Dynamics of Toeplitz operators on weighted Bergman spaces

S.Grudsky

International Workshop "Toeplitz- Like Operators and Related Topics"

CINVESTAV, Mexico-city, Mexico November, 19, 2008

This report is made on the basis of the joint works with A.Karapetyants and N.Vasilevski.

$$\mathbb{D} = \{z \in \mathbb{C} : |z| = 1\}, \quad L_2(\mathbb{D}, d\mu_\lambda) \\ \|f\|_{L_2(\mathbb{D}, d\mu_\lambda)} = \left(\int_{\mathbb{D}} |f(z)|^2 d\mu_\lambda(z)\right)^{1/2} \\ d\mu_\lambda(z) = (\lambda + 1)(1 - |z|^2)^\lambda \frac{1}{\pi} dv(z), \quad \lambda > -1, \qquad (1) \\ \text{where } dv(z) = dxdy \text{ is the Euclidian area element.} \\ \mathcal{A}_\lambda^2(\mathbb{D})(\in L_2(\mathbb{D}, d\mu_\lambda)) \text{ is weight Bergman space of analytic functions} \\ (\mathcal{B}_{\mathbb{D}}^{(\lambda)} f)(z) := \int_{\mathbb{D}} \frac{f(\zeta)}{(1 - z\overline{\zeta})^{\lambda+1}} d\mu_\lambda, \quad z \in \mathbb{D} \qquad (2) \\ \mathcal{B}_{\mathbb{D}}^{(\lambda)} : L_2(\mathbb{D}, d\mu_\lambda) \to \mathcal{A}_\lambda^2(\mathbb{D}) \quad \text{is Bergman Projector on unit disk} \\ T_a^{(\lambda)} = \mathcal{B}_{\mathbb{D}}^{(\lambda)} a \mathcal{B}_{\mathbb{D}}^{(\lambda)} : \mathcal{A}_\lambda^2(\mathbb{D}) \to \mathcal{A}_\lambda^2(\mathbb{D}) \quad \text{is Toeplitz-Bergman} \\ \text{operator with symbol} \quad a = a(z) (\in L_1(\mathbb{D})) \end{aligned}$$

DYNAMICS PROPERTIES OF THE TOEPLITZ OPERATORS ON THE WEIGHTED BERGMAN SPACE

S. Grudsky

Taller "Análisis: Norte - Sur '03" 12 - 14 de noviembre de 2003 Instituto de Matemáticas Cuernavaca, UNAM.

This report is made on the basis of the joint works with A.Karapetyants and N.Vasilevski

$$\mathbb{D} = \{z \in \mathbb{C} : |z| = 1\}, \quad L_2(\mathbb{D}, d\mu_\lambda)$$
$$\|f\|_{L_2(\mathbb{D}, d\mu_\lambda)} = \left(\int_{\mathbb{D}} |f(z)|^2 d\mu_\lambda(z)\right)^{1/2}$$
$$d\mu_\lambda(z) = (\lambda + 1)(1 - |z|^2)^\lambda \frac{1}{\pi} dv(z), \quad \lambda > -1, \qquad (1)$$
where $dv(z) = dxdy$ is the Euclidian area element.

 $\mathcal{A}^{2}_{\lambda}(\mathbb{D})(\in L_{2}(\mathbb{D}, d\mu_{\lambda})) \text{ is weight Bergman space of analytic functions}$ $(\mathcal{B}^{(\lambda)}_{\mathbb{D}}f)(z) := \int_{\mathbb{D}} \frac{f(\zeta)}{(1-z\overline{\zeta})^{\lambda+1}} d\mu_{\lambda}, \quad z \in \mathbb{D}$ (2)

 $\mathcal{B}_{\mathbb{D}}^{(\lambda)}: L_2(\mathbb{D}, d\mu_{\lambda}) \to \mathcal{A}_{\lambda}^2(\mathbb{D}) \quad \text{is Bergman Projector on unit disk} \\ T_a^{(\lambda)} = \mathcal{B}_{\mathbb{D}}^{(\lambda)} a \mathcal{B}_{\mathbb{D}}^{(\lambda)}: \mathcal{A}_{\lambda}^2(\mathbb{D}) \to \mathcal{A}_{\lambda}^2(\mathbb{D}) \quad \text{is Toeplitz-Bergman} \\ \text{operator with symbol} \quad a = a(z) (\in L_1(\mathbb{D}))$

