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1. Introduction

In the paper we study the C∗-algebra generated by Toeplitz operators Ta with
piece-wise continuous symbols a acting on the Bergman space A2(D) on the unit
disk D in C (see Section 2 for exact definitions). Our aim here is to describe
explicitly each operator from this algebra and to characterize all Toeplitz operators
which belong to the algebra.

The first structural result on Toeplitz operator algebras is due to L. Coburn [5]
and goes back to early 1970s. It says, that the C∗-algebra T (C(D)) generated by

Toeplitz operators with symbols continuous on D is irreducible and contains the

entire ideal K of compact operators on A2(D). Every operator T ∈ T (C(D)) is of

the form

T = Ta + K ,

where a ∈ C(D) and K is a compact operator.
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The key property of Toeplitz operators behind this result is that the semicom-
mutator of two Toeplitz operators with continuous symbols [Ta, Tb) = TaTb − Tab

is compact.

The maximal class of symbols for which the above structural result remains
true was introduced and studied by K. Zhu [17]. This class is Q = V MO∂(D) ∩
L∞(D) and is the maximal C∗-subalgebra of L∞(D) having the compact semicom-
mutator property.

However, for piece-wise continuous symbols, the semicommutators of Toeplitz
operators are no longer compact in general. This immediately leads to a much
more complicated structure for the C∗-algebra generated by such operators. In-
deed, apart from the initial generators, the Toeplitz operators Ta with piece-wise
continuous symbols, the algebra contains now all elements of the form

p∑

k=1

qk∏

j=1

Taj,k
,

as well as the uniform limits of sequences of such elements.

We note that the description of the (Fredholm) symbol algebra for the C∗-
algebra generated by Toeplitz operators Ta with piece-wise continuous symbols
(see, for example, [13–15]) is well understood and known for a many years. At the
same time many important questions connected with the structure of the Toeplitz
operator algebra itself have remained unanswered since the very first work on this
subject. We list some of them in the following general setting.

Let A ∈ L∞(D) be a set (linear space or algebra) of initial generating sym-
bols. Denote by T (A) the C∗-algebra generated by all Toeplitz operators Ta with
symbols from A. The following questions are of great importance.

(i) Describe the (Fredholm) symbol algebra Sym T (A) = T (A)/T (A) ∩ K of
the algebra T (A), as well as the symbol homomorphism sym : T (A) →
Sym T (A); here K is the ideal of compact operators on A2(D).

(ii) Describe a canonical representation of elements forming T (A), thus clarifying
the structure of the algebra T (A).

(iii) Given an element symA from the symbol algebra Sym T (A), characterize an
operator A ∈ T (A) having this (Fredholm) symbol.

(iv) Characterize the Toeplitz operators Tb which belong to T (A), as well as the
variety of their possible symbols b.

In the paper we consider the case when A is a class of piece-wise continuous
symbols (defined in Section 2). As we already mentioned, the complete answer
to (i) is well known, while questions (ii)–(iv) remained unanswered. Our aim here
is to answer to these last questions.

We mention that an intensive study has been recently devoted to the ques-
tion of when the product of two Toeplitz operators is a Toeplitz operator. Not
pretending to be complete, we cite, for example, the papers [1–4, 8, 9]. This in-
teresting and important problem leads to a more general question: under what
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conditions will applications all of algebraic operations (summation, product, uni-

form limit) to Toeplitz operators produce a Toeplitz operator; which combinations

of which Toeplitz operators give Toeplitz operators? If we restrict ourselves to a
specific class of initial Toeplitz operators, then the last question becomes precisely
the fourth one from the above list.

2. Symbol class and operators

Let D be the unit disk on the complex plane. Consider L2(D) with the standard
Lebesgue plane measure dv(z) = dxdy, z = x + iy ∈ D, and its Bergman subspace
A2(D) which consists of all functions analytic in D. It is well known that the
orthogonal Bergman projection B of L2(D) onto A2(D) has the following form

(Bϕ)(z) =
1

π

∫

D

ϕ(ζ) dv(ζ)

(1 − zζ)2
.

Given a function a ∈ L∞, the Toeplitz operator Ta with symbol a is defined as
follows

Ta : ϕ ∈ A2(D) 7−→ B(aϕ) ∈ A2(D) .

In the paper we study Toeplitz operators with piece-wise continuous symbols
and the C∗-algebra generated by such operators. As was mentioned in [12], con-
sidering Toeplitz operators with piece-wise continuous symbols, it turns out that
neither the curves supporting the symbol discontinuities nor the number of such
curves meeting at a boundary point of discontinuity play any essential role for the
Toeplitz operator algebra studied. We can start from very different sets of symbols
and obtain exactly the same operator algebra as a result. Thus, without loss of
generality, we fix now a certain setup which is suitable for our needs.

We fix a finite number of distinct points T = {t1, . . . , tm} on the boundary γ
of the unit disk D, and let

δ = min
k 6=j

{|tk − tj |, 1} .

Denote by ℓk, k = 1, . . . , m, the part of the radius of D starting at tk and having
length δ/3; and let L =

⋃m
k=1 ℓk. We denote by PC(D, T ) the set (algebra) of all

piece-wise continuous functions on D which are continuous in D \ L and have one-
sided limit values at each point of L. In particular, every function a ∈ PC(D, T )
has at each point tk ∈ T two (different, in general) limit values:

a−(tk) = a(tk−0) = lim
γ∋t→tk, t≺tk

a(t) and a+(tk) = a(tk+0) = lim
γ∋t→tk, t≻tk

a(t) ,

the signs ± here correspond to the standard orientation of the boundary γ of D.

For each k = 1, . . . , m, denote by χk = χk(z) the characteristic function of
the half-disk obtained by cutting D by the diameter passing through tk ∈ T , and
such that χ+

k (tk) = 1, and thus χ−
k (tk) = 0.
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For each k = 1, . . . , m, we introduce two neighborhoods of the point tk:

V ′
k =

{
z ∈ D : |z − tk| <

δ

6

}
and V ′′

k =

{
z ∈ D : |z − tk| <

δ

3

}
,

and fix a continuous function vk = vk(z) : D → [0, 1] such that

vk|V ′

k
≡ 1 , vk|D\V ′′

k
≡ 0 .

For easy reference we summarize three well known facts in the theory of
Toeplitz operators in the next lemma.

Lemma 2.1. The following properties hold:

(i) let L0
∞(D) be the closure in L∞(D) of the set of all L∞-functions having com-

pact support in D; then for each function a ∈ L0
∞(D) the Toeplitz operator Ta

is compact;

(ii) for each pair of functions a ∈ L∞(D) and b ∈ C(D) the semi-commutator

[Ta, Tb) = TaTb − Tab is compact;

(iii) for each pair of functions a ∈ L∞(D) and b ∈ C(D) the commutator [Ta, Tb] =
TaTb − TbTa is compact.

