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Abstract. The paper is devoted to the study of Toeplitz operators with piece-
wise continuous symbols. We clarify the geometric regularities of the be-
haviour of the essential spectrum of Toeplitz operators in dependence on their
crucial data: the angles between jump curves of symbols at a boundary point
of discontinuity and on the limit values reached by a symbol at that boundary
point. We show then that the curves supporting the symbol discontinuities,
as well as the number of such curves meeting at a boundary point of disconti-
nuity, do not play any essential role for the Toeplitz operator algebra studied.
Thus we exclude the curves of symbol discontinuity from the symbol class
definition leaving only the set of boundary points (where symbols may have
discontinuity) and the type of the expected discontinuity. Finally we describe
the C∗-algebra generated by Toeplitz operators with such symbols.
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1. Introduction

Let D be the unit disk in C and γ = ∂D be its boundary. Consider L2(D) with
respect to the standard Lebesgue plane measure and its subspace, the Bergman
space A2(D), which consists of functions analytic in D. Let BD stand for the
orthogonal Bergman projection of L2(D) onto A2(D). Given a function a(z) ∈
L∞(D), the Toeplitz operator Ta with symbol a = a(z) is defined on A2(D) as
follows:

Ta : ϕ ∈ A2(D) 7−→ BD(aϕ) ∈ A2(D).

This work was partially supported by CONACYT Project 46936, México.
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In the paper we study Toeplitz operators with piecewise continuous symbols.
The first results in this direction date from the early 1980s (see [3, 4, 5, 6]) and
show that essentially the situation is the same as in the case of Toeplitz operators
with piecewise continuous symbols on the Hardy space. The exact result is given
in Theorem 2.2 below.

The next essential advance in this direction was made by M. Loaiza [2] after
about 20 years of silence. She described the case of piecewise continuous symbols
having more then two limit values at the boundary point of discontinuity. This
result was made possible due to recent work [7] describing the commutative C∗-
algebras of Toeplitz operators on the Bergman space.

We recall that for piecewise continuous symbols the product of two Toeplitz
operators is not in general a compact perturbation of a Toeplitz operator. Thus the
algebra generated by such operators has a quite complicated structure, coinciding
with the uniform closure of the set of all elements of the form

p∑

k=1

qk∏

j=1

Taj,k
. (1.1)

It is very interesting and important to understand the nature of the operators form-
ing the algebra and, in particular, to know whether this Toeplitz operator algebra
contains any other Toeplitz operator, apart from its initial generators. Note that
this question has remained unanswered since the very first work on the subject.

In the paper we present some recent advances in the area. In Section 2 we
recall the previous results, especially on algebras generated by Toeplitz operators
with piecewise continuous symbols, which are relevant to the main content of
the paper. In Section 3 we show how the results of [2] allow us to understand
the geometric regularities of the behaviour of the essential spectrum of Toeplitz
operators in dependence on their crucial data: the angles between jump curves of
symbols at a boundary point of discontinuity and on the limit values reached by a
symbol at that boundary point. Section 4 is devoted to the local analysis of Toeplitz
operators at a point of discontinuity. The results of [7] permit us to get a highly
unexpected result, which partially answers the above question. We show that the
closure of elements of the form (1.1) contains many Toeplitz operators, and the
symbols of these Toeplitz operators belong to a much wider class of discontinuous
functions, as compared with the symbols of the initial generators. In particular, it
turns out that the algebra considered in [6] already contained all operators from
the algebra considered in [2], though previously there were no means to realize this
fact. The main conclusion of the section is that we can start from very different sets
of symbols and obtain exactly the same operator algebra as a result. That is, the
curves supporting the symbol discontinuities, as well as the number of such curvess
meeting at a boundary point of discontinuity, do not play in fact any essential
role for the Toeplitz operator algebra studied. This observation motivates us to
exclude the curves of symbol discontinuity from the very beginning and to leave
in the symbol class definition only the set of boundary points (where symbols may
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have discontinuity) and the type of the expected discontinuity. We do this in the
final Section 5 introducing the so-called boundary piecewise continuous symbols
and describing the algebra generated by Toeplitz operators with such symbols.

2. Preliminaries

In this section we recall some well known results relevant to the main content of
the paper.

Given a linear space (or algebra) A ⊂ L∞(D), we denote by T (A) the C∗-
algebra generated by all Toeplitz operators Ta with a ∈ A, and we denote by
Sym T (A) = T (A)/K its (Fredholm) symbol, or Calkin algebra. Here K is the
ideal of all compact operators on A2(D).

We start with the description of the algebra generated by Toeplitz operators
with continuous symbols, which goes back to L. Coburn [1].

Theorem 2.1. The algebra TC = T (C(D)) is irreducible and contains the entire
ideal K of compact operators on A2(D). Each operator T ∈ T (C(D)) is of the
form

T = Ta + K,

where a ∈ C(D) and K is a compact operator. The homomorphism

sym : TC −→ Sym TC = TC/K ∼= C(γ)

is given by
sym : T = Ta + K 7−→ a|γ .

The operator T ∈ TC is Fredholm if and only if its symbol is invertible, i.e., the
function symT 6= 0 on γ, and

Ind T = − 1
2π
{sym T}γ .