DYNAMICS PROPERTIES OF THE TOEPLITZ OPERATORS ON THE WEIGHTED BERGMAN SPACE

S.Grudsky Toronto, August 2003

This report is made on the basis of the joint works with A.Karapetyants and N.Vasilevski

$$\mathbb{D} = \{ z \in \mathbb{C} : |z| \leq 1 \}, \quad L_2(\mathbb{D}, d\mu_\lambda) \\ \|f\|_{L_2(\mathbb{D}, d\mu_\lambda)} = \left(\int_{\mathbb{D}} |f(z)|^2 d\mu_\lambda(z) \right)^{1/2} \\ d\mu_\lambda(z) = (\lambda + 1)(1 - |z|^2)^\lambda \frac{1}{\pi} dv(z), \quad \lambda > -1, \qquad (1) \\ \text{where } dv(z) = dxdy \text{ is the Euclidian area element.} \\ \mathcal{A}_\lambda^2(\mathbb{D})(\in L_2(\mathbb{D}, d\mu_\lambda)) \text{ is weight Bergman space of analytic functions} \\ (\mathcal{B}_{\mathbb{D}}^{(\lambda)} f)(z) := \int_{\mathbb{D}} \frac{f(\zeta)}{(1 - z\overline{\zeta})^{\lambda + 1}} d\mu_\lambda, \quad z \in \mathbb{D} \qquad (2) \\ \mathcal{B}_{\mathbb{D}}^{(\lambda)} : L_2(\mathbb{D}, d\mu_\lambda) \to \mathcal{A}_\lambda^2(\mathbb{D}) \quad \text{is Bergman Projector on unit disk} \\ \end{array}$$

 $\mathcal{B}_{\mathbb{D}}^{(\lambda)} : L_2(\mathbb{D}, d\mu_{\lambda}) \to \mathcal{A}_{\lambda}^{-}(\mathbb{D})^{-1}$ is Bergman Projector on unit disk $T_a^{(\lambda)} = \mathcal{B}_{\mathbb{D}}^{(\lambda)} a \mathcal{B}_{\mathbb{D}}^{(\lambda)} : \mathcal{A}_{\lambda}^2(\mathbb{D}) \to \mathcal{A}_{\lambda}^2(\mathbb{D})^{-1}$ is Toeplitz-Bergman operator with symbol $a = a(z) (\in L_1(\mathbb{D}))$ The main theme: what happens to properties of Toeplitz-Bergman operators when the weight parameter λ varies, especially if $\lambda \to \infty$?

Motivation (in particular): Berezin quantization procedure

$$T_a = \{T_a^{(h)}\}, \quad h \in (0, 1) \quad \left(h = \frac{1}{\lambda + 2}\right),$$
$$\lim_{h \to 0} \widetilde{a}_h = a \tag{3}$$

where \widetilde{a}_h is Wick symbol.

Our goals are investigations boundedness, compactness and spectrum of Toeplitz-Bergman operator depending on λ .

Classes of symbols

- **1.** Radial symbols on unit disk: $a = a(|z|), z \in \mathbb{D}$.
- **2.** Symbols dependent only on y = Im z on upper half-plane: $a = a(y), z \in \Pi = \{z = x + iy : x \in \mathbb{R}, y > 0\}.$
- **3.** Symbols dependent on $\theta = \arg z$ on upper half-plane: $a = a(\theta), z \in \Pi, \theta \in (0, \pi).$

Theorem 1 (Vasilevski, 2000) C^* -algebras generated by Toeplitz-Bergman operators with symbols from 1, 2 or 3 are commutative for each $\lambda > -1$. **Theorem 2** Toeplitz-Bergman operators T_a with radial symbols a = a(|z|) from $L_1(0,1)$ (acting on $\mathcal{A}^2_{\lambda}(\mathbb{D})$) is unitary equivalent to the multiplication operator $\gamma_{a,\lambda}I$ (acting on $l_2(\mathbb{Z}_+)$) where sequence $\gamma_{a,\lambda} = {\gamma_{a,\lambda}(n)}_{n \in \mathbb{Z}_+}$ is given by

$$\gamma_{a,\lambda}(n) = \frac{1}{B(n+1,\lambda+1)} \int_0^1 a(\sqrt{r})(1-r)^{\lambda} r^n dr, \quad n \in \mathbb{Z}_+.$$
(4)

