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The main theme: what happens to properties of Toeplitz-
Bergman operators when the weight parameter A varies, especially
if A — oc0?

Motivation (in particular): Berezin quantization proce-

dure_ -
1
T TNy Be(0 ] b
{ a }» ( 7 ) A"‘Q ?
}liil’{l)ah_ = a (3)

where ay, is Wick symbol.

Our goals are investigations boundedness, compactness and spec-
trum of Toeplitz-Bergman operator depending on A.

Classes of symbols
1. Radial symbols on unit disk: a = a(|z]), 2 € D.

2. Symbols dependent only on y = Im 2z on upper half-plane:
a=aly),zel={z=z+iy:z R,y > 0}.

3. Symbols dependent on € = arg z on upper half-plane:
a=a(f),z€ll0e(0,).

Theorem 1 (Vasilevski, 2000) C*-algebras generated by Toep-
litz- Bergman operators with symbols from 1, 2 or 3 are com-
mutative for each X > —1.




Theorem 2 Toeplitz-Bergman operators T, with radial sym-
bols a = a(|z]) from L1(0,1) (acting on A5(D)) is unitary
equivalent to the multiplication operator vy, 21 (acting onls(Z..))
where sequence Y, x = {Yar(R) }nez. 1S given by

1 : n
ealnl = Bl sl /0 a(\/?_")(l—r))‘?" dr, n€Z,. (4)

Toeplitz-Bergman Operators on Half-plane

1/2
F € Lallldi) <= i = ( [ 1FGFd)) - <o
where
ux(z) = A+ 1)(2Im z))‘%d:ﬁdfy. (5)

AS(IN(C Lo(I1, duy)) is weight Bergman space

of analytic functions on half-plane.

= dxdy
( ) 2T () )

Br : Lo(I1, duy) — Ai(ﬂ) is Bergman Projector on half-plane.
TW = Bg\)aBl({\) - A3 (IT1) — A3(IT) is Bergman-Toeplitz operator.

)\+1

(Buf)(z

3



Theorem 3 Toeplitz-Bergman operator T, with symbol a =
a(y) from Li(R:,0) (acting on A3(I1)) is unitary equivalent
to the multiplication operator v, I (acting on Ly(R.)) where
function v, = Vo0 () is given by

X

A+1 00 =
F()\+1)/0 a(t/2)t e *dt. (7)

Ya, ) (37) =

(a(y) € L;‘L(RJF, 0) < a(y)e ¥ € Li(R,) for any € > 0)

Theorem 4 Toeplitz-Bergman operator T, with symbol a =
a(6) from Ly(0,7) (acting on A3(I1)) is unitary equivalent to
multiplication operator vy, I (acting on Lo(R)) where function
Ya(€) is given by

(A + 127 |0 (32 + i) [

’Y@A(&) = T /\ & 2

Ysin* 0dh, € e R
(8)




Boundedness and Compactness Properties
(Radial case)

1 5 ]‘ fogas
ngffqﬁm—ngB&@:/B&%wn

(9)
s&=9 0. - A=
Theorem 5 If there exist 7 € N and Ay > 0 such that
BA (r)=O((1 —ry*9), r—1, (10)

then the Toeplitz-Bergman operator TV is bounded on each
A2(D) with A > 0.
If for some 7 € N and Ay > 0

BY) (r) =o((1 —ry*), r—1, (11)
then the operator Ty is compact on each A3(D) with A > 0.
Example 1 Unbounded symbol

a(r) = (1 = r®) Psin(l — r?)~° (12)
where a > 0 and 8 € (0, 1).

)

Theorem 5 =— TCE’\ is bounded and compact for A > 0.




Theorem 6 Let either a(r) > 0, or Bé/)\ (r) > 0 for a certain
j € N and \g. Then the conditions (10) (11) are also neces-
sary for the boundedness and compactness of the correspond-

ing Toeplitz operator T, on A3(D) with A > 0, respectively.

Corollary 1 If a(r) > 0, and lim._inf,c_.qja(r) = +o0

then the Toeplitz operator Ty is unbounded on each A3(D),
A > 0.

Corollary 2 Let a(\/r) € L1(0,1), and let a(r) > 0, or

BC(L;\ (r) > 0 for some j € N. Then the Toeplitz operator T
is bounded (compact), or unbounded (not compact) on each
A5 (D) simultaneously.