The situation changes if we extend the symbol class from continuous to piece-
wise continuous functions. The corresponding results were obtained in [3, 4, 5, 6].
To introduce them we proceed as follows. Denote by ` a union of a finite number of
piecewise smooth curves in D. We will assume that the intersection γ ∩ ` consists
of a finite number of endpoints of `: T = γ ∩ ` = {t1, ..., tm}, and each tp ∈ T is
the endpoint for only one curve from `.

Denote by PC(D, `) the algebra of all functions a(z), continuous in D\ `, and
having left and right limit values at all points of `. In particular, at each point
tp ∈ T any function a ∈ PC(D, `) has two limit values: a(tp − 0) and a(tp + 0),
following the positive orientation of γ.

Let γ̂ be the boundary γ, cut by points tp ∈ T . The pair of points, which
correspond to a point tp ∈ T , p = 1,m, we denote by tp − 0 and tp + 0, following
the positive orientation of γ. Let X = tm

p=1∆p be the disjoint union of segments
∆p = [0, 1]. Denote by Γ the union γ̂ ∪X with the following point identification

tp − 0 ≡ 0p, tp + 0 ≡ 1p,
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where tp ± 0 ∈ γ̂, 0p and 1p are the endpoints of ∆p, p = 1, 2, ..., m.

Theorem 2.2. The C∗-algebra TPC = T (PC(D, `)) is irreducible and contains the
ideal K of compact operators. The (Fredholm) symbol algebra Sym TPC = TPC/K
is isomorphic to the algebra C(Γ). The homomorphism

sym : TPC → Sym TPC = TPC/K ∼= C(Γ)

is generated by the following mapping of generators of TPC

sym : Ta 7−→
{

a(t), t ∈ γ̂
a(tp − 0)(1− x) + a(tp + 0)x, x ∈ [0, 1] ,

where tp ∈ ` ∩ γ, p = 1, 2, ..., m.
An operator T ∈ TPC is Fredholm if and only if its symbol is invertible, i.e.,

the function sym T 6= 0 on Γ, and

IndT = − 1
2π
{symT}Γ.

We note that for piecewise continuous symbols the product of two Toeplitz
operators is in general not longer a compact perturbation of a Toeplitz operator.
The algebra TPC does not coincide with the set of all operators of the form Ta +
K as in case of continuous symbols. It has a much more complicated structure,
coinciding with the uniform closure of the set of all elements of the form

p∑

k=1

qk∏

j=1

Taj,k
, (2.1)

where aj,k ∈ PC(D, `), p, qk ∈ N.
At this stage an important question arises: does the algebra TPC contain any

other Toeplitz operator, apart from its initial generators?
An unexpected (partial) answer to this question will be provided in last two

sections of the paper.
The key result permitting one to handle local situations for a wider class of

discontinuous symbols was given in [7] and is as follows.
We start from L2(Π) over the upper half-plane Π with the usual Lebesgue

plane measure and its Bergman subspace A2(Π). Denote by A∞ the C∗-algebra
of bounded measurable homogeneous functions on Π of order zero, or functions
depending only on the polar coordinate θ. Introduce the Toeplitz operator algebra
T (A∞), which is generated by all operators Ta with a(θ) ∈ A∞.

Theorem 2.3. Let a = a(θ) ∈ A∞. Then the Toeplitz operator Ta acting on A2(Π)
is unitary equivalent to the multiplication operator γaI = R TaR∗ acting on L2(R).
The function γa(λ) is given by

γa(λ) =
2λ

1− e−2πλ

∫ π

0

a(θ) e−2λθ dθ, λ ∈ R. (2.2)
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Analyzing formula (2.2) we note that for each a(θ) ∈ L∞(0, π) the function
γa(λ) is continuous at all finite points λ ∈ R. For a “very large λ” (λ → +∞)
the exponent e−2λθ has a very sharp maximum at the point θ = 0, and thus the
major contribution to the integral in (2.2) for these “very large λ” is determined by
values of a(θ) in a neighborhood of the point 0. The major contribution for a “very
large negative λ” (λ → −∞) is determined by values of a(θ) in a neighborhood
of π, due to a very sharp maximum of e−2λθ at θ = π for these values of λ. In
particular, if a(θ) has limits at the points 0 and π, then

lim
λ→+∞

γa(λ) = lim
θ→0

a(θ),

lim
λ→−∞

γa(λ) = lim
θ→π

a(θ).

Corollary 2.4. The algebra T (A∞) is commutative. The isomorphic imbedding

τ∞ : T (A∞) −→ Cb(R)

is generated by the following mapping of generators of the algebra T (A∞)

τ∞ : Ta 7−→ γa(λ),

where a = a(θ) ∈ A∞.

The above result was the starting point for the study of the algebra gener-
ated by Toeplitz operators with piecewise continuous symbols having more than
two limit values at the boundary points, done by M. Loaiza [2]. We list here the
principal local situation and the final result in a form convenient for us.

Via a Möbius transformation the principal local situation in [2] is reduced to
the following upper half-plane setting. Given a finite number of different points on
[0, π],

0 = θ0 < θ1 < θ2 < ... < θn−1 < θn = π,

we denote by A(Λ) with Λ = {θ1, θ2, ..., θn−1} the algebra of piecewise constant
functions on [0, π] with jump points in Λ, and let H(A(Λ)) be the algebra of
homogeneous of zero order functions on Π whose restrictions onto the upper half-
circle (parameterized by θ ∈ [0, π]) belong to A(Λ). Note that each (piecewise
constant) function a ∈ H(A(Λ)) has n limit values at the origin.