Toeplitz-Bergman Operators on Half-plane

$$f \in L_2(\Pi, d\mu_{\lambda}) \iff \|f\|_{L_2(\Pi, d\mu_{\lambda})} = \left(\int_{\Pi} |f(z)|^2 d\mu_{\lambda}(z)\right)^{1/2} < \infty$$

where

$$\mu_{\lambda}(z) = (\lambda + 1)(2\operatorname{Im} z)^{\lambda} \frac{1}{\pi} dx dy.$$
(5)

 $\mathcal{A}^2_{\lambda}(\Pi) (\subset L_2(\Pi, d\mu_{\lambda}))$ is weight Bergman space of analytic functions on half-plane.

$$(\mathcal{B}_{\Pi}f)(z) = \frac{\lambda+1}{\pi} \int_{\Pi} f(\zeta) \left(\frac{\zeta-\overline{\zeta}}{z-\zeta}\right)^{\lambda+1} \frac{dxdy}{(2\operatorname{Im}\zeta)^2} \tag{6}$$

 $\mathcal{B}_{\Pi} : L_2(\Pi, d\mu_{\lambda}) \to \mathcal{A}^2_{\lambda}(\Pi)$ is Bergman Projector on half-plane. $T_a^{(\lambda)} := \mathcal{B}_{\Pi}^{(\lambda)} a \mathcal{B}_{\Pi}^{(\lambda)} : \mathcal{A}^2_{\lambda}(\Pi) \to \mathcal{A}^2_{\lambda}(\Pi)$ is Bergman-Toeplitz operator. **Theorem 3** Toeplitz-Bergman operator T_a with symbol a = a(y) from $L_1(\mathbb{R}_+, 0)$ (acting on $\mathcal{A}^2_{\lambda}(\Pi)$) is unitary equivalent to the multiplication operator $\gamma_{a,\lambda}I$ (acting on $L_2(\mathbb{R}_+)$) where function $\gamma_{a,\lambda} = \gamma_{a,\lambda}(x)$ is given by

$$\gamma_{a,\lambda}(x) = \frac{x^{\lambda+1}}{\Gamma(\lambda+1)} \int_0^\infty a(t/2) t^\lambda e^{-xt} dt.$$
(7)

$$(a(y) \in L_1(\mathbb{R}_+, 0) \iff a(y)e^{-\varepsilon y} \in L_1(\mathbb{R}_+) \text{ for any } \varepsilon > 0)$$

Theorem 4 Toeplitz-Bergman operator T_a with symbol $a = a(\theta)$ from $L_1(0,\pi)$ (acting on $\mathcal{A}^2_{\lambda}(\Pi)$) is unitary equivalent to multiplication operator $\gamma_{a,\lambda}I$ (acting on $L_2(\mathbb{R})$) where function $\gamma_{a,\lambda}(\xi)$ is given by

$$\gamma_{a,\lambda}(\xi) = \frac{(\lambda+1)2^{\lambda}e^{\pi\xi}}{\pi} \cdot \frac{\left|\Gamma\left(\frac{\lambda+2}{2}+i\xi\right)\right|^2}{\Gamma(\lambda+2)} \int_0^{\pi} a(\theta)e^{-2\xi\theta}\sin^{\lambda}\theta d\theta, \ \xi \in \mathbb{R}$$
(8)

Boundedness and Compactness Properties (Radial case)

$$B_{a,\lambda_0}^{(1)}(s) = \int_s^1 a(\sqrt{r})(1-r)^{\lambda_0} dr; \quad B_{a,\lambda_0}^{(j)}(s) = \int_s^1 B_{a,\lambda_0}^{(j-1)}(r) dr,$$
(9)

 $j=2,3,\ldots, \lambda_0\geq 0$

Theorem 5 If there exist $j \in \mathbb{N}$ and $\lambda_0 \geq 0$ such that

$$B_{a,\lambda_0}^{(j)}(r) = O((1-r)^{j+\lambda_0}), \quad r \to 1,$$
(10)

then the Toeplitz-Bergman operator $T_a^{(\lambda)}$ is bounded on each $\mathcal{A}^2_{\lambda}(\mathbb{D})$ with $\lambda \geq 0$.