We mention as well that for a, b ∈ PC(D, T ), the semi-commutator [Ta, Tb)
is not anymore compact, in general, while the commutator [Ta, Tb] remains to be
compact.

Using Lemma 2.1 it is easy to see that for any symbol a ∈ PC(D, T ), the
Toeplitz operator Ta admits the canonical representations

Ta = Tsa
+

m∑

k=1

Tvk
pa,k(Tχk

)Tvk
+ K

= Tsa
+

m∑

k=1

Tuk
pa,k(Tχk

) + K ′

= Tsa
+

m∑

k=1

pa,k(Tχk
)Tuk

+ K ′′ ,

where sa(z) is a continuous function on D such that the following restrictions on γ
coincide:

sa(z)|γ ≡
[
a(z) −

m∑

k=1

[
a−(tk) +

(
a+(tk) − a−(tk)

)
χk(z)

]
uk(z)

]

γ

,

and where

pa,k(x) = a−(tk)+
(
a+(tk)−a−(tk)

)
x = a−(tk)(1−x)+a+(tk)x , k = 1, . . . , m ,

are the first order polynomials in x, uk(z) = vk(z)2, and K, K ′, K ′′ are compact
operators.
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Indeed, by the second statement of the lemma, each right hand side operator
is a compact perturbation of the Toeplitz operator Tã, where

ã(z) = sa(z) +

m∑

k=1

[
a−(tk) +

(
a+(tk) − a−(tk)

)
χk(z)

]
uk(z) .

We note that each function χk(z)uk(z), k = 1, . . . , m, belongs to PC(D, T ) and
that sa(tk) = 0 for all tk ∈ T . Then the difference a(z) − ã(z) is continuous at
every point of the boundary γ and [a(z)− ã(z)]γ ≡ 0. Thus by the first statement
of the lemma the difference Ta − Tã is compact.

Such representations are essentially unique in the sense that the values of
sa(z) on γ are uniquely defined and if the function sa(z) is changed for another
one with the same boundary values, the result will be altered at most by a compact
operator.

3. Algebra T (PC(D, T ))

We denote by T (PC(D, T )) the C∗-algebra generated by all Toeplitz operators Ta

whose symbols a belong to PC(D, T ). It is well known that this algebra is irre-
ducible and contains the entire ideal K of all compact on A2(D) operators.

We give now the description (see, for details, [13–15]) of the (Fredholm)
symbol algebra Sym T (PC(D, T )) = T (PC(D, T ))/K of the algebra T (PC(D, T )).

Let γ̂ be the boundary γ cut at the points tk ∈ T . The pair of points of γ̂
which correspond to the point tk ∈ T , k = 1, . . . , m, will be denoted by tk − 0 and
tk + 0, following the positive orientation of γ. Let X =

⊔m
k=1 ∆k be the disjoint

union of segments ∆k = [0, 1]. Denote by Γ the union γ̂ ∪ X with the following
point identification

tk − 0 ≡ 0k , tk + 0 ≡ 1k ,

where tk ± 0 ∈ γ̂, 0k and 1k are the boundary points of ∆k, k = 1, . . . , m.

Theorem 3.1. The symbol algebra Sym T (PC(D, T )) = T (PC(D, T ))/K of the

algebra T (PC(D, T )) is isomorphic and isometric to the algebra C(Γ). The homo-

morphism

sym : T
(
PC(D, T )

)
−→ Sym T

(
PC(D, T )

) ∼= C(Γ)

is generated by the mapping of generators of T (PC(D, T ))

sym : Ta 7−→
{

a(t), t ∈ γ̂
a(tk − 0)(1 − x) + a(tk + 0)x , x ∈ [0, 1]

,

where tk ∈ T , k = 1, 2, . . . ,m.

The proof of the theorem is based on the standard local principle (see, for
example, [6, 10,11]), use the localization by the points of γ and the description of

each local algebra T̂ (t), t ∈ γ.
In what follows we will use two different descriptions of the local algebras

T̂ (tk), for tk ∈ T ⊂ γ, which we now proceed to describe.
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As a Toeplitz operator Ta with symbol continuous at the point tk is locally
equivalent at the point tk to the scalar operator a(tk)I = Ta(tk), the local algebra

T̂ (tk) is the C∗-algebra with identity generated by the single self-adjoint element
Tχk

, and thus is isomorphic and isometric to C(sp Tχk
). It is well known that

sp Tχk
= [0, 1]. Thus as the first description of the local algebra T̂ (tk) we have:

The local algebra T̂ (tk) is isomorphic and isometric to C[0, 1], and the iso-

morphism

π′
tk

: T̂ (tk) −→ C[0, 1]

is generated by the mapping π′
tk

: Tχk
7→ x, where x ∈ ∆k = [0, 1].

For the second description we construct a unitary operator directly reducing
Tχk

to a multiplication operator.
Let Π be the upper half-plane in C. Introduce the Möbius transformation

αk(z) = i
tk − z

z + tk
,

which maps the unit disk D onto Π, sending the point tk to 0 and the opposite
point −tk to ∞. We introduce the space L2(Π), with the usual Lebesgue plane
measure, and its Bergman subspace A2(Π) which consists of all functions analytic
in Π. Then

(Vkϕ)(z) = − 2itk
(z + tk)2

ϕ

(
i
tk − z

z + tk

)
(3.1)

is obviously a unitary operator both from L2(Π) onto L2(D), and from A2(Π) onto
A2(D), and its inverse (and adjoint) has the form

(V −1
k ϕ)(w) = − 2itk

(w + i)2
ϕ

(
tk

i − w

w + i

)
.

It is a simple calculation to check that

VkTχk
V −1

k = Tχ+
,

where χ+ is the characteristic function of the right quarter-plane in Π.

We denote by L
{0,π}
∞ (0, π) the C∗-subalgebra of L∞(0, π) of all functions

having limits at the points 0 and π. And let H(L
{0,π}
∞ (0, π)) be the algebra which

consists of all homogeneous functions of zero order on the upper half-plane whose
restrictions onto the upper half of the unit circle (parameterized by θ ∈ [0, π])

belong to L
{0,π}
∞ (0, π). Further let T (H(L

{0,π}
∞ (0, π))) be the C∗-algebra generated

by all Toeplitz operators Ta with symbols a ∈ H(L
{0,π}
∞ (0, π)).

The function χ+ obviously belongs to H(L
{0,π}
∞ (0, π)) and thus Tχ+

∈
T (H(L

{0,π}
∞ (0, π))). Moreover, as shown in [12], the Toeplitz operator Tχ+

gen-

erates the algebra T (H(L
{0,π}
∞ (0, π))).