Denote by Vk, k = 1, 2, ..., n, the cone on the upper half-plane Π, supported
on (θk−1, θk]. Then the n-dimensional algebra H(A(Λ)) consists of all functions
having the form

a(z) = a1χV1(z) + a2χV2(z) + ... + anχVn(z),

where (a1, a2, ..., an) ∈ Cn, and χk(z) are the characteristic functions of the cones
Vk, k = 1, 2, ..., n.

The Toeplitz C∗-algebra T (H(A(Λ))) is obviously generated by n commuting
Toeplitz operators TχVk

, k = 1, 2, ..., n, and we have

γχVk
(λ) =

2λ

1− e−2πλ

∫ θk

θk−1

e−2λθ dθ =
e−2θkλ − e−2θk−1λ

e−2πλ − 1
, λ ∈ R. (2.3)
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Each function γχVk
is continuous on R and

lim
λ→−∞

γχV1
(λ) = 0, lim

λ→+∞
γχV1

(λ) = 1,

lim
λ→−∞

γχVk
(λ) = 0, lim

λ→+∞
γχVk

(λ) = 0, k = 2, 3...., n− 1,

lim
λ→−∞

γχVn
(λ) = 1, lim

λ→+∞
γχVn

(λ) = 0.

Furthermore, each function γχVk
is non-negative and

n∑

k=0

γχVk
(λ) ≡ 1;

thus the set

∆(Λ) = {t = (t1, t2, ..., tn) : tk = γχVk
(λ), λ ∈ R, k = 1, ..., n} (2.4)

is a continuous curve lying on the standard (n − 1)-dimensional simplex, and
connecting the vertices (1, 0, ..., 0) and (0, ..., 0, 1).

In the following figure we present the behaviour of the set ∆(Λ) for the case
n=3 in dependence of the angles (θ1, θ2).
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Figure 1. The angles (θ1, θ2) left to right:
(0.48π, 0.52π), (0.4π, 0.6π), (0.3π, 0.7π), (0.2π, 0.8π), (0.1π, 0.9π).

Theorem 2.5. Given a set Λ = {θ1, θ2, ..., θn−1}, the Toeplitz C∗-algebra
T (H(A(Λ))) is isomorphic and isometric to C(∆(Λ)). The isomorphism

τ : T (H(A(Λ))) −→ C(∆(Λ))
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is generated by the following mapping of generators of the algebra T (H(A(Λ))):
if a(z) = a1χV1(z) + a2χV2(z) + ... + anχVn(z), then

τ : Ta 7−→ a1t1 + a2t2 + ... + antn,

where t = (t1, t2, ..., tn) ∈ ∆(Λ).

Proof. The C∗-algebra T (H(A(Λ))) is commutative, and is generated by n oper-
ators TχVk

, k = 1, 2, ..., n. Thus it is isomorphic and isometric to the algebra of all
continuous functions on the joint spectrum of the above operators, which coincides
obviously with ∆(Λ). ¤

Consider now the general case of Toeplitz operators with piecewise continuous
symbols. Denote by ` a piecewise smooth curve in the closed unit disk D, satisfying
the following properties: there are a finite number of points (nodes), which divide
` into simple oriented smooth curves `j , j = 1, k. We assume that the endpoints of
` are among the nodes. We will refer to a node using symbols uq,rq

, where rq is the
number of curves meeting at this node, and q corresponds the node numbering.
Denote by T the set of all nodes from `∩γ, and assume that T consists of m points.
For each node tq,rq−1 ∈ T there are rq − 1 curves meeting at tq,rq−1, q = 1, ..., m.
We assume as well that locally near tq,rq−1 these curves are hypercycles, that is,
there is a Möbius transformation of the unit disk to the upper half-plane under
which the node tq,rq−1 goes to the origin and the curves meeting at tq,rq−1 are
mapped to curves which near origin are straight line segments meeting at the
origin.

Let now PC(D, `) be the algebra of all functions a(z), continuous in D \ `,
and having left and right limit values at all points of `j : a+(z) and a−(z). On the
nodes of type tq,rq−1 ∈ T the functions from PC(D, `) have r limit values. We
denote them by a

(1)
tq,rq−1

, ..., a
(r)
tq,rq−1

, counting counter-clockwise.

Let T = T (PC(D, `)) be the C∗-algebra generated by all Toeplitz operators
Ta with symbols a ∈ PC(D, `).

For each node tq,rq−1 ∈ T introduce the ordered set

Λq = {θ1, θ2, ..., θrq−1}
of the angles which the rq − 1 curves meeting at the node tq,rq−1 form with the
boundary γ, counting them counter-clockwise. Introduce as well the corresponding
curve

∆(Λq) = {(t1, t2, ..., trq ) : tk = γχVk
(λ), λ ∈ R, k = 1, ..., rq}, (2.5)

where each tk = γχVk
(λ), k = 1, ..., rq, is given by, see (2.3),

tk = γχVk
(λ) =

2λ

1− e−2πλ

∫ θk

θk−1

e−2λθ dθ =
e−2θkλ − e−2θk−1λ

e−2πλ − 1
, λ ∈ R,

Observe that the curve ∆(Λq) lies on the standard (rq − 1)-dimensional simplex
and connects its vertices (1, 0, ..., 0) and (0, ..., 0, 1).
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Denote by γ̂ the set γ, cut by points tq,rq−1 ∈ T = ` ∩ γ. The pair of points
which correspond to a point tq,rq−1 ∈ T we denote by tq,rq−1 − 0 and tq,rq−1 + 0,
following the positive orientation of γ. Let X = ∪q∆(Λq) be the disjoint union of
the sets (2.5). Denote by Γ the union γ̂ ∪X with the following point identification

tq,rq−1 − 0 ≡ (1, 0, ..., 0) tq,rq−1 + 0 ≡ (0, ..., 0, 1),

where tq,rq−1 ± 0 ∈ γ̂, and (1, 0, ..., 0) and (0, ..., 0, 1) are the vertices of ∆(Λq).
Now the final result reads as follows.