If for some $j \in \mathbb{N}$ and $\lambda_0 \geq 0$

$$B_{a,\lambda_0}^{(j)}(r) = o((1-r)^{j+\lambda_0}), \quad r \to 1,$$
(11)

then the operator $T_a^{(\lambda)}$ is compact on each $\mathcal{A}^2_{\lambda}(\mathbb{D})$ with $\lambda \geq 0$.

Example 1 Unbounded symbol

$$a(r) = (1 - r^2)^{-\beta} \sin(1 - r^2)^{-\alpha}$$
(12)

where $\alpha > 0$ and $\beta \in (0, 1)$.

Theorem 5 \implies $T_a^{(\lambda)}$ is bounded and compact for $\lambda \ge 0$.

Theorem 6 Let either $a(r) \ge 0$, or $B_{a,\lambda_0}^{(j)}(r) \ge 0$ for a certain $j \in \mathbb{N}$ and λ_0 . Then the conditions (10), (11) are also necessary for the boundedness and compactness of the corresponding Toeplitz operator $T_a^{(\lambda)}$ on $\mathcal{A}^2_{\lambda}(\mathbb{D})$ with $\lambda \ge 0$, respectively.

Corollary 1 If $a(r) \geq 0$, and $\lim_{\varepsilon \to 0} \inf_{r \in [1-\varepsilon,1]} a(r) = +\infty$ then the Toeplitz operator $T_a^{(\lambda)}$ is unbounded on each $\mathcal{A}^2_{\lambda}(\mathbb{D})$, $\lambda \geq 0$.

Corollary 2 Let $a(\sqrt{r}) \in L_1(0,1)$, and let $a(r) \ge 0$, or $B_{a,\lambda_0}^{(j)}(r) \ge 0$ for some $j \in \mathbb{N}$. Then the Toeplitz operator $T_a^{(\lambda)}$ is bounded (compact), or unbounded (not compact) on each $\mathcal{A}^2_{\lambda}(\mathbb{D})$ simultaneously.

Boundedness and Compactness in Dependence on $\lambda \in [0, \infty)$

Theorem 7 The following statements hold:

- (i) if for any $\lambda_0 > 0$, the sequence γ_{a,λ_0} is bounded, then the sequence $\gamma_{a,\lambda}$ is bounded for all $\lambda \in [0, \lambda_0)$;
- (ii) if for any $\lambda_0 > 0$, $\lim_{n \to \infty} \gamma_{a,\lambda_0}(n) = 0$, then $\lim_{n \to \infty} \gamma_{a,\lambda}(n) = 0$ for all $\lambda \in [0, \lambda_0)$.

$$B(a) = \{\lambda \in [0, \infty) : T_a^{(\lambda)} \text{ is bounded}\}\$$

$$K(a) = \{\lambda \in [0, \infty) : T_a^{(\lambda)} \text{ is compact}\}\$$

(i) $[0, \infty)$ (ii) $[0, \lambda_0)$ (iii) $[0, \lambda_0]$

$$\gamma(n) = e^{\frac{i}{5\pi}\ln^2(n+1)}\ln^{-\nu}(n+1)\ln^\beta\ln(n+1)$$
(13)

There exists $a_{\nu,\beta}(r) \ (\in L_1(0,1))$ such that $\gamma_{a_{\nu,\beta}}(r) = \gamma(n)$.

Theorem 8 Let $0 < \nu < 1$. Then a) $B(a_{\nu,0}) = [0,\nu],$ $K(a_{\nu,0}) = [0,\nu),$ $\beta = 0,$ b) $B(a_{\nu,\beta}) = [0,\nu),$ $K(a_{\nu,\beta}) = [0,\nu),$ $\beta > 0,$ c) $B(a_{\nu,\beta}) = [0,\nu],$ $K(a_{\nu,\beta}) = [0,\nu],$ $\beta < 0.$

Algebra of Continuous Operators Functions

Case 3. Symbols dependent on $\theta = \arg z$ on upper half-plane $a = a(\theta), z \in \Pi$, $\theta \in (0, \pi)$.