The exact result is as follows.
Passing to polar coordinates on the upper half-plane Π we have

L2(Π) = L2(R+, rdr) ⊗ L2

(
[0, π], dθ

)
= L2(R+, rdr) ⊗ L2(0, π) .
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We introduce (see [16]) two operators: the unitary operator

U = M ⊗ I : L2(R+, rdr) ⊗ L2(0, π) −→ L2(R) ⊗ L2(0, π) ,

where the Mellin transform M : L2(R+, rdr) −→ L2(R) is given by

(Mψ)(λ) =
1√
2π

∫

R+

r−iλ ψ(r) dr ,

and the isometric imbedding R0 : L2(R) −→ A2
1 ⊂ L2(R × [0, π]), which is given

by

(R0f)(λ, θ) = f(λ) ·
√

2λ

1 − e−2πλ
e−(λ+i)θ .

The adjoint operator R∗
0 : L2(R × [0, π]) −→ L2(R) has the form

(R∗
0ψ)(λ) =

√
2λ

1 − e−2πλ

∫ π

0

ψ(λ, θ) e−(λ−i)θ dθ .

Now the operator R = R∗
0U maps the space L2(Π) onto L2(R), and its restriction

R|A2(Π) : A2(Π) −→ L2(R)

is an isometric isomorphism. The adjoint operator

R∗ = U∗R0 : L2(R) −→ A2(Π) ⊂ L2(Π)

is an isometric isomorphism of L2(R) onto the Bergman subspace A2(Π) of the
space L2(Π).

Theorem 3.2 ([16]). Let a = a(θ) ∈ H(L
{0,π}
∞ (0, π)). Then the Toeplitz oper-

ator Ta, acting on A2(Π), is unitary equivalent to the multiplication operator

γaI = R TaR∗, acting on L2(R). The function γa(λ) is given by

γa(λ) =
2λ

1 − e−2πλ

∫ π

0

a(θ) e−2λθ dθ , λ ∈ R , (3.2)

and belongs to C(R), where R = R ∪ {−∞} ∪ {+∞} is the two-point compactifi-

cation of R.

In particular, for a = χ+, we have (see [12])

γχ+
(λ) =

1

e−πλ + 1
, λ ∈ R ,

and

Tχ+
= R∗γχ+

(λ)R .

Theorem 3.3 ([12]). The C∗-algebra with identity generated by Tχ+
coinsides with

the algebra T (H(L
{0,π}
∞ (0, π))) and is isomorphic and isometric to C(R). The iso-

morphism

π+ : T
(
H

(
L{0,π}
∞ (0, π)

))
−→ C(R)

is generated by the mapping π+ : Tχ+
7−→ γχ+

(λ).
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To obtain the second description of the local algebra T̂ (tk) consider the uni-
tary operator Uk = R Vk, and note that

UkTχk
U−1

k = γχ+
(λ) or Tχk

= U−1
k γχ+

(λ)Uk . (3.3)

Thus we have: The local algebra T̂ (tk) is isomorphic and isometric to C(R) and

the isomorphism

π′′
tk

: T̂ (tk) −→ C(R)

is generated by the mapping π′′
tk

: Tχk
7→ γχ+

(λ), where λ ∈ R.

We summarize the above in the next proposition.

Proposition 3.4. For each point tk ∈ T , the local algebra T̂ (tk) consists of all

operators of the form f(Tχk
), where f ∈ C[0, 1]. Each such operator admits the

representation

f(Tχk
) = U−1

k f
(
γχ+

(λ)
)
Uk .

4. Operators of the algebra T (PC(D, T ))

As has been already mentioned, the algebra T (PC(D, T )), apart from its initial
generators Ta with a ∈ PC(D, T ), contains all elements of the form

p∑

k=1

qk∏

j=1

Taj,k
, (4.1)

as well as the uniform limits of sequences of such elements. Our aim here is to
characterize each operator from the algebra T (PC(D, T )) up to a compact sum-
mand.

We start with the following lemma.

Lemma 4.1. For each n ∈ N and each k = 1, . . . , m, there is a function sn,k =

sn,k(z) ∈ C(D) and a compact operator Kn,k such that

(Tvk
Tχk

Tvk
)
n

= Tvk
Tn

χk
Tvk

+ Tsn,k
+ Kn,k .

Proof. We have obviously

(Tvk
Tχk

Tvk
)
n

= Tvn
k
Tn

χk
Tvn

k
+ K ′ ,

Tvk
Tn

χk
Tvk

=
(
T

v
1/n
k

Tχk
T

v
1/n
k

)n
+ K ′′ ,

where K ′ and K ′′ are compact operators. Thus both operators Tvn
k
Tn

χk
Tvn

k
and

Tvk
Tn

χk
Tvk

belong to the algebra T (PC(D, T )). Calculating their symbols we have
that

sym
(
Tvn

k
Tn

χk
Tvn

k
− Tvk

Tn
χk

Tvk

)
= sn,k(t) ,

where the continuous function sn,k(t) on γ has the form

sn,k(t) =

{ [
v2n

k (t) − v2
k(t)

]
χk(t) , t ∈ γ̂ \

(
V ′

k ∪ (D \ V ′′
k )

)
,

0 , t ∈ γ̂ ∩
(
V ′

k ∪ (D \ V ′′
k )

)
.
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which is a continuous function on γ. Extending sn,k(t) to a continuous function

on D and returning from symbols to operators we obtain the desired property. ¤

Corollary 4.2. For every polynomial p(x) and each k = 1, . . . , m, the operator

Ap,k = Tvk
p(Tχk

)Tvk
belongs to the algebra T (PC(D, T )), and

(sym Ap,k)|∆k
= p(x) , x ∈ [0, 1] .

Corollary 4.3. Each operator A of the form (4.1) admits the canonical represen-

tation

A =

p∑

i=1

qi∏

j=1

Tai,j
= TsA

+

m∑

k=1

Tvk
pA,k(Tχk

)Tvk
+ KA ,

where sA = sA(z) ∈ C(D), pA,k = pA,k(x), k = 1, . . . , m, are polynomials, and KA

is a compact operator.

Lemma 4.4. Let f ∈ C[0, 1]. Then for each k = 1, . . . , m the operator Af,k =

Tvk
f(Tχk

)Tvk
belongs to the algebra T (PC(D, T )), and

(sym Af,k)|∆k
= f(x) , x ∈ [0, 1] .

Proof. Recall that the operator Tχk
is self-adjoint and its spectrum is equal to

[0, 1]. Let {pn(x)}n∈N be a sequence of polynomials which converges uniformly on
[0, 1] to the function f(x). Then by the standard functional calculus in a C∗-algebra
we have

‖pn(Tχk
) − f(Tχk

)‖ = sup
x∈[0,1]

|pn(x) − f(x)| ,

and thus the operator Af,k is the uniform limit of the sequence {Tvk
pn(Tχk

)Tvk
}n∈N

of elements of the algebra T (PC(D, T )).
Finally, the restriction (symAf,k)|∆k

coincides with the uniform limit of the
restrictions (sym Tvk

pn(Tχk
)Tvk

)|∆k
= pn(x), x ∈ [0, 1], thus giving the desired

result. ¤

The next theorem starts the characterization of operators from the algebra
T (PC(D, T )) representing them in certain canonical forms.

