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1. Introduction

The commutative C*-algebras of Toeplitz operators acting on the (weighted)
Bergman spaces over the unit disk as well as various properties of the opera-
tors from these algebras have been intensively studied recently (see, for example,
[5, 6, 7, 8, 11, 15, 16]). It turned out that the smoothness properties of symbols
do not play any essential role in order that the corresponding Toeplitz operators
generate a commutative C*-algebra. Surprisingly the deep reason lies in the ge-
ometry of the underlying manifold (the hyperbolic plane = unit disk endowed
with the standard hyperbolic metric, for the discussed case). The commutativity
properties are governed only by the geometric configuration of the level lines of
symbols, while the symbols themselves can by merely measurable. As it turns out
these level lines have to be the cycles of a pencil of hyperbolic geodesics.

This work was partially supported by CONACYT Projects 46936 and 44620, México.
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In this connection recall that there are three different types of pencils of hy-
perbolic geodesics on the unit disk: an elliptic pencil, which is formed by geodesics
intersecting in a single point, a parabolic pencil, which is formed by parallel
geodesics, and a hyperbolic pencil, which is formed by disjoint geodesics, i.e., by all
geodesics orthogonal to a given one. The orthogonal trajectories to geodesics form-
ing a pencil are called cycles. The cycles are always equidistant in the hyperbolic
metric.

The main result of [8] states that assuming some natural conditions on the
“richness” of the symbol set, the C*-algebra generated by Toeplitz operators is
commutative on each (commonly considered) weighted Bergman space if and only
if there is a pencil of hyperbolic geodesics such that the symbols of the Toeplitz
operators are constant on the cycles of this pencil.

We mention that there is a natural one-to-one correspondence between the
pencils of hyperbolic geodesics and the maximal commutative subgroups of the
movements (conformal isometries) of the hyperbolic plane. Each such subgroup is
just the one-parametric group generated by a (non identical) M&bius transforma-
tion. Given any such subgroup, the cycles of the corresponding pencil are precisely
the sets which remain invariant under the action of this subgroup.

That is the main result of [8] admits the following equivalent reformulation:
assuming some natural conditions on the “richness” of the symbol set, the C*-
algebra generated by Toeplitz operators is commutative on each (commonly con-
sidered) weighted Bergman space if and only if there is a maximal commutative
subgroup of the Mobius transformation such that the symbols of the Toeplitz oper-
ators are invariant under the action of this subgroup.

The present paper is the first part of a work aimed to extend the results
from the unit disk in C to the unit ball in C™. Our approach is based on the
classification of the maximal commutative subgroups of the biholomorphic auto-
morphisms of the unit ball. In Section 3 of this Part I we list five different types
of commutative subgroups of the biholomorphisms of the unit ball B” or its un-
bounded realization, the Siegel domain D,,. In the final Section 10 we show that,
given any such subgroup, the C*-algebra, generated by Toeplitz operators with
(bounded measurable) symbols which are invariant under the action of this sub-
group, is commutative on each (commonly considered) weighted Bergman space.
Moreover we show that in each case the corresponding Toeplitz operators T, admit
the spectral type representations, i.e., all of them are unitary equivalent to certain
multiplication operators v,I. The explicit form of ~, is given for each of the five
cases under consideration.

It is worth mentioning that such a spectral representation gives an easy access
to the important properties of a Toeplitz operators: boundedness, compactness,
spectral properties, invariant subspaces, etc.

We note that one of the above types, namely the quasi-nilpotent, depends on
a parameter k = 1,2,...,n — 2. Thus for the unit ball B" of (complex) dimension
n we have in total n 4+ 2 different types of commutative C*-algebras of Toeplitz
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operatots. For n = 1 these algebras coinside exactly with the three known types
of the commutative algebras on the unit disk.

To achieve these results we construct in Sections 5 - 9 the analogues of the
classical Bargmann transform and its inverse, which we use then as the unitary
multiples in the representation RT,R* = v,1. A general scheme to construct such
analogues is presented in Section 4, while its concrete realizations for each of the
above five different cases constitute the content of Sections 5 - 9.

In the forthcoming Part II of the work we will show that the above five
commutative subgroups are maximal commutative ones, and that each maximal
commutative subgroup of biholomorphisms is conjugate to one from our list, while
neither two from the list are conjugate. That is we will classify the maximal com-
mutative subgroups of biholomorphisms of the unit ball B". Thus we will arrive to
the following extension of the sufficiency condition of the existence of commuta-
tive algebras of Toeplitz operators: given any mazimal commutative subgroups of
biholomorphisms of the unit ball B™, the C*-algebra, generated by Toeplitz opera-
tors with measurable bounded symbols which are invariant under the action of this
group, is commutative. Another aim of Part II will be to describe the distinguished
geometry of the level sets of such symbols (the orbits of maximal commutative sub-
groups of biholomorphisms of the unit ball), presenting thus the multidimensional
generalization of a pencil of hyperbolic geodesics on the unit disk.