Question. What are conditions on symbols such that

 $\gamma_{a,\lambda}(\xi) \in C(\bar{R})?$

 $\lim_{\xi \to +\infty} \gamma_{a,\lambda}(\xi) = c_+ \quad and \quad \lim_{\xi \to -\infty} \gamma_{a,\lambda}(\xi) = c_- \ (!)$

Let $f \in C[0,1]$, then there exists symbol $a(\theta)$ such that

$$f\left(T_{\chi(0,\frac{\pi}{2})}\right) = T_a?$$

$$\gamma_{\chi(0,\frac{\pi}{2}),0} = \frac{1}{e^{-\pi\lambda} + 1} \Longrightarrow f\left(\frac{1}{e^{-\pi\lambda} + 1}\right) = \gamma_{a,0}(\lambda)$$

For any L_1 -symbol $a(\theta)$ we define the following averaging functions, which correspond to the endpoints of $[0, \pi]$,

$$C_a^{(1)}(\theta) = \int_0^\theta a(u)du, \qquad D_a^{(1)}(\theta) = \int_{\pi-\theta}^\pi a(u)du$$

and

$$C_a^{(p)}(\theta) = \int_0^\theta C_a^{(p-1)}(u) du,$$
$$D_a^{(p)}(\theta) = \int_{\pi-\theta}^\pi D_a^{(p-1)}(u) du$$

for each p = 2, 3,

Theorem 0.1. Let $a(\theta) \in L_1(0, \pi)$ and for some $p, q \in \mathbb{N}$,

 $\lim_{\theta \to 0} \theta^{-p} C_a^{(p)}(\theta) = c_p \ (\in \mathbb{C}) \qquad \text{and}$

$$\lim_{\theta \to \pi} \theta^{-q} D_a^{(q)}(\theta) = d_q \ (\in \mathbb{C}).$$
 (0.1)

Then $\gamma_a(\lambda) \in C(\overline{\mathbb{R}}).$

EXAMPLE 0.2. Let

$$a(\theta) = \theta^{-\beta} \sin \theta^{-\alpha}$$
, where $0 \le \beta < 1$, $\alpha > 0$.
(0.2)

This symbol oscillates near 0, is bounded when $\beta = 0$, is unbounded for all $\beta \in (0, 1)$. According to asymptotics calculations we have that

$$C_a^{(1)}(\theta) = \frac{\theta^{\alpha - \beta + 1}}{\alpha} \cos \theta^{-\alpha} + O(\theta^{2\alpha - \beta + 1}),$$

when $\theta \to 0.$ (0.3) Thus, if $\alpha > \beta$ then

$$\lim_{\theta \to 0} \theta^{-1} C_a^{(1)}(\theta) = 0,$$

and the first condition in (0.1) is satisfied for p = 1.

Further, if $\alpha \leq \beta$ we need to consider the averages of the higher order. Indeed, formula (0.3) implies that

$$C_a^{(2)}(\theta) = O(\theta^{2\alpha - \beta + 2}), \quad \text{when} \quad \theta \to 0$$

and, more generally, that

$$C_a^{(p)}(\theta) = O(\theta^{p\alpha - \beta + p}), \quad \text{when} \quad \theta \to 0.$$

Thus for each $\alpha \leq \beta$ there is $p_0 \in \mathbb{N}$ such that $p_0 \alpha > \beta$, and thus the first condition in (0.1) is satisfied for $p = p_0$.

That is, the Toeplitz operator T_a with symbol (0.2) satisfies of the conditions (!) for all admissible values of the parameters.

Given any $a(\theta) \in L_{\infty}(0, \pi)$, we introduce now two modified averaging functions which correspond to the endpoints of $[0, \pi]$

$$C'_{a}(\theta) = \frac{2}{1 - e^{-2\theta}} \int_{0}^{\theta} a(u) \, du \qquad \text{and}$$

$$D'_{a}(\theta) = \frac{2}{1 - e^{-2\theta}} \int_{\pi - \theta}^{\pi} a(u) \, du. \qquad (0.4)$$

We note that these functions are connected with the old averaging ones as follows

$$C'_{a}(\theta) = \frac{2}{1 - e^{-2\theta}} C^{(1)}_{a}(\theta)$$
 and

$$D'_{a}(\theta) = \frac{2}{1 - e^{-2\theta}} D^{(1)}_{a}(\theta).$$

Theorem 0.3. Let $a(\theta) \in L_{\infty}(0, \pi)$. Then $\gamma_a(\lambda) \in C(\overline{\mathbb{R}})$ if and only if $\gamma_{C'_a}(\lambda) \in C(\overline{\mathbb{R}})$ and $\gamma_{D'_a}(\lambda) \in C(\overline{\mathbb{R}})$. (0.5)