Theorem 2.6. The C∗-algebra T = T (PC(D, `)) is irreducible and contains the
ideal K of compact operators. The symbol algebra Sym T = T /K is isomorphic to
the algebra C(Γ). Identifying them, the symbol homomorphism

sym : T → Sym T = C(Γ)

is generated by the following mapping of generators of T

sym : Ta 7−→
{

a(t), t ∈ γ̂

a
(1)
tq,rq−1

t1 + a
(2)
tq,rq−1

t2 + ... + a
(rq)
tq,rq−1

trq
, t = (t1, t2, ..., trq

) ∈ ∆(Λq)
,

where tq,rq−1 ∈ T .
An operator T ∈ T is Fredholm if and only if its symbol is invertible, i.e., the

function symT 6= 0 on Γ, and

IndT = − 1
2π
{symT}Γ.

3. Essential and local spectra

The results given by Theorem 2.6 permit us, in particular, to describe easily the
essential spectrum of Ta and to understand the geometric regularities of its be-
haviour.

Indeed, given a symbol a ∈ PC(D, `), the essential spectrum ess− spTa of the
operator Ta, which is obviously equal to Im sym Ta, consists of two parts. Its regular
part is the image of the symbol restricted on the boundary points of continuity,
i.e., symTa|bγ = a|bγ . The complementary part is a finite number of additional arcs,
each one of which is the restriction of sym Ta onto the curve ∆(Λq), corresponding
to the boundary point of discontinuity tq,rq−1.

We note that each such curve sym Ta|∆(Λq) describes as well the spectrum of
the local representative at the point tq,rq−1 of the initial operator Ta.

Let us assume that t0 is a boundary point of discontinuity for functions from
PC(D, `) an which n curves from ` intersect. As previously, introduce the ordered
set

Λ = {θ1, θ2, ..., θn−1}
of the angles which the above n curves form with the boundary γ, counting them
counter-clockwise. As above, we add θ0 = 0 and θn = π. Given a symbol a ∈
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PC(D, `), introduce the ordered set

A = {a1, a2, ..., an},

where each ak, k = 1, 2, ..., n, is the limit value of a at the point t0 reached from
the region between the (k − 1)-th and k-th curves.

The local representative at the point t0 of the operator Ta can be taken as
the Toeplitz operator TA,Λ with piecewise constant symbol

aA,Λ(θ) = a1χV1(θ) + ... + anχVn
(θ) ∈ H(A(Λ)),

where each χVk
is the characteristic function of the cone Vk supported on (θk−1, θk].

That is the spectrum of TaA,Λ , which the same as the corresponding portion
of the essential spectrum of Ta, is governed by the sets A and Λ and is given by
the formula

spTaA,Λ = {a1t1 + ... + antn : t = (t1, t2, ..., tn) ∈ ∆(Λ)}. (3.1)

It is instructive to understand the geometric regularities of its behaviour.
We start with the simplest case of just two limit values. Let A = (a1, a2) and

Λ = {θ1}. In this case the spectrum spTaA,Λ does not depend on Λ, is uniquely
determined by A, and is the straight line segment connecting the points a1 and
a2. This is an effect of low dimension: each curve connecting the vertices of a
one-dimensional simplex is the simplex itself, and is the straight line segment con-
necting the vertices.

Passing to n > 2 we consider first the most transparent case n = 3. In
this case the curve ∆(Λ) lies on a two-dimensional simplex, which has the same
dimension as the complex plane where the spectrum lies.

As we already know (see Figure 1), the continuous curve ∆(Λ) connecting
the vertices v1 = (1, 0, 0) and v3 = (0, 0, 1) does depend essentially on Λ. Then
by (3.1), the spectrum sp TaA,Λ , geometrically, is the image of the curve ∆(Λ)
under the projection of the two-dimensional simplex to the complex plane such
that each its vertex vk is projected to ak, k = 1, 2, 3, and ak ∈ A. That is, the
set A determines the triangle to which the simplex is projected, while the set Λ
determines the shape of the curve ∆(Λ), whose projection into the already defined
triangle gives the spectrum.

In the next two pictures we illustrate this for three different sets Λ, being the
first, third, and fifth set of angles of Figure 1. That is, we consider the following
sets of angles (0.48π, 0.52π), (0.3π, 0.7π), and (0.1π, 0.9π), ordered as generated
from less to more curved lines. For the first picture the set A is given by (0.1 +
0.1i, 0.9i, 0.9 + 0.5i), while A = (0.1 + 0.1i, 1 + 0.2i, 0.9 + 0.5i), for the second
picture. For both sets we leave the same values of a1 and a3, making the pictures
”one-parametric” in dependence on a2.
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Figure 2. Spectra of TaA,Λ for three limit values symbols.