2. Weighted Bergman spaces and Bergman projections

Denote by B™ the unit ball in C", that is,
B" ={z=(21,.,20) €C": 22 = |21 + ... +|2a|> < 1}.
Later on we will use the following notation for the points of C* = C"~! x C:
2= (2, 2,), where 2/ = (2z1,...,2,_1) €C"', 2z, €C.
Denote by D,, the following Siegel domain in C™
D,={2=(¢,2,) €C" ' xC: Imz, — |/|> > 0}.

It is well known (and easy to check directly) that the Cayley transform ¢ = w(z),

where
Zk

Ck Zl+2’n’ y ey 10 )
‘1_271
S

maps biholomorphically the unit ball B" onto the Siegel domain D,,.
The inverse transform z = w™1(() is given by

9
ZE = - ZC,k, k=1,...,n—1,
1_Z<n
144¢,
Zn =

1_7/Cn
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Let D =C"! x R x R;. The mapping
k(2 u,0) € D (2/,u+iv+i|2'|?) € Dy, (2.1)
is obviously a diffeomorphism between D and D,,.
Denote by dv(z) = dzidy;...dz,dy,, where z = xg + iyg, k = 1,...,n, the
standard Lebesgue measure in C™. We introduce the following one-parameter fam-
ily of weights (see, for example, [17])

pa(z) =ex (1—12%)%,  A> -1,
where the normalizing constant
F'n+A+1)
7"T(A + 1)
is chosen so that py(z)dv(z) is a probability measure in B™.
It is easy to see that under the inverse Cayley transform z = w=!(¢) we have

C\ = (2.2)

22n
dv(z) = de(o, (2.3)
L = B (mGe— P (2.4
1 —iG)? " ’ '
2
14 2z, T (2.5)

Given a function f € Ly(B™,uy), changing the variables 2 = w=!(¢) and using
(2.3), (2.4), we have
1717 = / [F(2)]ex (1= |2*)* du(z) (2.6)

2\ 22n

_ -1 2 2 ERVAPARS
= [ VT ORe g (= ) [ O
. ) 22n+2)\ 19\ A
- /D 1™ Q)P T gamraes o (m G = [P ().
Introduce now the space Lo(Dy,, 1), where
() = T (Im G, — [,

and the operator
U,y : LQ(B”,/I;,\) — L2(Dn7/7)\)7

which acts as follows

n+A+1
GO =(12) I

Then (2.6) can be rewritten as

Hf||2L2(1Ban,m) = HU)\fnzLQ(Dmﬁ)\)‘
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It is easy to check that the operator Uy is unitary, and its inverse (and adjoint)
operator

U)\_l : LQ(DTMﬁ)\) — LQ(BTL,'M)\)

has the form

1

-1 .

(U N)z) = W fw(z)).

Denote by A2(B") and by A3(D,,) the (weighted) Bergman subspaces of
Lo(B™, uy) and of Lo(D,,, fiy), respectively. Recall that, as always, the Bergman
space is the subspace of the corresponding Ls-space which consists of all analytic
functions.

It is well known (see, for example, [17]) that the weighted Bergman kernel
for the unit ball is given by

1 1
KIB",)\(Zv C) = = = n = )
(1-=z- ¢)ntA+l (1— Zk:l chk)n+)\+1
and that the (weighted) Bergman projection Bgn ) of Ly(B™, 1)) onto A3 (B™) has
the form

(1 —[¢*)*
(1= Qi
Let z = w ! (w) and ¢ = w™(n), then

= 22 Wy, — 1y, r =7
T (). >0

We note that the unitary operator Uy, being the isomorphism between Lo (B™, 1)
and La(Dy, fiy), maps isomorphically A3 (B™) onto A3 (D,,) as well. Changing the
variables z = w™(w), ( =w™!(n) and using (2.3) - (2.5), (2.7), we have

(Bf)(w) = (UrBan Uy f)(w)
2\ fw(@©) (A=) endv(Q)
(=) Lo

1— sw, 1+ Cn)n+>\+1 (1 _ w—l(w) .E)n+/\+1

9 n+/\+1/ (1 _ Z-nn)n+)\+1 f( )
1 — dw,, D, on+A+1 n

222 (Imn, — [n[*)* (1 — dw, )" A (L + a7, )" AT
|1 _ inn|2)‘ 22n+2>\+2

1 22n

- dv(n)
_ _\n+A+1 _ 2n+2
(w";nn —w' - 77/) |1 ZT)n|

Im 7, — 77/ 2) C)
/D f(n) ( (7 | |))n+)\+1 Z dU(n)
n wnfﬂn _ ’LU/ . n/

(Ben 2 f)(2) = . f(Q) cx dv(C).