Theorem 4.5. Every operator A ∈ T (PC(D, T )) admits the canonical representa-

tions

A = TsA
+

m∑

k=1

Tvk
fA,k(Tχk

)Tvk
+ K

= TsA
+

m∑

k=1

Tuk
fA,k(Tχk

) + K ′

= TsA
+

m∑

k=1

fA,k(Tχk
)Tuk

+ K ′′ ,

where sA(z) is a continuous function on D, uk(z) = vk(z)2, fA,k(x), k = 1, . . . , m,

are continuous functions on [0, 1], and K, K ′, K ′′ are compact operators.
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Before we pass to the proof, we note that such representations have already
been obtained in Section 2 for the generators Ta, where a ∈ PC(D, T ), of the
algebra A ∈ T (PC(D, T )).

As in Section 2, these representations are essentially unique in the sense that
the values of sA(z) on γ and the functions fA,k(x) are uniquely defined by the
operator A, and if the function sA(z) is changed for another one with the same
boundary values, the result will be altered at most by a compact operator.

Proof. We will show the first representation only; the other two follow from the
fact that operators from the algebra T (PC(D, T )) commute modulo a compact
operator.

Hence, given an operator A ∈ T (PC(D, T )), we introduce the functions
fA,k(x) ∈ C[0, 1], k = 1, . . . , m, by

fA,k(x) = (symA)|∆k
, x ∈ [0, 1] .

Then the symbol of the operator A −
∑m

k=1 Tvk
fA,k(Tχk

)Tvk
has the form

sym

(
A −

m∑

k=1

Tvk
fA,k(Tχk

)Tvk

)
=

{
sA(t) t ∈ γ̂
0 , x ∈ ∆k , k = 1, . . . m

,

where

sA(t) = (sym A)(t) −
m∑

k=1

v2
k(t)

[
fA,k(0)

(
1 − χk(t)

)
+ fA,k(1)χk(t)

]

is a continuous function on γ, and such that sA(tk) = 0 for all tk ∈ T .

To finish the proof we extend sA to a continuous function on D and return
from symbols to operators. ¤

Theorem 4.5 and Proposition 3.4 lead to the next characterization of elements
of the algebra T (PC(D, T )).

Corollary 4.6. Every operator A ∈ T (PC(D, T )) admits the representations

A = TsA
+

m∑

k=1

Tvk
U−1

k fA,k

(
γχ+

(λ)
)
UkTvk

+ K

= TsA
+

m∑

k=1

Tuk
U−1

k fA,k

(
γχ+

(λ)
)
Uk + K ′

= TsA
+

m∑

k=1

U−1
k fA,k

(
γχ+

(λ)
)
UkTuk

+ K ′′ ,

where sA(z) is a continuous function on D whose restriction to γ is given by

sA(t) = (sym A)(t) −
m∑

k=1

uk(t)
[
fA,k(0)

(
1 − χk(t)

)
+ fA,k(1)χk(t)

]
,



Vol. 2 (2008) Toeplitz Operators with Piece-wise Continuous Symbols 535

where fA,k(x) = (symA)|∆k
, the operators Uk are defined in (3.3), uk(x) = v2

k(x),
k = 1, . . . , m, and K, K ′, K ′′ are compact operators.

5. Toeplitz operators of the algebra T (PC(D, T ))

In this section we show that, apart from the initial generators, the C∗-algebra
T (PC(D, T )) contains many other (non compact) Toeplitz operators which are
drastically different from the initial generators. By Toeplitz operator here we al-
ways mean a Toeplitz operator with bounded measurable symbol.

Let A be an operator of the algebra T (PC(D, T )). By Theorem 4.5 it admits
the canonical representation

A = TsA
+

m∑

k=1

Tvk
fA,k(Tχk

)Tvk
+ K .

Lemma 5.1. The operator A is a compact perturbation of a Toeplitz operator if and

only if each operator Tvk
fA,k(Tχk

)Tvk
, k = 1, . . . , m, is a compact perturbation of

a Toeplitz operator.

Proof. The “if” part is obvious. To prove the “only if” part, we assume that

A = Ta + K1 for some a ∈ L∞(D). Using vk in place of v
1/2
k in Theorem 4.5 we

represent the operator A in its second canonical form

A = Ts′

A
+

m∑

k=1

Tvk
fA,k(Tχk

) + K ′ .

Then, multiplying by Tvk
and using statement (ii) of Lemma 2.1, we have

ATvk
= Ts′

Avk
+ Tvk

fA,k(Tχk
)Tvk

+ K2 = Tavk
+ K3 ,

or

Tvk
fA,k(Tχk

)Tvk
= Tavk−s′

Avk
+ (K3 − K2) . ¤

The result of Lemma 5.1 obviously remains true if we change the operators
Tvk

fA,k(Tχk
)Tvk

for either Tuk
fA,k(Tχk

), or fA,k(Tχk
)Tuk

, k = 1, . . . , m.

Theorem 5.2. For any k = 1, . . . , m, the operator Tvk
fA,k(Tχk

)Tvk
is a compact

perturbation of a Toeplitz operator if and only if the operator fA,k(Tχk
) is a compact

perturbation of a Toeplitz operator.

Proof. The “if” part is again obvious. To prove the “only if”part, we first reduce
the problem to the real valued function fA,k. To this end we assume that

Tvk
fA,k(Tχk

)Tvk
= Ta + K1 , for some a ∈ L∞(D) .

Passing to adjoint operators and taking into account that the functions vk and χk

are real valued, we have
(
Tvk

fA,k(Tχk
)Tvk

)∗
= Tvk

fA,k(Tχk
)Tvk

= Ta + K2 .
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Summing up these equalities we have that Tvk
(RefA,k)(Tχk

)Tvk
is a compact

perturbation of a Toeplitz operator. Subtracting the equalities, we have that
Tvk

(ImfA,k)(Tχk
)Tvk

is a compact perturbation of a Toeplitz operator as well.
That is, the operator Tvk

fA,k(Tχk
)Tvk

is a compact perturbation of a Toeplitz
operator if and only if both Tvk

(RefA,k)(Tχk
)Tvk

and Tvk
(ImfA,k)(Tχk

)Tvk
are

compact perturbations of Toeplitz operators. Thus proving the part “only if” we
can assume that the function fA,k is real valued, moreover we can consider the
operator fA,k(Tχk

)Tuk
instead of Tvk

fA,k(Tχk
)Tvk

.
We note as well that without loss of generality we may assume in what follows

that tk = i ∈ γ, because otherwise, using an appropriate rotation, we come to the
unitary equivalent operator with tk = i ∈ γ. Hence, let tk = i and let fA,k be a
real valued function such that fA,k(Tχk

)Tuk
= Ta + K1 for some a ∈ L∞(D).