The case n > 3 maintains in principle the same features. The spectrum
spTaA,Λ is the image of the curve ∆(Λ) under the projection of, now, the (n− 1)-
dimensional simplex onto a certain convex polygon in the complex plane such that
each vertex vk is projected to ak, k = 1, 2, , ..., n, and ak ∈ A. The curve ∆(Λ)
connecting the vertices v1 = (1, 0, ..., 0) and vn = (0, ..., 0, 1) again does depend es-
sentially on Λ. The set A determines the polygon to which the simplex is projected,
while the set Λ determines the shape of the curve ∆(Λ), whose projection into the
already defined polygon gives the spectrum. The only difference is that now this
convex polygon has n or less vertices, depending on the way, prescribed by A, in
which the (n−1)-dimensional simplex is projected onto the two-dimensional poly-
gon. That is, the projections of some vertices may (or may not) be in the interior
of the polygon.

In the next two pictures we present the cases of five limit values symbols
for which the 4-dimensional simplex is projected onto a pentagon and a triangle,
respectively. We consider the following sets A

(0.2 + 0.1i, 0.4 + 0.9i, 0.8 + 0.1i, 0.1 + 0.7i, 0.9 + 0.8i)

and

(0.2 + 0.1i, 0.5 + 0.6i, 0.1 + 0.9i, 0.3 + 0.4i, 0.9 + 0.8i),

maintaining the same values of a1 and a5 for both cases. Both pictures represent
three spectra for the following sets Λ

(0.46π, 0.48π, 0.52π, 0.54π), (0.2π, 0.2π, 0.7π, 0.8π), (0.0002π, 0.01π, 0.99π, 0.9998π),

and which again correspond to lines ordered from less to more curved.
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Figure 3. Spectra of TaA,Λ for five limit values symbols (pentagon and triangle).

We note that the spectrum sp TaA,Λ becomes more rectilinear and more stable
under the perturbations of ak ∈ A, k = 2, ..., n− 1, for bigger values of the angles
θ1 and π − θn−1. In this case the spectrum approaches the straight line segment
connecting the images of the vertices (1, 0, ..., 0) and 0, ..., 0, 1) when the sum of
these angles tends to π. The opposite, in a sense, tendency appears when the
angles between the curves intersecting at t0 and the boundary of the domain tend
to 0. In that case the spectrum approaches the union of straight line segments
passing in sequence through the images of the vertices (1, 0, ..., 0), (0, 1, 0, ..., 0), ...
(0, ..., 0, 1).

4. Local analysis at a point of discontinuity

Although the description given by Theorem 2.6 proves to be useful, it hides, at
the same time, some essential properties of the above Toeplitz operator algebras.
In particular, it turns out that each Toeplitz operator algebra T (PC(D, `)), be-
sides the initial generators Ta with symbols a ∈ PC(D, `), contains many another
Toeplitz operators with much more general symbols.

We show this here for the model situation at a point of discontinuity. We
introduce first a number of symbol sets. Denote by L

{0,π}
∞ (0, π) the C∗-subalgebra

of L∞(0, π) which consists of all functions having limits at the points 0 and π. Let
C[0, π] be, as usual, the algebra of all continuous functions on [0, π]; denote by
PC([0, π],Λ), where Λ = {θ1, θ2, ..., θn−1}, the algebra of all piece-wise continuous
functions on [0, π], continuous in [0, π] \ Λ and having one-sided limit values at
the points of Λ. Let PCo([0, π]), Λ) be the subalgebra of PC([0, π], Λ) consisting
of all piece-wise constant functions. Given a function a0(θ), denote by L(1, a0) the
linear two-dimensional space, generated by 1 and the function a0.
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Note that PCo([0, π], {θ1}) = L(1, χ[0,θ1]), where χ[0,θ1](θ) is the character-
istic function of [0, θ1].

For a continuous function a0, a set Λ, and an arbitrary point θk ∈ Λ, we have
the following chain of proper inclusions

L(1, a0) ⊂ C[0, π]
PCo([0, π], {θk}) ⊂ PCo([0, π]),Λ) ⊂ PC([0, π], Λ) ⊂ L{0,π}

∞ (0, π). (4.1)

Given a linear set A, the subset of L∞(0, π), denote by H(A) the subset of
A∞ which consists of all homogeneous functions of zero order on the upper half-
plane whose restrictions onto the upper half of the unit circle (parameterized by
θ ∈ [0, π]) belong to A. Further let T (H(A)) be the the C∗-algebra generated by
all Toeplitz operators Ta with symbols a ∈ H(A).

Note that for any real nonconstant function a0, the algebra T (H(L(1, a0))) is
a C∗-algebra with identity generated by a single self-adjoint element, the Toeplitz
operator Ta0 .

Let A be any of the sets in (4.1), consider the C∗-algebra T (H(A)).
For the largest set (algebra) L

{0,π}
∞ (0, π) we have

Theorem 4.1. The C∗-algebra T (H(L{0,π}
∞ (0, π))) is isomorphic and isometric to

C(R), where R = R ∪ {−∞} ∪ {+∞} is the two-point compactification of R. The
isomorphic isomorphism

τ∞ : T (H(L{0,π}
∞ (0, π))) −→ C(R)

is generated by the following mapping of generators of the algebra T (H(L{0,π}
∞ (0, π)))

τ∞ : Ta 7−→ γa(λ), (4.2)

where a = a(θ) ∈ H(L{0,π}
∞ (0, π)).