Shatten Classes

$$T_a^{(\lambda)} \in K_p(\lambda) \iff \|T_a^\lambda\|_{p,\lambda} = \left(\sum_{n=1}^\infty |\gamma_{a,\lambda}(n)|^p\right)^{1/p} < \infty, \ p \ge 1$$
(14)

Theorem 9 Let $a(\sqrt{r}) \in L_1(0,1)$ and let for some j = 0, 1, ...,the function $B_{a,\lambda}^{(j)}(r)$ satisfy one of the following conditions

$$\int_{0}^{1} |B_{a,\lambda}^{(j)}(r)| (1-r)^{-(1+j+\frac{1}{p})} dr < \infty, \qquad p \ge 1,$$

$$\int_{0}^{1} |B_{a,\lambda}^{(j)}(r)|^{p} (1-r)^{-(2+j-\varepsilon)} dr < \infty, \qquad p > 1,$$

where $\varepsilon > 0$ can be arbitrarily small. Then $T_a^{(\lambda)} \in K_p(\lambda)$.

Example 2 Let a > 0, $b > 2 + \frac{1}{p}$, $\varepsilon_n = \frac{n^{-b}}{2}$.

$$a(\sqrt{r}) = \begin{cases} n^a, \ r \in I_n = \left[1 - \frac{1}{n}, 1 - \frac{1}{n} + \varepsilon_n\right], \\ 0, \ r \in [0, 1] \setminus \bigcup_{n=1}^{\infty} I_n. \end{cases}$$

Then $T_a \in K_p(\lambda) \ (\lambda \ge 0)$.

Spectra of Toeplitz Operators with Continuous Symbols

 $(a = a(\theta), \theta \in (0, \pi))$

Let E be a subset of \mathbb{R} having $+\infty$ as a limit point (normally $E = (0, +\infty)$), and let for each $\lambda \in E$ there is a set $M_{\lambda} \subset \mathbb{C}$. Define the set M_{∞} as the set of all $z \in \mathbb{C}$ for which there exists a sequence of complex numbers $\{z_n\}_{n\in\mathbb{N}}$ such that

(i) for each $n \in \mathbb{N}$ there exists $\lambda_n \in E$ such that $z_n \in M_{\lambda_n}$,

(ii)
$$\lim_{n\to\infty} \lambda_n = +\infty$$
,

(iii)
$$z = \lim_{n \to \infty} z_n$$
.

We will write

$$M_{\infty} = \lim_{\lambda \to +\infty} M_{\lambda},$$

and call M_{∞} the (partial) limit set of a family $\{M_{\lambda}\}_{\lambda \in E}$ when $\lambda \to +\infty$.

 $T_a^{(\lambda)}$: $\mathcal{A}_{\lambda}^2(\Pi) \rightarrow \mathcal{A}_{\lambda}^2(\Pi)$ is unitary equivalent to

 $\gamma_{a,\lambda}I$: $L_2(\mathbb{R}) \rightarrow L_2(\mathbb{R})$

Thus sp $T_a^{\lambda} = \overline{M_{\lambda}}(a)$ where $M_{\lambda}(a) := \text{Range } \gamma_{a,\lambda}(\xi) \ (\xi \in \mathbb{R}).$

Theorem 10 Let $a = a(\theta) \in C[0, \pi]$. Then

 $\lim_{\lambda \to \infty} \operatorname{sp} T_a^{(\lambda)} = \operatorname{Range} a.$

Example 3 (Hypocycloid)

10

Piecewise Continuous symbols $a = a(\theta), \ \theta \in [0, \pi)$)

Let $a(\theta)$ be a piecewise continuous function having jumps on a finite set of points $\{\theta_j\}_{j=1}^m$ where

 $\theta_0 = 0 < \theta_1 < \theta_2 < \ldots < \theta_m < \pi = \theta_{m+1},$

and $a(\theta_j \pm 0), j = 1, \ldots, m$, exist. Introduce the sets

$$J_j(a) := \{ z \in \mathbb{C} : z = a(\theta), \ \theta \in (\theta_j, \theta_{j+1}) \}$$

where j = 0, ..., m, and let $I_j(a)$ be the segment with the endpoints $a(\theta_j - 0)$ and $a(\theta_j + 0), j = 1, 2, ..., m$. We set

$$\widetilde{R}(a) = \left(\bigcup_{j=0}^{m} J_j(a)\right) \cup \left(\bigcup_{j=1}^{m} I_j(a)\right).$$