We introduce now the operator

(Zϕ)(z) = ϕ(z) ,

which is obviously unitary on both L2(D) and A2(D). Then, as is easy to see,

ZfA,k(Tχk(z))Tuk(z)Z = fA,k(Tχk(z))Tuk(z) = T
a(z)

+ K2 ,

and thus

fA,k(Tχk(z))
(
Tuk(z) + Tuk(z)

)
= Tb + K3 ,

where b(z) = a(z) + a(z), or

fA,k(Tχk(z)) = fA,k(Tχk(z))
(
I − Tuk(z) − Tuk(z)

)
+ Tb + K3 .

The operator fA,k(Tχk(z))
(
I − Tuk(z) − Tuk(z)

)
obviously belongs to the algebra

T (PC(D, T ′)) with T ′ = {i,−i} (that is, we have only two points of symbol dis-
continuity: t1 = i and t2 = −i) and its symbol is a continuous function on γ
(that is, a continuous function on Γ which is constant on each ∆j , j = 1, 2)

and identically equals to 0 at γ ∩ (V ′
k ∪ V ′

k) = γ ∩ (V ′
1 ∪ V ′

2). Thus the opera-

tor fA,k(Tχk(z))
(
I − Tuk(z) − Tuk(z)

)
is a compact perturbation of some Toeplitz

operator Tc with continuous symbol c, and thus we have finally

fA,k(Tχk
) = Tb+c + K3 . ¤

By Proposition 3.4 every operator of the form f(Tχk
), with f ∈ C[0, 1],

is unitary equivalent to the multiplication operator (f ◦ γ+)I. That is, the C∗-
algebra generated by (and consisting of) all such operators intersects the ideal K
of compact operators in just the zero operator. This implies that an operator of
the form f(Tχk

) is a compact perturbation of a Toeplitz operator if and only if it
is a Toeplitz operator itself.

Summarizing the above we come to the main result of the section.

Theorem 5.3. An operator A ∈ T (PC(D, T )) is a compact perturbation of a

Toeplitz operator if and only if every operator fA,k(Tχk
) is a Toeplitz operator,

where fA,k = (sym A)|∆k
and k = 1, . . . , m.
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The next theorem gives the description of the symbol of a Toeplitz operator
for the case when A ∈ T (PC(D, T )) is of the form A = Ta + K.

Theorem 5.4. Let A = Ta + K. Thus all the operators (sym A)|∆k
(Tχk

), where

k = 1, . . . , m, are Toeplitz, i.e., (sym A)|∆k
(Tχk

) = Tak
for some ak ∈ L∞(D).

Then the symbol a of the operator Ta is given by

a(z) = sA(z) +

m∑

k=1

ak(z)v2
k(z) ,

where sA(z) is a continuous function on D whose restriction to γ coincides with

sA(t) = (sym A)(t) −
m∑

k=1

[
(sym A)|∆k

(0)
(
1 − χk(t)

)
+ (sym A)|∆k

(1)χk(t)
]
v2

k(t) .

Proof. Follows directly from Corollary 4.6. ¤

Note that the operators f(Tχk
) and f(Tχ+

), being unitary equivalent, can be
Toeplitz operators only simultaneously. That is, the question whether an operator

A ∈ T (PC(D, T )) is a compact perturbation of a Toeplitz operator reduces to

the description of the Toeplitz operators in the algebra T (H(L
{0,π}
∞ (0, π))). By

Theorem 3.3 this algebra can be generated by T+ alone, and thus consists of all
operators of the form f(Tχ+

), where f ∈ C[0, 1].

The known result on Toeplitz operators in the algebra T (H(L
{0,π}
∞ (0, π))) is

contained in the next proposition.

Proposition 5.5 ([12]). For any symbol a = a(θ) ∈ H(L
{0,π}
∞ (0, π)), the Toeplitz

operator Ta belongs to the algebra T (H(L
{0,π}
∞ (0, π))), and is the following function

of the operator Tχ+
,

Ta = fa(Tχ+
) ,

where

fa(x) =
2x2

π

ln(1 − x) − lnx

(1 − x) − x

∫ π

0

a(θ)

(
1 − x

x

) 2θ
π

dθ .

For a number of specific examples of symbols a = a(θ) ∈ H(L
{0,π}
∞ (0, π)) and

corresponding functions fa ∈ C[0, 1], see [12].

Corollary 5.6. For each function a = a(w) = a(eiθ) ∈ H(L
{0,π}
∞ (0, π)), where

w = reiθ ∈ Π, and each k = 1, . . . , m, the Toeplitz operator

Tbk
= VkTaV −1

k

belongs to the algebra T (PC(D, {tk,−tk}) and has the symbol

bk(z) = a
(
αk(z)

)
= a

(
i
tk − z

z + tk

)
.

Here the operator Vk is given by (3.1).
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We can describe now the symbols of a wide variety of Toeplitz operators
in T (PC(D, T )) which are drastically different from the initial generators. All
of them have at each point of discontinuity tk ∈ T , in general, infinitely many
limit values reached by the hypercycles starting at tk (i.e. the images under the
Möbius transformation α−1

k of rays on the upper half-plane Π starting at origin)

and parameterized by functions from L
{0,π}
∞ (0, π). We note that each of these

(bounded) symbols b have one-sided limit values at the point tk and these limit
values coincide with the values of symTb at the endpoints of ∆k:

b(tk − 0) = (sym Tb)(0k) , b(tk + 0) = (sym Tb)(1k) .

Corollary 5.7. For every function ak = ak(w) = ak(eiθ) ∈ H(L
{0,π}
∞ (0, π)), where

w = reiθ ∈ Π, k = 1, . . . , m, and every function s(z) ∈ L∞(D) having limits at all

points of γ and such that s|γ ∈ C(γ), the Toeplitz operator Tb with symbol

b(z) = s(z) +

m∑

k=1

ak

(
i
tk − z

z + tk

)
uk(x)

belongs to the algebra T (PC(D, T )).

6. More Toeplitz operators

In the previous section we reduced the description of Toeplitz operators in the al-

gebra T (PC(D, T )) to the description of Toeplitz operators in T (H(L
{0,π}
∞ (0, π))).

We show now that the algebra T (H(L
{0,π}
∞ (0, π))) contains many more Toeplitz

operators than described by Proposition 5.5. Indeed, as we will see, it also contains
(bounded) Toeplitz operators whose generally unbounded symbols a(θ) may not
have limits at the endpoints 0 and π of the segment [0, π].

