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1. Introduction

We show that there is a direct and transparent connection between the poly-
Bergman type spaces and certain two dimensional singular integral operators.

Recall that the poly-Bergman spaces A2
n(Π) and Ã2

n(Π) on the upper half-
plane Π, of analytic and anti-analytic functions respectively, are defined as the
subspaces of L2(Π), endowed with the standard Lebesgue plane measure dv(z) =
dxdy, z = x + iy, and consist of functions satisfying the following equations

(
∂

∂z

)n

ϕ =
1
2n

(
∂

∂x
+ i

∂

∂y

)n

ϕ = 0, n ∈ N,

and (
∂

∂z

)n

ϕ =
1
2n

(
∂

∂x
− i

∂

∂y

)n

ϕ = 0, n ∈ N,

respectively.
We introduce as well the following singular integral operators bounded on

L2(Π):

(SΠϕ)(z) = − 1
π

∫

Π

ϕ(ζ)
(ζ − z)2

dv(ζ)
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and its adjoint

(S∗Πϕ)(z) = − 1
π

∫

Π

ϕ(ζ)
(ζ − z)2

dv(ζ).

A. Dzhuraev [4, 5] showed that for a bounded domain D with smooth bound-
ary the orthogonal projections BD,n and B̃D,n of L2(D) onto the spaces A2

n(D)
and Ã2

n(D), respectively, can be expressed in the form

BΠ,n = I − (SD)n(S∗D)n + Kn and B̃Π,n = I − (S∗D)n(SD)n + K̃n,

where Kn and K̃n are compact operators. Recently J. Ramı́rez and I. Spitkovsky
[8] proved that in the case of the upper half-plane Π the compact summands Kn

and K̃n in the above formulas are equal to zero. Using this result Yu. Karlovich and
L. Pessoa [7] described the action of the operators SΠ and S∗Π on the poly-Bergman
spaces, obtaining the statements of Theorem 3.5 below.

In the paper we propose another, more direct and transparent, approach to
the problem, which follows the ideas of [9, 10] and gives the precise information
about the structure of SΠ and S∗Π. In Section 2 we present necessary facts from
[9, 10]. The core result of the paper is contained in Theorems 3.1 and 3.2 and
gives a simple (functional) model for the operators SΠ and S∗Π: each of them is
unitary equivalent to the direct sum of two unilateral shifts, forward and backward,
both taken with the infinite multiplicity. This fact permits us an easy access to the
majority of the properties of these operators. The most important properties, in
the context of the paper, are given by the subsequent Theorems 3.5 and 3.7.

2. Poly-Bergman spaces

Let Π be the upper half-plane in C, consider the space L2(Π) endowed with the
usual Lebesgue plane measure dv(z) = dxdy, z = x + iy. Denote by A2(Π) its
Bergman subspace, i.e., the subspace which consists of all functions analytic in Π.
It is well known that the Bergman projection BΠ of L2(Π) onto A2(Π) has the
form

(BΠϕ)(z) = − 1
π

∫

Π

ϕ(ζ)
(z − ζ)2

dv(ζ).

In addition to the Bergman spaceA2(Π) introduce the space Ã2(Π) as the subspace
of L2(Π) consisting of all functions anti-analytic in Π.

Further, analogously to the Bergman spaces A2(Π) and Ã2(Π), introduce the
spaces of poly-analytic and poly-anti-analytic functions (see, for example, [1, 2, 4,
5]), the poly-Bergman spaces.

We define the space A2
n(Π) of n-analytic functions as the subspace of L2(Π)

of all functions ϕ = ϕ(z, z) = ϕ(x, y), which satisfy the equation
(

∂

∂z

)n

ϕ =
1
2n

(
∂

∂x
+ i

∂

∂y

)n

ϕ = 0.
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Similarly, we define the space Ã2
n(Π) of n-anti-analytic functions as the sub-

space of L2(Π) of all functions ϕ = ϕ(z, z) = ϕ(x, y), which satisfy the equation
(

∂

∂z

)n

ϕ =
1
2n

(
∂

∂x
− i

∂

∂y

)n

ϕ = 0.

Of course, we have A2
1(Π) = A2(Π) and Ã2

1(Π) = Ã2(Π), for n = 1, as well as
A2

n(Π) ⊂ A2
n+1(Π) and Ã2

n(Π) ⊂ Ã2
n+1(Π), for each n ∈ N.