Boundedness and Compactness in Dependence on
A € [0, 00)
Theorem 7 The following statements hold:
(1) if for any \g > 0, the sequence 7, s bounded, then the
sequence Yq.x is bounded for all A € [0, \o);
(ii) if for any Ay > 0,
for all X € [0, X\p).

m Ya(n) =0, then lim y,A(n) =0

li
=20

B(a) - {\ €0,00) : TV is bounded}
K(a)={\ € [0,00) : TV is compact}
(1) [O OO) (11) [O /\0) (iii) [Oa )\[)]

yin) = go7 I (n+1) In™(n+1)In’ In(n + 1) (13)
There exists a,3(r) (€ L1(0,1)) such that v, ,(r) = y(n).
Theorem 8 Let 0 < v < 1. Then

CL) B(ar/.,()) s [07 VL K(G’U,O) e [01 V); /6 oS 07
b) Bla,s) = |0,v), Kla,p) = |0,v), 8 >0,
c) Bla.s) = 0,7, K(a,p) = [0, v], B < 0.




Algebra of Continuous Operators Functions

Case 3. Symbols dependent on 0 = argz
on upper half-plane a = a(0), z € 11,
6 € (0,m).

Question. What are conditions on symbols
such that

’)’a,)\(f) e G}’
lim 7@,)\(5) =cy and lim ’Ya:)\(g) =c— (!)
E—+00 £—r=po

Let f € CI0,1], then there exists symbol
a(f) such that




For any Li-symbol a(6) we define the fol-
lowing averaging functions, which correspond
to the endpoints of [0, 7],

foraachp= 2.3 ..
Theorem 0.1. Let a(f) € L1(0,7) and for

some p,q € N,
61}11’]{10 6’_pCép)(t9) =5 (6 L) and
lim 671 D(6) = d, (€ C). (0.1)
N

Then vq(A) € C(R).

[\




EXAMPLE 0.2. Let

g = 9P sin 0% where 0<G8<1, a>0.
(0.2)

This symbol oscillates near 0, is bounded when

3 =0, is unbounded for all # € (0,1). Accord-
ing to asymptotics calculations we have that

Qa—ﬁ+1

Cél)(é’) cos ™% + 062 P,

Q
when 6 — 0. (0.3)
Thus, if « > 3 then
melio =,
60 a (9)
and the first condition in (0.1) is satisfied for
=1




Further, if @ < £ we need to consider the
averages of the higher order. Indeed, formula
(0.3) implies that

ng)(é’) — O(F?=P+2) when 6 — 0
and, more generally, that
C’((Lp)(@) = O(6Pa—5+p), when 6 — 0.

Thus for each o« < 3 there is pg € N such that
poc > 3, and thus the first condition in (0.1) is
satisfied for p = py.

That is, the Toeplitz operator T, with sym-
bol (0.2) satisfies of the conditions (!) for all
admissible values of the parameters.

=




Given any a(f) € Lso(0, 7), we introduce now
two modified averaging functions which corre-
spond to the endpoints of [0, 7]

9 0
(L10) — = 8_29/0 a(u) du and

D4(0) = - _26_29 /ﬂ :9 L o

We note that these functions are connected with
the old averaging ones as follows

. (1)

L) = - Cy ' (6) and
. (1)

D.(0)— T D’ (6).

Theorem 0.3. Let a(f) € Loo(0,7). Then
Ya(A) € C(R) if and only if

'ycé(/\) € C(R) and 'yDa()\) c C(R). (0.5)




Shatten Classes

60 1/p
2 € 50 = 1l = (SohuaP ) <0921
n=1 :

(14)

Theorem 9 Let a(y/r) € L1(0,1) and let for somej = 0,1, ...,
the function BU)(T‘) satisfy one of the following conditions

/|B —r) ) g < 00,  p>1,
/ |B (P)P(1 =) @8 dr < o0, ik
where € > 0 can be arbitrarily small. Then T K,(\).

1 n=b
Example 2 Leta>0,b> 2+ 5, en = 5

e r €l = 1—%?1—~%+8n],
a(vr) = | |

0, r € [0,1]\ U, I,
Then T, € Kp(A) (A = 0).