Theorem 11 Let $a(\theta)$ be a piecewise continuous function. Then $\lim_{\lambda \to \infty} \operatorname{sp} T_a^{(\lambda)} = M_{\infty}(a) = \widetilde{R}(a).$

Example 4

$$a(\theta) = \begin{cases} \exp i \left[-\frac{\pi}{6} + \frac{2\pi}{3} \cdot \frac{7\theta}{\pi} \right], & \theta \in \left[0, \frac{\pi}{7} \right) \\ \frac{1}{3} \exp i \left[\frac{\pi}{6} + \frac{2\pi}{3} \cdot \left(\frac{7\theta}{\pi} - 1 \right) \right], & \theta \in \left[\frac{\pi}{7}, \frac{2\pi}{7} \right) \\ \exp i \left[-\frac{\pi}{6} + \frac{2\pi}{3} \cdot \left(\frac{7\theta}{\pi} - 2 \right) \right], & \theta \in \left[\frac{2\pi}{7}, \frac{3\pi}{7} \right) \\ \frac{1}{3} \exp i \left[-\frac{\pi}{6} + \frac{2\pi}{3} \cdot \left(\frac{7\theta}{\pi} - 3 \right) \right], & \theta \in \left[\frac{3\pi}{7}, \frac{4\pi}{7} \right) \\ \exp i \left[-\frac{\pi}{6} + \frac{2\pi}{3} \cdot \left(\frac{7\theta}{\pi} - 4 \right) \right], & \theta \in \left[\frac{4\pi}{7}, \frac{5\pi}{7} \right) \\ \frac{1}{3} \exp i \left[-\frac{\pi}{6} + \frac{2\pi}{3} \cdot \left(\frac{7\theta}{\pi} - 5 \right) \right], & \theta \in \left[\frac{5\pi}{7}, \frac{6\pi}{7} \right) \\ \exp \left(-i\frac{\pi}{6} \right), & \theta \in \left[\frac{6\pi}{7}, \pi \right] \end{cases}$$

The symbol $a(\theta)$ and the function $\gamma_{a,\lambda}$ for $\lambda = 1$.

The function $\gamma_{a,\lambda}$ for $\lambda = 10$ and $\lambda = 100$.

The function $\gamma_{a,\lambda}$ for $\lambda = 1000$ and the limit set $M_{\infty}(a)$.

Oscillating Symbols (a = a(y), y > 0)

Theorem 12 (Strong oscillation) Let $a(y) = e^{2iy}$, then Range $a = \mathbb{T}$ and $M_{\infty}(a) = \mathbb{D}$.

Theorem 13 (Slow oscillation) Let $a(y) = (2y)^i$, then Range $a = \mathbb{T}$ and $M_{\infty}(a) = \mathbb{T}$.

Example 5

 $a_1(y) = (1+2y)^i$ and $a_2(y) = e^{i2y}$, $y \in [0,\infty)$.

 $\lambda = 0; 10; 1000$

Unbounded Symbol (Radial Case)

Theorem 14 Let $a(\sqrt{r}) \in L_1(0,1) \cap C[0,1)$. Then Range $a \subset M_{\infty}(a)$.

Theorem 15 Let $a(\sqrt{r}) \in L_1(0, 1)$. Then $M_{\infty}(a) \subset \operatorname{conv}(\operatorname{essRange} a).$

Example 6 Let $I_j := [1 - j^{-1} - j^{-3}, 1 - j^{-1}]$ and sequence $\{\theta_j\}_{j \in \mathbb{N}} \subset (0, 2\pi)$ with $\overline{\{\theta_j\}}_{j \in \mathbb{Z}_+} = [0, 2\pi]$. Consider

$$a(\sqrt{r}) = \begin{cases} j e^{i\theta_j}, \ r \in I_j, \\ 0, \ r \in [0, 1] \setminus \bigcup_{j=1}^{\infty} I_j. \end{cases}$$

$$M_{\infty}(a) = \mathbb{C}$$

Example 7

$$a(\sqrt{r}) = r^{i-\alpha}, \qquad \alpha \in (0,1)$$

 $M_{\infty}(a) = \text{Range } a$

$$a(r) = r^{i-0.1}, \quad \lambda = 10^5$$

The sequence $\gamma_{a,\lambda} = \{\gamma_{a,\lambda}(n)\}$ for $\lambda = 100000$ and the limit set $M_{\infty}(a)$.