21
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That is the (weighted) Bergman kernel for D,, has the form (see, for example,
12, 3, 9])
1
KDn,)\<Z7<) = )n+/\+17

(2"2, -2

and the weighted Bergman projection Bp, » of La(D,, 1) onto the Bergman
space A3 (D,,) is given by

(Bp, 2 f)(z / f(¢ (Zn;I:lC_nZ/ i’)iﬂﬂ 1 dv(Q).

Return now to the domain D = C"~! x R x R, whose points we will denote
by w = (2’,u,v). Introduce the space La(D, 7)), where the weight 7, is given by
the formula

m(w) = ma(

and the constant c) is given by (2.2).
Introduce the operator Uy : Lo(Dy,, in) — La(D,ny) as follows

(

(Uof)(w) = f(r(w)),
where the mapping & is given by (2.1). The operator Uy is obviously unitary, and
the inverse operator has the form

Uy ' f)(z) = f(571(2)).
The (weighted) Bergman space A3(D,,) on the Siegel domain D,, can be
characterized alternatively as the (closed) subspace of Lo(D,,,fiy) which consists
of all functions ¢ satisfying the equations

9

0zy,
Then the image Ay (D) = Uy(A3(D,,)) is the subspace of Ly (D, n,) which consists
of all functions ¢ satisfying the equations

v):%v’\, A> =1,

=0, k=1,...,n

0
U()iUoiltp:O, k:].,...,’n.

0z,
It is obvious that 5 B 5 5
(42 2.
Uo 5 Uyt =3 (a +i 6‘1}) (2.8)

While for £ =1,...,n — 1, we have

0 0

UOTUO_1 o7 u,v) = Uy—=— ¢(2',Rez,,Imz, — |Z|?)
8 sz

dp Oy
(5%~ 50 )

_ (9 _ 9
- \oz TR ¥
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That is 5 9 9
Uy—Uy' = — - —
9% 0 T om o P
or, expressing 8% in terms of a% using (2.8),
0 0 0
Up— Ul = — —i— 2.
0z, ° T 0z ou"

Thus the space Ag(D) coincides with the set of all Ly (D, ny)-functions which
satisfy the equations

1/0 .0 0 0

2<6u+’tav>§0—0 and <8Zk_8vzk>%0—oa k=1,..,n-1(29)
or the equations

170 .0 0 .0

5 (8u+2c%> w=0 and (82,6_2811 Zk) =0, k=1,.,n—1 (2'10)

3. Commutative subgroups of biholomorphisms

We list here five essentially different types of commutative subgroups of biholo-
morphisms of the unit ball B™, or its unbounded realization, the Siegel domain
D,,. In Part II of the paper we will show that, first, these subgroups are maximal
commutative subgroups of biholomorphisms, and second, each maximal commuta-
tive subgroup of biholomorphisms is conjugate to one from this list, while neither
two from the list are conjugate. That is, in a sense, this list classifies the maximal
commutative subgroups of biholomorphisms of the unit ball B".

Quasi-elliptic group of biholomorphisms of the unit ball B™ is isomorphic to
T™ with the following group action:

t: z="(21,.,2n) EB" — tz = (t121, ..., tnzn) € B,
for each t = (t1,...,t,) € T™.
Quasi-parabolic group of biholomorphisms of the Siegel domain D,, is isomor-
phic to T"~! x R with the following group action:
(t,h): (#,2n) € Dy — (t2', 2, + h) € Dy,
for each (t,h) € T"~! x R.
Quasi-hyperbolic group of biholomorphisms of the Siegel domain D,, is iso-
morphic to T"~! x R, with the following group action:
(t,7): (2,2n) € Dy — (r/%t2' r2,) € Dy,

for each (¢,7) € T" 1 x Ry,
Nilpotent group of biholomorphisms of the Siegel domain D,, is isomorphic
to R"~! x R with the following group action:

(b,h): (¢',2,) € Dy (2 + b, 20 + h + 2i2' - b+ i|b|?) € D,,,
for each (b,h) € R"~! x R;
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Quasi-nilpotent group of biholomorphisms of the Siegel domain D,, is isomor-
phic to TF x R"7*~1 x R, 0 < k < n — 1, with the following group action:

(t,b,h) : (2,2, 2,) € Dy — (t2',2" + b, 2, + h 4+ 2i2" - b+ i|b]?)) € D,

for each (t,b,h) € TF x R*F~1 x R.

Note that setting in the quasi-nilpotent case k = n — 1 we obtain the quasi-
parabolic group, while for k = 0 we obtain the nilpotent group. At the same time
we prefer to distinguish these three cases in order to make our calculations more
transparent.