Finally introduce the space A2
(n)(Π) of true-n-analytic functions by

A2
(n)(Π) = A2

n(Π)ªA2
n−1(Π),

for n > 1, and by A2
(1)(Π) = A2

1(Π); and, symmetrically, introduce the space

Ã2
(n)(Π) of true-n-anti-analytic functions by

Ã2
(n)(Π) = Ã2

n(Π)ª Ã2
n−1(Π),

for n > 1, and by Ã2
(1)(Π) = Ã2

1(Π), for n = 1.
We have, of course,

A2
n(Π) =

n⊕

k=1

A2
(k)(Π) and Ã2

n(Π) =
n⊕

k=1

Ã2
(k)(Π).

To formulate the main result of this section we need more definitions. We
start by introducing two unitary operators. Define the unitary operator

U1 = F ⊗ I : L2(Π) = L2(R)⊗ L2(R+) −→ L2(R)⊗ L2(R+), (1)

where the Fourier transform F : L2(R) → L2(R) is given by

(Ff)(x) =
1√
2π

∫

R
e−ixξf(ξ) dξ. (2)

The second unitary operator

U2 : L2(Π) = L2(R)⊗ L2(R+) −→ L2(R)⊗ L2(R+)

is given by

(U2ϕ)(x, y) =
1√
2|x| ϕ(x,

y

2|x| ). (3)

Then the inverse operator U−1
2 = U∗

2 : L2(R)⊗ L2(R+) −→ L2(R)⊗ L2(R+) acts
as follows,

(U−1
2 ϕ)(x, y) =

√
2|x|ϕ(x, 2|x| · y).

Recall (see, for example, [3]), that the Laguerre polinomial Ln(y) of degree
n, n = 0, 1, 2, ..., and type 0 is defined by

Ln(y) = L0
n(y) =

ey

n!
dn

dyn
(e−y yn)

=
n∑

k=0

n!
k!(n− k)!

(−y)k

k!
, y ∈ R+, (4)
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and that the system of functions

`n(y) = e−y/2Ln(y), n = 0, 1, 2, ... (5)

forms an orthonormal basis in the space L2(R+).
Denote by Ln, n = 0, 1, 2, ..., the one-dimensional subspace of L2(R+) gener-

ated by the function `n(y).
The main result of the section reads as follows.

Theorem 2.1. The unitary operator

U = U2U1 : L2(R)⊗ L2(R+) → L2(R)⊗ L2(R+)

provides the following isometrical isomorphisms of the above spaces:

1. Isomorphic images of poly-analytic spaces

U : A2
(n)(Π) −→ L2(R+)⊗ Ln−1,

U : A2
n(Π) −→ L2(R+)⊗

n−1⊕

k=0

Lk,

U :
∞⊕

k=1

A2
(k)(Π) −→ L2(R+)⊗ L2(R+).

2. Isomorphic images of poly-anti-analytic spaces

U : Ã2
(n)(Π) −→ L2(R−)⊗ Ln−1,

U : Ã2
n(Π) −→ L2(R−)⊗

n−1⊕

k=0

Lk,

U :
∞⊕

k=1

Ã2
(k)(Π) −→ L2(R−)⊗ L2(R+).

3. Furthermore we have the following decomposition of the space L2(Π)

L2(Π) =
∞⊕

k=1

(A2
(k)(Π)⊕ Ã2

(k)(Π))

=
∞⊕

k=1

A2
(k)(Π)⊕

∞⊕

k=1

Ã2
(k)(Π).

3. Two-dimensional singular integral operators

We introduce the following singular integral operators bounded on L2(Π):

(SΠϕ)(z) = − 1
π

∫

Π

ϕ(ζ)
(ζ − z)2

dv(ζ)
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and its adjoint

(S∗Πϕ)(z) = − 1
π

∫

Π

ϕ(ζ)
(ζ − z)2

dv(ζ).