Proof. We need to show only that the mapping (4.2) is onto. The inclusion

τ∞( T (H(L{0,π}
∞ (0, π))) ) ⊂ C(R)

is trivial. The inverse inclusion will follow from the next theorem. ¤
Passing to another extreme, the smallest possible set, we have

Theorem 4.2. Let a0(θ) ∈ L
{0,π}
∞ (0, π) be a real valued function such that the

function γa0(λ) separates the points of R. Then the C∗-algebra T (H(L(1, a0))) is
isomorphic and isometric to C(R). The isomorphic isomorphism

τ∞ : T (H(L(1, a0))) −→ C(R)

is generated by the same mapping of generators of the algebra T (H(L(1, a0)))

τ∞ : Ta 7−→ γa(λ),

Proof. Follows directly from the Stone-Weierstrass theorem. ¤
Corollary 4.3. Given a point θ0 ∈ (0, π), the C∗-algebra T (H(PCo([0, π], {θ0})))
is isomorphic and isometric to C(R).
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Proof. As it was already mentioned PCo([0, π], {θ0}) = L(1, χ[0,θ0]). All we need
to prove is that the real valued function

γχ[0,θ0](λ) =
2λ

1− e−2πλ

∫ θ0

0

e−2λθ dθ =
e−2θ0λ − 1
e−2πλ − 1

separates the points of R. We show that the function γχ[0,θ0] is strictly increasing
by a simple but somewhat lengthy procedure.

After the scaling t = 2πλ, θ0 = απ, with α ∈ (0, 1), we have

γ(t) =
e−αt − 1
e−t − 1

, t ∈ R.

First let t > 0, and calculate

γ′(t) =
αe−αt(1− e−t)− e−t(1− e−αt)

(1− e−t)2
.

To show that γ′(t) > 0, it is equivalent to show that

αe−αt e
t − 1
et

− e−t e
t − 1
eαt

> 0,

or that
α(et − 1)− (eαt − 1) > 0

or ∞∑

k=1

(α− αk)
tk

k!
> 0.

The last inequality is evident because α ∈ (0, 1).
Pass now to t < 0. Substituting x = −t, x ∈ R+, we have

γ(t(x)) =
eαx − 1
ex − 1

and

γ′(t(x)) =
αeαx(ex − 1)− ex(eαx − 1)

(ex − 1)2
.

Now we need to show that the function γ(t(x)) is strictly decreasing, or that
γ′(t(x)) < 0. This is equivalent to

ex(eαx − 1)− αeαx(ex − 1) > 0

or to
(1− α)(ex − 1)− (e(1−α)x − 1) > 0,

or to ∞∑

k=1

[(1− α)− (1− α)k]
xk

k!
> 0.

Again the last inequality is evident because α ∈ (0, 1). ¤

Let now a0(θ) = θ
π , this function a0(θ) is obviously real valued and continuous

on [0, π].
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Corollary 4.4. The C∗-algebra T (H(L(1, a0))) is isomorphic and isometric to
C(R).

Proof. We have

γa0(λ) =
2λ

π(1− e−2πλ)

∫ π

0

θe−2λθ dθ

=
1

π(1− e−2πλ)

[
−πe−2πλ − 1

2λ
(e−2πλ − 1)

]
=

1
2πλ

− 1
e2πλ − 1

.

The function γa0(λ) is continuous on R, and

lim
λ→0

γa0(λ) = γa0(0) =
1
2

lim
λ→−∞

γa0(λ) = γa0(−∞) = 1

lim
λ→+∞

γa0(λ) = γa0(+∞) = 0.

To finish the proof we need to show that the function γa0(λ) separates the points
of R. To do this we show that the function

γ(t) =
1
t
− 1

et − 1
, t ∈ R

is strictly decreasing, or that γ′(t) < 0 for all t 6= 0.
The function

γ′(t) = − 1
t2

+
et

(et − 1)2

is even. Thus it is sufficient to prove that

et

(et − 1)2
<

1
t2

,

or that
t2et < (et − 1)2,

for each t > 0. The last inequality is easy to check, comparing coefficients of the
power series

t2et =
∞∑

n=2

1
(n− 2)!

tn,

(et − 1)2 =
∞∑

n=2

2(2n−1 − 1)
n!

tn.

¤

Remark 4.5. The above statements show that in spite of the fact that the generat-
ing sets of symbols in (4.1) are quite different, the resulting Toeplitz C∗-algebras
are the same. Moreover, this (common) C∗-algebra with identity can be generated
by a single Toeplitz operator with either continuous, or piece-wise constant symbol.
Further, although the algebraic operations with Toeplitz operators do not give a



Toeplitz operators with piecewise continuous symbols 15

Toeplitz operator, in general, the resulting (single-generated) algebra is extremely
rich in Toeplitz operators: each Toeplitz operator with symbol from H(L{0,π}

∞ (0, π))
belongs to this algebra.

We give now a number of illustrating examples. Consider A2(Π) and the
Toeplitz operator T+ with symbol a+(z) = χ+(Re z) = χ+(x), where χ+ is the
characteristic function of the positive half-line. We have as well that a+(z) =
a+(reiθ) = χ[0,π/2](θ), and thus a+ ∈ H(PCo([0, π], {π/2})).

The Toeplitz operator T+ ∈ T (H(PCo([0, π], {π/2}))) is unitary equivalent
to the multiplication operator γa+I, where, by (2.2),

γa+(λ) =
2λ

1− e−2πλ

∫ π

0

χ[0,π/2](θ) e−2λθ dθ =
e−πλ − 1
e−2πλ − 1

, λ ∈ R.