We recall that the Toeplitz operator Ta with symbol a(θ) belongs to the

algebra T (H(L
{0,π}
∞ (0, π))) if and only if the function γa(λ), defined by (3.2),

belongs to C(R).

Remark 6.1. Given a symbol a(θ), in what follows we will study the behavior of
the corresponding function γa(λ) when λ → ±∞. It is clear that the behavior of
a(θ) near the point 0, or π, determines the behavior of γa(λ) near the point +∞,
or −∞, respectively. The equality

γa(θ)(−λ) =
−2λ

1 − e2πλ

∫ π

0

a(θ)e2λθdθ =
−2λ

1 − e2πλ

∫ π

0

a(π − θ)e2λ(π−θ)dθ

=
2λ

1 − e−2πλ

∫ π

0

a(π − θ)e−2λθdθ = γa(π−θ)(λ)

permits us to reduce this study to only one case, say considering the symbol a(θ)
in a neighborhood of 0 and γa(λ) in a neighborhood of +∞.
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We continue to consider the homogeneous symbols of zero order on the upper
half-plane Π identifying them with functions a(θ), where θ ∈ [0, π].

For any L1-symbol a(θ) we define the following averaging functions, which
correspond to the endpoints of [0, π],

C(1)
a (θ) =

∫ θ

0

a(u)du , D(1)
a (θ) =

∫ π

π−θ

a(u)du

and

C(p)
a (θ) =

∫ θ

0

C(p−1)
a (u)du , D(p)

a (θ) =

∫ π

π−θ

D(p−1)
a (u)du ,

for each p = 2, 3, . . . .
The next theorem gives the conditions on the behavior of L1-symbols near

endpoints 0 and π guaranteeing that the corresponding Toeplitz operators belong

to the algebra T (H(L
{0,π}
∞ (0, π))).

Theorem 6.2. Let a(θ) ∈ L1(0, π) and suppose that for some p, q ∈ N,

lim
θ→0

θ−pC(p)
a (θ) = cp (∈ C) and lim

θ→π
θ−q D(q)

a (θ) = dq (∈ C) . (6.1)

Then γa(λ) ∈ C(R).

Proof. Consider first the case when p = 1 and λ → +∞. Integrating by parts we
have

γa(λ) =
2λ

1 − e−2πλ

∫ π

0

e−2λθ dC(1)
a (θ)

=
2λ e−2πλ

1 − e−2πλ
C(1)

a (π) +
4λ2

1 − e−2πλ

∫ π

0

C(1)
a (θ) e−2λθ dθ .

Taking into account the first equality in (6.1), we have

γa(λ) =
2λ e−2πλ

1 − e−2πλ
C(1)

a (π)

+
4λ2 c1

1 − e−2πλ

∫ π

0

θ e−2λθ dθ +
4λ2 c1

1 − e−2πλ

∫ π

0

α(θ)θ e−2λθ dθ

:= I1(λ) + I2(λ) + I3(λ) ,

where limθ→0 α(θ) = 0.
It is obvious that for sufficiently large λ, |I1(λ)| < ε. Then,

I2(λ) = c1 −
2πλ e−2πλ

1 − e−2πλ
,

and thus for sufficiently large λ, |I2(λ) − c1| < ε.
To estimate I3, we select a sufficiently small δ to guarantee that

sup
θ∈(0,δ)

|α(θ)| < ε .
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Then

|I3(λ)| ≤ const λ2

(∫ δ

0

α(θ)θ e−2λθ dθ +

∫ π

δ

θ e−2λθ dθ

)

≤ const

(
λ2ε

∫ δ

0

θ e−2λθ dθ + λ2e−2λδ

∫ π

δ

θ dθ

)

≤ const
(
ε + λ2e−2λδ

)
.

That is, for sufficiently large λ we have as well that |I3(λ)| < const ε, and the
above three inequalities yield

lim
λ→+∞

γa(λ) = c1 .

The case when q = 1 and λ → −∞ follows from Remark 6.1 and the case
just considered. The continuity of γa(λ) in all interior points of [0, π] is obvious.

The proof for the cases when p > 1 and q > 1 is quite analogous and requires
repeated (p-times, or q-times) integration by parts. ¤

We give now several examples of symbols bounded or unbounded near the
endpoints of [0, 1] and which oscillate approaching the endpoints.

Example. Let

a(θ) = θ−β sin θ−α , where 0 ≤ β < 1 , α > 0 . (6.2)

This symbol oscillates near 0, is bounded when β = 0, is unbounded for all β ∈
(0, 1), and is continuous at the another endpoint π for all admissible values of the
parameters. That is we need to analyze the behavior of a(θ) near the point 0 only.

According to calculations of Example 4.4 in [7] we have that

C(1)
a (θ) =

θα−β+1

α
cos θ−α + O(θ2α−β+1) , when θ → 0 . (6.3)

Thus, if α > β then

lim
θ→0

θ−1 C(1)
a (θ) = 0 ,

and the first condition in (6.1) is satisfied for p = 1.
Further, if α ≤ β we need to consider the averages of the higher order. Indeed,

formula (6.3) implies that

C(2)
a (θ) = O(θ2α−β+2) , when θ → 0

and, more generally, that

C(p)
a (θ) = O(θpα−β+p) , when θ → 0 .

Thus for each α ≤ β there is p0 ∈ N such that p0α > β, and thus the first condition
in (6.1) is satisfied for p = p0.

That is, the Toeplitz operator Ta with symbol (6.2) does belong to the algebra

T (H(L
{0,π}
∞ (0, π))) for all admissible values of the parameters.
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Example. Let

a(θ) = (sin θ)−β sin (sin θ)−α , where 0 ≤ β < 1 , α > 0 . (6.4)

This symbol oscillates near both endpoints of [0, 1], is bounded when β = 0, and
is unbounded for all β ∈ (0, 1).

Analogously to the previous example one can show that if p0α > β then both
conditions in (6.1) are satisfied for p = p0, and thus the Toeplitz operator Ta with

symbol (6.4) belongs to the algebra T (H(L
{0,π}
∞ (0, π))) as well.

We show now that not all oscillating symbols, even bounded and continuous,

generate the Toeplitz operators which belong to T (H(L
{0,π}
∞ (0, π))).

Example. Let

a(θ) = θi = ei ln θ . (6.5)

As the symbol oscillates near the endpoint 0, we examine the behavior of γa(λ)
when λ → +∞. Changing the variable t = 2λθ, we have

γa(λ) =
2λ

1 − e−2πλ

∫ π

0

θi e−2λθ dθ

=
(2λ)−i

1 − e−2πλ

∫ 2πλ

0

ti e−t dt

=
(2λ)−i

1 − e−2πλ

(
Γ(i + 1) −

∫ ∞

2πλ

ti e−t dt

)
.