Note, that the operators SΠ and S∗Π are the restrictions onto the upper half-
plane Π of the following classical two-dimensional singular integral operators over
C = R2,

(SR2ϕ)(z) = − 1
π

∫

R2

ϕ(ζ)
(ζ − z)2

dv(ζ) and (S∗R2ϕ)(z) = − 1
π

∫

R2

ϕ(ζ)
(ζ − z)2

dv(ζ),

which are given in terms of the Fourier transform as follows,

SR2 = F−1 ζ

ζ
F and S∗R2 = S−1

R2 = F−1 ζ

ζ
F, (6)

where ζ = ξ + iη = (ξ, η), and the Fourier transform F is given by

(Fϕ)(ζ) =
1
2π

∫

R2
e−iζ·z ϕ(z) dv(z),

where z = x + iy = (x, y), and ζ · z = ξx + ηy.
By (6) these operators admit the following representations:

SΠ = (I ⊗ χ+I)SR2(I ⊗ χ+I)

= (I ⊗ χ+I)(F−1 ⊗ F−1)
ξ − iη

ξ + iη
(F ⊗ F )(I ⊗ χ+I) (7)

and

S∗Π = (I ⊗ χ+I)S∗R2(I ⊗ χ+I)

= (I ⊗ χ+I)(F−1 ⊗ F−1)
ξ + iη

ξ − iη
(F ⊗ F )(I ⊗ χ+I),

where ξ, η ∈ R, and the one-dimensional Fourier transform F is given by (2).
Let us introduce the following integral operators

(S+f)(y) = −f(y) + e−
y
2

∫ y

0

e
t
2 f(t) dt,

(S−f)(y) = −f(y) + e
y
2

∫ ∞

y

e−
t
2 f(t) dt,

which, as we will see later on, are bounded on L2(R+) and are mutually adjoint.
As in Section 2 we will use the unitary operator

U = U2U1 : L2(R)⊗ L2(R+) −→ L2(R)⊗ L2(R+),

where the operators U1 and U2 are given by (1) and (3) respectively.

Theorem 3.1. The unitary operator U = U2U1 gives an isometrical isomorphism
of the space L2(Π) = [L2(R+)⊗ L2(R+)] ⊕ [L2(R−)⊗ L2(R+)] under which the
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two-dimensional singular integral operators SΠ and S∗Π are unitary equivalent to
the following operators

U SΠ U−1 = (I ⊗ S+)⊕ (I ⊗ S−),
U S∗Π U−1 = (I ⊗ S−)⊕ (I ⊗ S+).

Proof. By the representation (7) we have

S1 = U1SΠU−1
1 = (F ⊗ I)SΠ(F−1 ⊗ I)

= (I ⊗ χ+I)(I ⊗ F−1)
ξ − iη

ξ + iη
(I ⊗ F )(I ⊗ χ+I).

The operator U2 is unitary on both L2(R+) and L2(R), and furthermore it com-
mutes with χR+I. Direct calculation shows that

U2(I ⊗ F−1)
ξ − iη

ξ + iη
(I ⊗ F )U−1

2 = (I ⊗ F−1)
1
2 signx− iη
1
2 signx + iη

(I ⊗ F ).

Thus

S2 = USΠU−1 = U2S1U
−1
2

= (χ+I ⊗ χ+I)(I ⊗ F−1)
1
2 − iη
1
2 + iη

(I ⊗ F )(χ+I ⊗ χ+I)

+ (χ−I ⊗ χ+I)(I ⊗ F−1)
1
2 + iη
1
2 − iη

(I ⊗ F )(χ−I ⊗ χ+I)

and

S∗2 = US∗ΠU−1

= (χ+I ⊗ χ+I)(I ⊗ F−1)
1
2 + iη
1
2 − iη

(I ⊗ F )(χ+I ⊗ χ+I)

+ (χ−I ⊗ χ+I)(I ⊗ F−1)
1
2 − iη
1
2 + iη

(I ⊗ F )(χ−I ⊗ χ+I).

The symbols of the two convolution operators

S̃+ = F−1
1
2 − iη
1
2 + iη

F and S̃− = F−1
1
2 + iη
1
2 − iη

F,

which are obviously bounded on L2(R), admit the following representations,
1
2 − iη
1
2 + iη

= −1− iη
1
4 + η2

+
1
2

1
4 + η2

and
1
2 + iη
1
2 − iη

= −1 +
iη

1
4 + η2

+
1
2

1
4 + η2

,

respectively.
Using the formulas 17.23.14 and 17.23.15 of [6] we have

F

( 1
2

1
4 + η2

)
=

√
π

2
e−

|y|
2 , F

(
iη

1
4 + η2

)
=

√
π

2
sign y e−

|y|
2 ,
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and thus

(S̃+f)(y) = −f(y) +
1√
2π

∫

R

√
π

2
e−

|t−y|
2 (1− sign(t− y))f(t)dt

= −f(t) +
∫

R
e−

|t−y|
2 χ−(t− y)f(t)dt

and

(S̃−f)(y) = −f(y) +
1√
2π

∫

R

√
π

2
e−

|t−y|
2 (1 + sign(t− y))f(t)dt

= −f(t) +
∫

R
e−

|t−y|
2 χ+(t− y)f(t)dt.