The operator T+ is obviously self-adjoint and sp T+ = [0, 1]. Thus for any func-
tion f continuous on [0, 1] the operator f(T+) is well defined by the standard
functional calculus in C∗-algebras, furthermore the operator f(T+) belongs to the
same algebra T (H(PCo([0, π], {π/2}))).
Example. Consider the family of functions fα parameterized by α ∈ [0, 1] and
given as follows:

fα(x) = x2(1−α) (1− x)2α − x2α

(1− x)− x
, x ∈ [0, 1]. (4.3)

Each function fα is continuous on [0, 1], and fα(0) = 0, fα(1) = 1. Let us mention
as well some particular cases

f0(x) ≡ 0, f 1
2
(x) = x, f1(x) ≡ 1.

Then
fα(T+) = Tχ[0,απ] ∈ T (H(PCo([0, π], {π/2}))),

where the symbol χ[0,απ] of the operator Tχ[0,απ] belongs to H(PCo([0, π], {απ})).

Proof. We will exploit the isomorphism between the Toeplitz operator algebra and
the functional algebra given in Corollary 2.4. Introduce

x = γa+(λ) =
e−πλ − 1
e−2πλ − 1

=
1

e−πλ + 1
∈ [0, 1],

which is equivalent to

λ = λ(x) = − 1
π

ln
1− x

x
.

Then for the operator Tχ[0,απ] the corresponding function γχ[0,απ] is given by

γχ[0,απ](λ) =
2λ

1− e−2πλ

∫ π

0

χ[0,λπ](θ) e−2λθ dθ =
e−2απλ − 1
e−2πλ − 1

, λ ∈ R.
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Substituting λ = λ(x) we have

γχ[0,απ](λ(x)) =
e2απ 1

π ln 1−x
x − 1

e2π 1
π ln 1−x

x − 1

=

(
1−x

x

)2α − 1
(

1−x
x

)2 − 1
= x2(1−α) (1− x)2α − x2α

(1− x)− x
.

¤

Note that the above mentioned particular cases of fα lead to the equalities

f0(T+) = 0, f 1
2
(T+) = T+, f1(T+) = I,

as it should be.

In the next example we present a connection between Toeplitz operators with
piece-wise constant symbols having just two and more than two limit values at the
single point of discontinuity.

Example. Given a finite ordered set of numbers 0 < α1 < α2 < ... < αn−1 < 1,
introduce

Λ = {α1π, α2π, ..., αn−1π};
for convenience we add α0 = 0 and αn = 1. Let further A = {a1, a2, ..., an} be an
ordered set of complex numbers.

Given both A and Λ, we define the piece-wise constant symbol

aA,Λ(θ) =
n∑

k=1

akχ(αk−1π,αkπ] ∈ PCo([0, π], Λ)

and the function fA,Λ = fA,Λ(x) continuous on [0, 1]

fA,Λ(x) =
n∑

k=1

ak
(1− x)2αkx2(1−αk) − (1− x)2αk−1x2(1−αk−1)

(1− x)− x
.

Then
fA,Λ(T+) = TaA,Λ ∈ T (H(PCo([0, π], {π/2}))).

Proof. Consider the Toeplitz operator TaA,Λ . Using (2.3) we have

γaA,Λ(λ) =
2λ

1− e−2πλ

∫ π

0

aA,Λ(θ) e−2λθ dθ

=
n∑

k=1

ak
e−2αkπλ − e−2αk−1πλ

e−2πλ − 1
, λ ∈ R.

Substitute λ = λ(x) as in the previous example. Then after a simple calculation
we have

γaA,Λ(λ(x)) =
n∑

k=1

ak
(1− x)2αkx2(1−αk) − (1− x)2αk−1x2(1−αk−1)

(1− x)− x
.
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¤

Theorem 4.2 and Corollary 4.3 imply, in particular, that each Toeplitz op-
erator with H(L{0,π}

∞ (0, π))-symbol can be obtained in a similar way. The exact
formula for the corresponding continuous function f(x), though forcedly rather
implicit, is given in the next example.

Example. Given a function a = a(θ) ∈ H(L{0,π}
∞ (0, π)), let

fa(x) =
2x2

π

ln(1− x)− ln x

(1− x)− x

∫ π

0

a(θ)
(

1− x

x

) 2θ
π

dθ.

Then
fa(T+) = Ta.

Remark 4.6. In the above examples we have considered the Toeplitz operator T+

as the starting operator by a very simple reason: in this specific case the generically
transcendental equation x = γa(λ) admits an explicit solution.

We can start as well from any Toeplitz operator Tα having the symbol χ[0,απ],
where α ∈ (0, π). Indeed, as follows from the proof of Corollary 4.3, the function
γχ[0,απ](λ) is strictly increasing. This implies that the function fα(x) (see (4.3)),
which maps [0, 1] onto [0, 1], is strictly increasing as well. Thus the function f−1

α (x)
is well defined and continuous on [0, 1].

Finally, given α, β ∈ (0, π), A, Λ, and a = a(θ) ∈ H(L{0,π}
∞ (0, π)), we have

Tα ∈ T (H(PCo([0, π], {απ})))
and

(fβ ◦ f−1
α )(Tα) = Tβ ,

(fA,Λ ◦ f−1
α )(Tα) = TaA,Λ ,

(fa ◦ f−1
α )(Tα) = Ta,

where all Toeplitz operators from the right hand side of the above equalities belong
to T (H(PCo([0, π], {απ}))).

