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Sufficient conditions on Blaschke

products.
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Theorem 4. Suppose
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Theorem 5.Let 1 < p < 00, a € L>(T),
and let a Blaschke product B satisfy the condi-
tions of Theorem 4. Then

T(a): H/(T) — HP(T)
is invertible if and only if
T(ao B): H(T) — HP(T)

1s mvertible.
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Logaritmic case

Theorem 6. Suppose a real valued function
n is continuous on [—m, ] \ {0} and

Jim (n(t) F mlog|t]) = 0.

Then the function e’ admits the following rep-
resentation

e = B (eit) g (B (eit)) d (eit) , te|—m m,

where g,d € C(T), the winding number of g is
0, and B is the infinite Blaschke product with
the zeros

- 2—exp(—k+1/2)
24 exp(—k+1/2)°

Tk

Theorem 7. Suppose a function 7(t) sat-
isfies the conditions of Theorem 6. Then the

operator T'(e™®) is left invertible on the space
HP(T) , for 1 < p < o0.
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Aplication to problem about spectra
of Toeplitz operators with symbols
having more then two limiting values.

Definition 1.Let T={( € C: || =1}
be the unit circle. A number ¢ € C is called
a (left, right) cluster value of a measurable
function @ : T — C at a point ( € T if

1/(a —c) & L®(W) for every neighbourhood

(left semi-neighbourhood, right semi-neighbourhood)
W C T of .

We denote the set of all left (right) cluster
values of a at ¢ by a(¢ — 0) (by a(¢ +0)),

and use also the following notation
a(¢) = a(¢ —0)Ua(¢ +0),
a(T) = Ueer al().
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Let ' C C be an arbitrary compact set and
A€ C\ K. Then the set

J(K;)\):{|w ) ‘weK}CT

is compact as a continuous image of a compact
set. Hence the set Ay(K) = T \ o(K; ) is
open in T. So, A)(K) is the union of an at
most countable family of open arcs.

Definition 2. We call an open arc of T
p-large if its length is greater than or equal to

27
max{p,q}’

Whereq:}%, 1 <p<oo.
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Theorem 8. (E.Shargorodsky)
Let 1 <p<oo, ae L®T), e C\aT)
and suppose that, for some ¢ € T,
(1) Ax(a(¢ —0)) (or Ax(a(C +0))) contains at
least two p-large arcs,
(ii) Ax(a(¢+0)) (or Ax(a(¢ —0)) respectively )
contains at least one p—large arc.

Then A belongs to the essential spectrum of
T(a): HP(T) — HP(T).

E.Shargorodsky (1994) was shown that con-
dition (i) is optimal in the following sense: for
any compact K C C and A € C\ K such
that A)(K) contains at most one p-large arc
there exists a € L>(T) such that a(—1£0) =
a(T) = K and T(a) — X\ : H(T) — H"(T)
is invertible for any r € [min{p, ¢}, max{p, q¢}|.
A question that has been open is whether or not
condition (ii) can be dropped, i.e. whether con-
dition (i) alone is sufficient for A to belong to the
essential spectrum of T'(a) : HP(T) — HP(T).
The following result gives a negative answer to
this question.
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Theorem 9. There exists a € L*(T) such
that a(1 —0) = {1}, |a| =1,
T(a): H?(T) — HP(T)
is invertible for any p € (1,2), and
T(1/a): H’(T) — HP(T)
is invertible for any p € (2, +00).

Proof of Theorem 9.

Let ag € L*(T) be defined by

ag(e'™) = exp (7, %) , 7€ (0,2m).

Then ag is continuous on T \ {1},
ag(l1 £0) = £1, T(ag) : HP(T) — HP(T) is
invertible for any p € (1, 2),
and T(1/ay) : HP(T) — HP(T) is invertible
for any p € (2,400).

Let ho(z) = exp (—iclog(¢2=%). Then

ho(eit) — \ho(eit)\ e (t) , te|—mml,

where

2 sin —
2

T t
p(t) = —5 log ‘
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Let f be a 2m-periodic function such that

fe C%([=m 7\ 10}),
ft)=pt)if —m/2 <t <0,
and
fit)=—f(-t)ift0 <t <m/2
Then (Theorem 6)
2ift) _ B (€M) g (B (e))d(et), (1)

t € |[—m, 7|, where g,d € C(T), the index of
g is 0, and B is the infinite Blaschke product
with the zeros

2 —exp(—k+1/2)
2+ exp(—k+1/2)

Since the index of g is 0, there exists gy €
C(T) such that g5 = g. Let dy € C(T) be
such that di(e") = d(e") for t € [—7/2,m/2],
do(e') # 0 for t € [—m, 7] and the index of dg
18 0.

Consider the function a € L>(T) defined by

a(e") = ag (B (")) (go (B (")) do (") |h0(€it)|) .

ho(ez’t)
(2)

Tk
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It follows from (1) and from the definition of
the function f that a®(e) = 1if —w/2 <t <
0. It is clear that the second factor in the right-
hand side of (2) is continuous on
{e"] —m/2 <t < 0}, whereas the first one
has infinitely many discontinuities in any left
semi-neighbourhood of 1. Hence a takes values
1 and —1 in any left semi-neighbourhood of 1.
So, a(l —0) = {£1}.

The operator T'(a™!) : HP(T) — HP(T) is
invertible if and only if
T(az' o B) : HP(T) — HP(T) is invertible.
The latter operator is indeed invertible because
T(ag") : H(T) — HP(T) is invertible and B

satisfies of Theorem 4.
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