Then the operators S+ = χ+S̃+χ+I|L2(R+)
and S− = χ+S̃−χ+I|L2(R+)

, acting on
L2(R+), are as follows:

(S+f)(y) = −f(t) +
∫

R+

e−
|t−y|

2 χ−(t− y)f(t)dt

= −f(y) + e−
y
2

∫ y

0

e
t
2 f(t)dt

and

(S−f)(y) = −f(t) +
∫

R+

e−
|t−y|

2 χ+(t− y)f(t)dt

= −f(y) + e
y
2

∫ ∞

y

e−
t
2 f(t)dt.

Thus finally

USΠU−1 = (χ+I ⊗ χ+I)(I ⊗ S̃+)(χ+I ⊗ χ+I)

+ (χ−I ⊗ χ+I)(I ⊗ S̃−)(χ−I ⊗ χ+I)
= χ+I ⊗ S+ + χ−I ⊗ S−
= (I ⊗ S+)⊕ (I ⊗ S−)

and

US∗ΠU−1 = (χ+I ⊗ χ+I)(I ⊗ S̃−)(χ+I ⊗ χ+I)

+ (χ−I ⊗ χ+I)(I ⊗ S̃+)(χ−I ⊗ χ+I)
= χ+I ⊗ S− + χ−I ⊗ S+

= (I ⊗ S−)⊕ (I ⊗ S+),

where the last lines in both representations are written according to the splitting

L2(Π) = [L2(R+)⊗ L2(R+)]⊕ [L2(R−)⊗ L2(R+)] .

¤
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We continue to use an orthonormal basis

`n(y) = e−y/2Ln(y), n = 0, 1, 2, ...,

of the space L2(R+), where the Lagguerre polynomials Ln(y) are given by (4).

Theorem 3.2. For each admissible n, the following equalities hold:

(S+`n)(y) = −`n+1(y), (S−`n)(y) = −`n−1(y), and (S−`0)(y) = 0.

Proof. By [6], formula 8.971.1, we have

L′n(y)− L′n+1(y) = Ln(y). (8)

Taking into account that Ln(0) = 1, for all n, the integral form of the above
formula is as follows:

Ln(y)− Ln+1(y) =
∫ y

0

Ln(t)dt.

Calculate now

(S+`n)(y) = −e−
y
2 Ln(y) + e−

y
2

∫ y

0

Ln(t)dt

= e−
y
2 (−Ln(y) + Ln(y)− Ln+1(y)) = −`n+1(y).

Integrating by parts twice and using (8), we have
∫ ∞

y

e−tLn(t)dt = e−yLn(y) +
∫ ∞

y

e−tL′n−1(t)dt−
∫ ∞

y

e−tLn−1(t)dt

= e−yLn(y)−
∫ ∞

y

e−tLn−1(t)dt

− e−yLn−1(y) +
∫ ∞

y

e−tLn−1(t)dt

= e−yLn(y)− e−yLn−1(y).

Thus

(S−`n)(y) = −e−
y
2 Ln(y) + e

y
2

∫ ∞

y

e−tLn(t)dt

= −e−
y
2 Ln(y) + e

y
2

(
e−yLn(y)− e−yLn−1(y)

)
= −`n−1(y).

Finally,

(S−`0)(y) = −e−
y
2 + e

y
2

∫ ∞

y

e−tdt = 0.

¤

It is convenient to change the previously used basis {`n(y)}∞n=0 of L2(R+) to
the new basis {˜̀n(y)}∞n=0, where

˜̀
n(y) = (−1)n`n(y), n = 0, 1, 2, ... .
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We note that the previously defined one-dimensional spaces Ln are generated by
the new basis elements ˜̀

n(y) as well, and that the statements of Theorem 2.1
remain valid without any change.