Since ∣∣∣∣∣

∫ 2πλ

0

ti e−t dt

∣∣∣∣∣ ≤
∫ 2πλ

0

e−t dt ≤ e−2πλ

we have that

γa(λ) = (2λ)−i
(
Γ(i + 1) + O(e−2πλ)

)
.

where limλ→+∞ o(λ) = 0.
That is, the function γa(λ) oscillates and has no limit when λ → +∞, and

thus the Toeplitz operator Ta with symbol (6.5) does not belong to the algebra

T (H(L
{0,π}
∞ (0, π))).

The symbol

a(θ) = (sin θ)i

provides us with an example for which the corresponding function γa(λ) does not
have limits both when λ → +∞ and λ → −∞.

To give a characterization of Toeplitz operators in T (H(L
{0,π}
∞ (0, π))) which

have L∞-symbols we need the following auxiliary result.

Theorem 6.3. Let a(θ) ∈ L∞(0, π). Then for each real valued monotone function

q(λ) such that

lim
λ→±∞

q(λ) = ±∞ and lim
λ→±∞

q(λ)

λ
= 0 (6.6)
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we have

lim
λ→±∞

(
γa

(
λ + q(λ)

)
− γa(λ)

)
= 0 .

Proof. We calculate

γa

(
λ + q(λ)

)
− γa(λ) =

2
(
λ + q(λ)

)

1 − e−2π(λ+q(λ))

∫ π

0

a(θ)e−2(λ+q(λ))θ dθ

− 2λ

1 − e−2πλ

∫ π

0

a(θ)e−2λθ dθ

= − 2
(
λ + q(λ)

)

1 − e−2π(λ+q(λ))

∫ π

0

a(θ)e−2λθ
(
1 − e−2q(λ)θ

)
dθ

+

(
2
(
λ + q(λ)

)

1 − e−2π(λ+q(λ))
− 2λ

1 − e−2πλ

)∫ π

0

a(θ)e−2λθ dθ

= I1(λ) + I2(λ) .

Let λ → +∞, we introduce σ(λ) = (λ q(λ))−1/2 and start estimating I1(λ)

|I1(λ)| ≤ const

(
λ

∫ σ(λ)

0

|a(θ)|e−2λθ
∣∣1 − e−2q(λ)θ

∣∣ dθ

+ λ

∫ π

σ(λ)

|a(θ)|e−2λθ dθ

)

≤ const

(
λ|q(λ)|

∫ σ(λ)

0

θ e−2λθ dθ + λ

∫ π

σ(λ)

e−2λθ dθ

)

≤ const

(
λ|q(λ)|

(
−σ(λ) e−2λ σ(λ)

2λ
+

1 − e−2λ σ(λ)

4λ2

)

− λ

(
e−2λπ − e−2λ σ(λ)

2λ

))

≤ const

((
q(λ)

λ

)1/2

· e−2( λ
q(λ) )

1/2

+
q(λ)

λ
+ e−2πλ + e−2( λ

q(λ) )
1/2

)
.

By the second condition in (6.6), for each ε > 0 and corresponding sufficiently
large λ, we have

|I1(λ)| < ε .

We estimate now I2(λ):

|I2(λ)| ≤ const |q(λ)|
∫ π

0

|a(θ)| e−2λθ dθ

≤ const |q(λ)|
∫ π

0

e−2λθ dθ ≤ const
q(λ)

λ
.
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That is, for sufficiently large λ we have as well that

|I2(λ)| < ε ,

and thus

lim
λ→+∞

(
γa

(
λ + q(λ)

)
− γa(λ)

)
= 0 .

The case when λ → −∞ follows from Remark 6.1 and the above arguments. ¤

Given any a(θ) ∈ L∞(0, π), we introduce now two modified averaging func-
tions which correspond to the endpoints of [0, π]

C ′
a(θ) =

2

1 − e−2θ

∫ θ

0

a(u) du and D′
a(θ) =

2

1 − e−2θ

∫ π

π−θ

a(u) du . (6.7)

We note that these functions are connected with the old averages by

C ′
a(θ) =

2

1 − e−2θ
C(1)

a (θ) and D′
a(θ) =

2

1 − e−2θ
D(1)

a (θ) .

Both functions C ′
a(θ) and D′

a(θ) are bounded, moreover C ′
a(θ) ∈ C(0, π]

and D′
a(θ) ∈ C[0, π). That is, to check whether Toeplitz operators with symbols

C ′
a(θ) and D′

a(θ) belong to the algebra T (H(L
{0,π}
∞ (0, π))), one needs to study the

behavior of these function near a single point only, 0 for C ′
a(θ) and π for D′

a(θ).
The next theorem shows that the study of general L∞-symbols is equivalent

to the study of these two much more easily treatable functions.

Theorem 6.4. Let a(θ) ∈ L∞(0, π). Then γa(λ) ∈ C(R) if and only if

γC′

a
(λ) ∈ C(R) and γD′

a
(λ) ∈ C(R) . (6.8)

Proof. Let γa(λ) ∈ C(R). Consider first the case when λ → +∞. We will integrate
by parts in

γC′

a
(λ) =

2λ

1 − e2πλ

∫ π

0

(
2

1 − e−2θ

∫ θ

0

a(u) du

)
e−2λθ dθ .

Before doing so we mention that

Aλ(θ) :=

∫ ∞

θ

e−2λu

1 − e−2u
du =

∫ ∞

θ

∞∑

n=0

e−2(λ+n)u du =
∞∑

n=0

e−2(λ+n)θ

2(λ + n)
.

Thus we have

γC′

a
(λ) =

2λ

1 − e2πλ

((
−2Aλ(θ)

∫ θ

0

a(u) du

)∣∣∣∣∣

π

0

+ 2

∫ π

0

a(θ)Aλ(θ) dθ

)

= − 4λAλ(π)

1 − e−2πλ

∫ π

0

a(u) du +
2λ

1 − e−2πλ

∞∑

n=0

1

λ + n

∫ π

0

a(θ) e−2(λ+n)θ dθ

= − 4λAλ(π)

1 − e−2πλ

∫ π

0

a(u) du +
λ

1 − e−2πλ

∞∑

n=0

1 − e−2π(λ+n)

(λ + n)2
γa(λ + n) .
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Using the uniform boundedness |γa(λ+n)| ≤ ‖γa‖L∞(R) and separating the leading
term we come to the equality

γC′

a
(λ) =

∞∑

n=0

λ

(λ + n)2
γa(λ + n) + o(1) . (6.9)

It is obvious that

λ

(λ + n)2
=

λ

λ + n
− λ

λ + n + 1
+

λ

(λ + n)2(λ + n + 1)
.

Thus taking into account that

∞∑

n=0

λ

(λ + n)2(λ + n + 1)
= O

(
1

λ

)

we obtain

∞∑

n=0

λ

(λ + n)2
=

(
1 − λ

λ + 1
+

λ

λ + 1
− λ

λ + 2
+

λ

λ + 2
− · · ·

)
+O

(
1

λ

)
= 1+o(1).