5. Boundary piecewise continuous functions

The above examples show that studying the algebra generated by Toeplitz opera-
tors, whose symbols admit discontinuities at a finite number of boundary points, we
can start from any symbol algebra selected from a wide variety of symbol classes.
Moreover, the curve `, entering in the definition of the symbol algebra PC(D, `),
does not play in fact any significant role. In all such cases the resulting C∗-algebra
will contain all Toeplitz operators whose symbols admit a “homogeneous type
discontinuity” in each boundary point of discontinuity, locally described by the
algebra H(L{0,π}

∞ (0, π)).
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Thus it seems reasonable to include the Toeplitz operators with such symbols
among the generators of the algebra from the very beginning. In this case the
definition proceeds as follows.

Let T = {t1, t2, ..., tm} be a finite set of distinct points on the unit circle γ =
∂D. Introduce the linear space BPC(D, T ) (BPC stands for Boundary Piecewise
Continuous) which consists of all functions a(z) obeying the following properties:

(i) a(z) ∈ L∞(D);
(ii) a(z) has limit values at all boundary point t ∈ γ \ T , and the function a(t)

constructed by these limit values is continuous in γ \ T ;
(iii) at each point t0 ∈ T the function a(z) has a “homogeneous type discontinu-

ity”, which means that there exist a Möbius transformation z = zt0(w) of the
upper half-plane Π to the unit disk D with t0 = zt0(0) and a homogeneous
function of order zero at0(w) ∈ H(L{0,π}

∞ (0, π)) such that

lim
w→0

[a(zt0(w))− at0(w)] = 0.

Let us make several comments on this definition. The set BPC(D, T ) in
fact is a C∗-algebra, although only the linear space structure is important for
our purposes. The function a(t), as a function of the boundary points, belongs to
PC(γ, T ); that is, for each point t0 ∈ T the following limits

lim
t→t0, t≺t0

a(t) = a(t0 − 0) and lim
t→t0, t0≺t

a(t) = a(t0 + 0)

are well defined. Property (iii) of the above definition can be alternatively done
in geometric terms of D as follows. For each point t0 ∈ T there are a hyperbolic
pencil Pt0 of geodesics in D, such that t0 is the endpoint of its axis, and a function
ãt0(z) which is constant on cycles of Pt0 and whose values on (each) geodesic are
given by an L∞-function having limit values at the endpoints of the geodesic on
γ (points at infinity in hyperbolic geometry), such that

lim
z→t0

[a(z)− ãt0(z)] = 0.

Consider now the C∗-algebra TBPC = T (BPC(D, T )) generated by all Toeplitz
operators Ta with symbols a ∈ BPC(D, T ).

Let, as above, γ̂ be the set γ, cut by points tp ∈ T . The pair of points which
correspond to a point tp ∈ T , p = 1,m, we denote by tp − 0 and tp + 0, following
the positive orientation of γ. Let X = tm

p=1∆p be the disjoint union of segments
∆p = [0, 1]. Denote by Γ the union γ̂ ∪X with the following point identification

tp − 0 ≡ 1p, tp + 0 ≡ 0p,

where tp ± 0 ∈ γ̂, 0p and 1p are the endpoints of ∆p, p = 1, 2, ..., m.
Than we have obviously

Theorem 5.1. The C∗-algebra TBPC = T (BPC(D, T )) is irreducible and contains
the ideal K of compact operators. The symbol algebra Sym TBPC = TBPC/K is
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isomorphic to the algebra C(Γ). Identifying them, the symbol homomorphism

sym : TBPC → Sym TBPC = C(Γ)

is generated by the following mapping of generators of TBPC

sym : Ta 7−→




a(t), t ∈ γ̂

γatp

(
1−2x√

1−(1−2x)2

)
, x ∈ [0, 1] ,

where atp
is the function defined by the above property (iii) for a(z) at the point

tp ∈ Λ, p = 1, 2, ...,m, and

γatp
(λ) =

2λ

1− e−2πλ

∫ π

0

atp
(θ) e−2λθ dθ, λ ∈ R.

An operator T ∈ TBPC is Fredholm if and only if its symbol is invertible, i.e.,
the function sym T 6= 0 on Γ, and

IndT = − 1
2π
{symT}Γ.

Proof. Easily follows from the standard local principle, Theorem 4.1 and Theo-
rem 2.6. ¤

We mention that the algebras described by Theorems 2.2, 2.6, and 5.1 consist
of the same operators, in spite of the fact that their initial generators are quite dif-
ferent. That is, as it turned out, the first algebra generated by Toeplitz operators
with discontinuous symbols, which was described by Theorem 2.2, already con-
tained all the operators with BPC(D, T )-symbols. For about twenty years there
was no way to see this. At the same time Theorem 5.1 gives a transparent descrip-
tion for all Toeplitz operators for all BPC(D, T )-symbols.

We end the paper formulating two open problems.

Problem 1. Extend the description of Toeplitz operator algebra from BPC(D, T )-
symbols to a rotation invariant symbol set containing BPC(D, T ).

Problem 2. Extend the description of Toeplitz operator algebra from BPC(D, T )-
symbols to a Möbius invariant symbol set containing BPC(D, T ). This class of
symbols can be naturally called BPC(D).
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