Remark 3.3. As the previous theorem shows, the operator S+ is an isometric op-
erator on L2(R+) and is nothing but the unilateral forward shift with respect to
the basis {˜̀n(y)}∞n=0. Its adjoint operator S− is the unilateral backward shift with
respect to the same basis, and its kernel coincides with the one-dimensional space
L0 generated by ˜̀

0(y) = e−
y
2 .

The above, together with Theorem 3.1, permits us to give a simple functional
model for both operators SΠ and S∗Π. Each of them is unitary equivalent to the
direct sum of two unilateral shifts, forward and backward, both taken with the
infinite multiplicity.

Let

L⊕n =
n⊕

k=0

Lk

be the direct sum of the first (n + 1) Lk-spaces. We denote by Pn and P⊕n the
orthogonal projections of L2(R+) onto Ln and L⊕n , respectively.

Corollary 3.4. For all admissible indices, we have

P0 = I − S+S−,

Pn = Sn
+P0S

n
−,

P⊕n = I − Sn+1
+ Sn+1

− ,

Sk
+ |Ln

: Ln −→ Ln+k,

Sk
− |Ln

: Ln −→ Ln−k.

The next result was obtained in [7] (see Theorem 2.4 and Corollary 2.6
therein) and shows that the action of both operators SΠ and S∗Π is extremely
transparent according to the decomposition

L2(Π) =
∞⊕

k=1

A2
(k)(Π)⊕

∞⊕

k=1

Ã2
(k)(Π).

In our approach it is just a straightforward corollary of Theorems 2.1, 3.1, and
Corollary 3.4.
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Theorem 3.5. For all admissible indices, we have

(SΠ)k |A2
(n)(Π)

: A2
(n)(Π) −→ A2

(n+k)(Π),

(SΠ)k | eA2
(n)(Π)

: Ã2
(n)(Π) −→ Ã2

(n−k)(Π),

(S∗Π)k | eA2
(n)(Π)

: Ã2
(n)(Π) −→ Ã2

(n+k)(Π),

(S∗Π)k |A2
(n)(Π)

: A2
(n)(Π) −→ A2

(n−k)(Π),

ker(SΠ)n = Ã2
n(Π), (Im (SΠ)n)⊥ = A2

n(Π),

ker(S∗Π)n = A2
n(Π), (Im (S∗Π)n)⊥ = Ã2

n(Π).

Corollary 3.6. Each true-n-analytic function ψ admits the following representa-
tion,

ψ = (SΠ)n−1ϕ,

where ϕ ∈ A2(Π).
Each true-n-anti-analytic function g admits the following representation,

g = (S∗Π)n−1f,

where f ∈ Ã2(Π).

We denote by BΠ,(n) and B̃Π,(n) the orthogonal projections of L2(Π) onto the
spaces A2

(n)(Π) and Ã2
(n)(Π), consisting of true-n-analytic and true-n-anti-analytic

functions respectively. Let BΠ,n and B̃Π,n be the orthogonal projections of L2(Π)
onto the spaces A2

n(Π) and Ã2
n(Π), consisting of n-analytic and n-anti-analytic

functions respectively.
We summarize now some important properties of the above projections in

terms of singular operators.

Theorem 3.7. For all admissible indices, we have

BΠ = I − SΠS∗Π,

B̃Π = I − S∗ΠSΠ,

BΠ,n = I − (SΠ)n(S∗Π)n,

B̃Π,n = I − (S∗Π)n(SΠ)n,

BΠ,(n) = (SΠ)n−1BΠ(S∗Π)n−1 = (SΠ)n−1(S∗Π)n−1 − (SΠ)n(S∗Π)n,

B̃Π,(n) = (S∗Π)n−1B̃Π(SΠ)n−1 = (S∗Π)n−1(SΠ)n−1 − (S∗Π)n(SΠ)n,

BΠ,(n+1) = SΠBΠ,(n)S
∗
Π,

B̃Π,(n+1) = S∗ΠB̃Π,(n)SΠ.

Proof. Follows directly from Theorems 2.1, 3.1, and Corollary 3.4. ¤
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Departamento de Matemáticas, CINVESTAV del I.P.N.,
Apartado Postal 14-740, 07000 México, D.F., México
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