t) = -2t^{-3} 2t^{-2} + \frac{i}{100}t^{-1} + 2ct + \frac{i}{2}t^2 + 10t^3$

٠

15

1.2.0

I

$a(t) = -\frac{13}{10}t^{-3} - \frac{1}{10}t^{-2} - \frac{11}{7}t^{-1} - \frac{1}{7}t^{-1} - \frac{1}{7}t^{-1} + t + 1.5t^{-1} - 0.77t^{-3}$

 $alt = t^{-4} - \frac{i}{\kappa_c} t^{-3} + (i+s)t^{-2} - \frac{i}{2}t^{-1} + \frac{i}{2}t^{2} + (ic+i)t^{3} - \lambda t^{4}$

III

l(12) = 5.5 + 9i

あいとうないとう 日本市民人のためにない いっしい

ないないためのであってい

VI

 $\liminf_{\substack{n \to \infty}} \operatorname{sp} T(c_n) = \mathbb{T} \cup (2 + \mathbb{T})$ $\limsup_{\substack{n \to \infty}} \operatorname{sp} T(c_n) = \mathbb{T} \cup (2 + \mathbb{D})$ $\operatorname{sp} T(c_n) = \overline{\mathbb{D}} \cup (2 + \overline{\mathbb{D}})$

Theorem 6 (Schmidt and Spitzer, 1961) Let $a(t) = \sum_{k=-r}^{s} a_k t^k (r \ge 1, s \ge 1, a_s \ne 0, a_{-r} \ne 0)$ be a Laurent polynomial, let $z_1(\lambda), z_2(\lambda), \ldots, z_{r+s}(\lambda)$ be the zeros of the polynomial $z^r(a(t) - \lambda)$, labelled so that

$$|z_1(\lambda)| \leq |z_2(\lambda)| \leq \ldots \leq |z_{r+s}(\lambda)|.$$

Then

$$\Lambda(a) = \{\lambda \in \mathbb{C} \mid |z_r(\lambda)| = |z_{r+1}(\lambda)|\}.$$

THE MAIN QUESTION: IS THE SET $\Lambda(a)$ STABLE?

The answer is yes for polynomial of bounded degree.

The answer is NO in general case.

Theorem 7 (Böttcher, Grudsky) There exist $a^n \in C(\mathbb{T})$ such that $||a^n - a||_{L_{\infty}} \to 0$, but

 $\limsup_{n \to \infty} \Lambda(a^n) \neq \Lambda(a)$ $a(t) = t^{-1}(33 - (t + t^2)(1 - t^2)^{3/4})$ $\Lambda(a) = \{\lambda \in \mathbb{C} \mid \exists t \in \mathbb{T}, a(t) = \lambda\}$

 $0\not\in\Lambda(a)$

$$a^{n} = t^{-1}(33 - (t + t^{2})\Sigma_{j=0}^{n} \begin{pmatrix} \frac{3}{4} \\ j \end{pmatrix} t^{2j})$$
$$\|a^{n} - a\|_{L_{\infty}} \to 0 \quad and$$
$$0 \in \Lambda(a^{n}), \quad for \ all \ n \ge 2$$

Figure 1. The range a(T) and the eigenvalues of $T_{128}(a)$ (a) and $T_{512}(a)$ (b).

Figure 2. The range $a(\mathbf{T})$ and the eigenvalues of $T_{128}(P_n a)$ for n = 4, 6, 8, 12.

21

108