That is from (6.9) we have

γC′

a
(λ) = γa(+∞) +

∞∑

n=0

λ

(λ + n)2
(
γa(λ + n) − γa(+∞)

)
+ o(1) .

As γa(λ) ∈ C(R), for any ε > 0 there is λ0 > 0 such that for each λ > λ0 and each
n ∈ Z+ we have

|γa(λ + n) − γa(+∞)| < ε .

Thus for λ > λ0 we have

|γC′

a
(λ) − γa(+∞)| < ε ·

∞∑

n=0

λ

(λ + n)2
+ o(1) = ε + o(1) ,

or

lim
γ→+∞

γC′

a
(λ) = γa(+∞) .

The proof that

lim
γ→−∞

γD′

a
(λ) = γa(−∞)

follows now from Remark 6.1.
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Let now γC′

a
(λ) ∈ C(R). Assuming that λ → +∞, we have

γa(λ) =
2λ

1 − e−2πλ

∫ π

0

e−2λθ d

∫ θ

0

a(u) du

=
2λ

1 − e−2πλ

(
e−2πλ

∫ π

0

a(u) du + 2λ

∫ π

0

(∫ θ

0

a(u) du

)
e−2λθ dθ

)

=
2λ

1 − e−2πλ

(
λ

∫ π

0

C ′
a(θ)(1 − e−2θ) e−2λθ dθ

+
1

2
e−2πλ(1 − e−2λπ)C ′

a(π)

)

= λ γC′

a
(λ) − 2λ2

2(λ + 1)
· 1 − e−2π(λ+1)

1 − e−2πλ
γC′

a
(λ + 1) + O(λe−2πλ)

= λ γC′

a
(λ) − λ2

λ + 1
γC′

a
(λ + 1) + O(λe−2πλ) .

That is, we come to the following equality

γC′

a
(λ) − γC′

a
(λ + 1) +

γC′

a
(λ + 1)

λ + 1
+ O(e−2πλ) =

γa(λ)

λ
. (6.10)

Changing, if necessary, the initial symbol a(θ) by adding a constant, we may
assume without loss of generality that

lim
λ→+∞

γC′

a
(λ) = 0 .

Introduce the function

α(λ) = sup
ξ≥λ

|γC′

a
(ξ)| ,

which is non increasing and satisfies

lim
λ→+∞

α(λ) = 0 .

Substitute

λ + 1 , λ + 2 , . . . , λ +
[
λ ·α1/2(λ)

]
,

for λ in (6.10), where [ · ] is the entire part of a number; summing up the obtained
equalities, we have

γC′

a
(λ) − γC′

a
(λ + n0 + 1) +

n0∑

n=0

γC′

a
(λ + n + 1)

λ + n + 1
+ O(n0e

−2πλ)

=

n0∑

n=0

γa(λ + n)

λ + n
, (6.11)

where n0 = n0(λ) = [λ ·α1/2(λ)].
We assume now that

lim
λ→+∞

γa(λ) 6= 0 .
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That is, there exists a sequence {λk}∞k=1 which tends to +∞ and such that for
some σ > 0

|γa(λk)| ≥ σ , for all k = 1, 2, . . . .

We denote by E1(λ) the left hand side of the equality in (6.11) and estimate it:

|E1(λk)| ≤ 2α(λk) + α(λk)

n0∑

n=0

1

λk + n + 1
+ O

(
(n0 + 1)e−2πλk

)

≤ 2α(λk) + α(λk) ln
λk + n0 + 1

λk + 1
+ O

(
(n0 + 1)e−2πλk

)

= 2α(λk) + α(λk) ln

(
1 +

n0

λk + 1

)
+ O

(
(n0 + 1)e−2πλk

)

≤ const
(
α(λk)

(
1 + α1/2(λk)

)
+ O

(
(n0 + 1)e−2πλk

))

≤ const
(
α(λk) + O

(
(n0 + 1)e−2πλk

))
.

We denote now the right hand side of the equality in (6.11) by E2(λ) and estimate
it:

E2(λk) =

n0∑

n=0

γa(λk)

λk + n
+

n0∑

n=0

γa(λk + n) − γa(λk)

λk + n

= γa(λk) ln
λk + n0

λk
+ o(1) + E2,2(λk) ,

where

E2,2(λk) =

n0∑

n=0

γa(λk + n) − γa(λk)

λk + n
.

As the function n0 = n0(λ) satisfies (6.6), we make use of Theorem 6.3. That
is, for each k ∈ N there is σk > 0 such that for each n ∈ [1, n0] ∩ N

|γa(λk) − γa(λk + n)| < σk and lim
k→∞

σk = 0 .

We have

|E2,2(λk)| ≤ σk ln
λk + n0(λk)

λk
≤ n0(λk)

λk
,

and thus
∣∣∣∣E2(λk) − γa(λk) · n0(λk)

λk

∣∣∣∣ ≤ O

((
n0(λk)

λk

)2

+ σk
n0(λk)

λk

)
.

This yields

|E2(λk)| ≥ |γa(λk)|
2

· n0(λk)

λk
≥ |γa(λk)|

2
α1/2(λk) ,

or

|E2(λk)| ≥ σ

4
α1/2(λk) .
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Substituting E1(λk) and E2(λk) in (6.11) by their estimates we have

const
(
α(λk) + λk α1/2(λk) e−2πλk + e−2πλk

)
≥ σ

4
α1/2(λk) .

Now, if

lim
k→∞

e−2πλk

α1/2(λk)
= 0 , (6.12)

then we come to a contradiction, and thus

lim
λ→+∞

γa(λ) = 0 .

If (6.12) does not hold then there exist σ1 > 0 and a subsequence {λkl
}∞l=1 of the

sequence {λk}∞k=1 such that for each l ∈ N

e−2πλkl ≥ σ1 α1/2(λkl
) .

Then substituting λ = λkl
in (6.10) we come to

e−4πλkl

σ2
1

+
e−4πλkl

σ2
1

(
1 +

1

λkl
+ 1

)
+ const e−2πλkl ≥ σ

λkl

,

which again leads to a contradiction.
The proof that γa(λ) is continuous at the point −∞ again follows from Re-

mark 6.1. ¤

As a final remark we note that the above results uncover a variety of Toeplitz

operators in T (H(L
{0,π}
∞ (0, π))) whose bounded symbols belong to a more general

class than one of Proposition 5.5, extending thereby the descriptions of Toeplitz
operators in T (PC(D, T )) of Section 5.

At the same time we have shown that the algebra T (H(L
{0,π}
∞ (0, π))) con-

tains as well bounded Toeplitz operators with unbounded symbols. The detailed
exploration of this interesting phenomenon and of its impact to Toeplitz operators
in T (PC(D, T )) we leave for a further study.
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