Spectra of Toeplitz Operators with Continuous
Symbols |

(a =a(f), 6 € (0,7))

Let E be a subset of R having +o00 as a limit point (normally
E = (0,40)), and let for each A € E there is a set M), C C.
Define the set M, as the set of all z € C for which there exists a
sequence of complex numbers {z, },en such that

(i) for each n € N there exists A\, € E such that z, € M),
(i) limy 00 Ap = +00,
iz tm, .7

We will write

M. =l Ny,

A—+00
and call M, the (partial) limit set of a family { M)} ep when
A= Ho0.

ok A3(I) —  A3(IT) is unitary equivalent to
Sl L2(R) ey Lz(R)

Thus sp T = M)(a) where My(a) := Rangey,.(§) (£ € R).
Theorem 10 Let a = a(f) € C|0,7]. Then
lim spTY = Range a.

A—00




Example 3 (Hypocycloid)

3
a(f) = . et e M gD

A=1E512 and 200

The function 7, ) for A = 12 and A = 200.

10
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Piecewise Continuous symbols

a=a(f), 6 €l0,x))

Let a(f) be a piecewise continuous function having jumps on a
: 7 am .
finite set of points {6;}"7_; where

9():O<91<92<...<9m.<7r:9m+1,-

and a(f; £0),7 =1,...,m, exist. Introduce the sets
Ji(a) ={z€C:2=a(8), 6 € (8,,0,:1)}
where j = 0,...,m, and let I;(a) be the segment with the end-

points a(f; — 0) and a(8; +0), j =1,2,...m. We set
@) = (Ued3() U (U Ti(@).
Theorem 11 Let a(6)

be a piecewise continuous function. Then
lim sp T\ Afoo(a)

( ):

A—00
Example 4
[ ape Sl 607
jopilf+¥-(Z-1)], 0cls.9)
expl |—feeiEa (] B € [ T
a(f) =< Lexpi|[-Z+Z.(Z-3)], 6e [Z L)
xpi [—F 4 21, E_4=’9€_4_7T,5_?T
liipz' _g+%.gﬁ_5g= = 97£ _6_77;%
3 pt 6 3 ™ 8327 LT
\ exp( g) QE_O—;T-,W]

A=1-10: (ko0
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=1 gk
=1 -03 05 -04 02 0z 04 o8 =1 08 08 -04 -02 o a2 04

The symbol a(()) and the function 7, for )\ =1

" il
—l -cua =06 <04 -02 o az =1 08 06 -04 02 a

The functlon o for A = 10 and )\ o 100

=5 4k
-1 08 08 -05 -02 o -1 0% 05 -04 -02 o

The function ~, ) for )\ = 1000 and the I|m|t set M (a).



Oscillating Symbols
(a = a(y), y > 0)

Theorem 12 (Strong oscillation) Let a(y) = €Y, then
Rangea = T and M (a) = D.

Theorem 13 (Slow oscillation) Let a(y) = (2y)’, then
Rangea =T and My (a) =T.

Example 5 _
ai(y) = (1+2y)' and as(y) =€?, ye€[0,00).

A = 0;10; 1000

13




-1 -08 <06 -04 -02 o

The functlons Vay, ,\( ) and 7,4, A(x) for A = 0.

= :
-1 =08 06 o4 02 e} bz De o8

The functions v,, A(z)

e
o4
02
o
<02
=04
08
~0.8
= 08 -04 = S e

The functlons Yoy M 2) and 7, 5(2) for )\ 1000.
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Unbounded Symbol (Radial Case)

Theorem 14 Let a(+/r) € L1(0,1) N C[0,1). Then
Rangea C My (a).

Theorem 15 Let a(+/r) € L1(0,1). Then

My (a) C conv(essRangea).

Example 6 Let [; := [1 — j=' — j=°,1 — j7'] and sequence
{0;}jen C (0,2m) with {0;}., = [0,27]. Consider

jei, r e I,
0, re (04 L L2, T,

o) -

My(a) =C

Example 7

alalF) =12, a € (0,1)

M..(a) = Rangea
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-6+

-8 -6 4 2 a 2 4 & 8

The sequence Yo = {Va(

i i i A | 1 1 A 4
12 -8 -6 -4 -2 2 2 4 6 8 10 12

n)} for A = 100000 and the limit set
My (a).
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