4. Bargmann type transform

We describe here a scheme which has been already successfully used, for example,
in [12, 13, 14, 15] and which will be used in the subsequent sections.

Although the scheme is very simple, a considerable amount of work is required
in each particular case in order to define and calculate all necessary data. The
purpose of it is to give a description of the space of analytic functions under study
in “real analysis terms”, i.e., as an appropriate Ly space, and to construct the
operator R which being restricted onto the analytic space maps it isometrically
onto the corresponding Lo space, and which together with its adjoint R* provide
the factorization of the identity operator on the L, space and the orthogonal
projection of the initial Hilbert space onto the space of analytic functions.

We note that the operator R restricted onto the space of analytic functions
together with its inverse R* can be considered as the analogs of the classical
Bargmann transform (and its inverse) [1], moreover they do give the classical
Bargmann transform for the corresponding case, see [14].

Let H be a separable Hilbert space and A be its closed subspace. Denote by
P the orthogonal projection of H onto A. We assume as well that there exist

(i) measurable spaces X and Y with measures 1 and 7 respectively,
(ii) a unitary operator
U:H — Ly(X, 1) @ Lo (Y, 1),
(iii) a measurable subspace X; of X and a function go = go(z,y) on X; x Y, such
that
— for each x € X; the function go(z,-) € La(Y,n),
and ||go(z, )| Lovim) = 1,
— the operator U maps A onto goLa(X1, 1) C Lo(X, 1) ® Lo(Y, n):
U:A— goLa(X1,p).
Then, for each ¢ = gof € U(A) = goLa(X1, 1), where f € Lo(X1,u), one has
obviously
lelloay = 1l
We introduce now the isometric imbedding

Ro : La(X1, p) — La(X, ) ® L2(Y, 1)
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by the formula
Ro: f € Lo(X1, 1) — fgo € La(X, 12) © Lo (Y1),

where
‘]’(."_ f, JJEXl
o 0, ze€ X\X1

Then the adjoint operator
RG : Lo(X, ) @ La(Y,n) — La(X1, p1)
is given by

(Ryp)(x) = /Y o@,y) @y dy, e X,

It is easy to check that
RoR=1 : Lao(X1,p) — La(X1,p),
RRSZQ p La(X,p) ® La(Y,m) — U(A),

where @ is the orthogonal projection of Lo (X, 1) ® L2(Y, n) onto the image of the
space A under the unitary operator U, i.e., U(A) = goLa2(X1, i).
Combining all the above we come to the following result.

Theorem 4.1. The operator R = R§U maps the Hilbert space H onto Lo(X1, p),
and the restriction
Rla:A— Lo(Xy, 1)
is an isometric isomorphism.
The adjoint operator

R* = U*RO : LQ(Xl,,u) I .A CcCH

is an isometric isomorphism of La(X1, p) onto the subspace A of H.
Furthermore

RR*:I . LQ(Xl,,LL) —>L2(X1,M),
RFR=P : H— A,
where P is the orthogonal projection of H onto A.

In the subsequent five sections we will use this scheme in five different cases
defining and calculating explicitly in each case all the necessary data. The non-
trivial and essential part of the job is to find the measurable spaces X, X, and
Y and to construct the corresponding unitary operator U, appropriate for each
specific case.

The key idea here, as well as in [12, 13, 14, 15], is to make use of appropriate
commutative subgroups of biholomorphisms of the domain under consideration,
and doing the corresponding group Fourier transform, to reduce the system of par-
tial differential equations, which define the Bergman space, to the ordinary ones,
depending on certain parameters. Solving the last ordinary differential equations
we come to the independent “real analysis type” description of the Bergman space.
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In what follows we will use the five different types of commutative subgroups,
described in Section 3, and we will name each of the five subsequent sections
according to the above subgroups.

5. Quasi-elliptic case

The results for this case are already known, see [10]. For the sake of completeness
we present them here.

Denote by 7(B™) the base of the unit ball B™, considered as a Reinhard
domain, i.e.,

T(B™) = {r = (r1,..;tn) = (|21]s0o0s |2a]) : P2 =ri+ .. +1r2€]0,1)},
which belongs to R} = Ry x ... x Ry. Introduce in C" the polar coordinates
2, =ty Tk € Ry, where t, € T = S, k = 1,...,n. Then under the identification

z= (21,0, 2n) = (t171, ..o, turn) = (L, 1),
where t = (t1,..,tp) € T" =T x ... x T, r = (r1,...,7) € 7(B"), we have
B™ =T" x 7(B™) and
Lo(B", pa) = Lao(T") ® La(7(B"), ),

where

® L2 dtk

and the measure du in Lo(7(B™), 1) is given by

dp = px(r H rpdry = cex(1 — r? H rRdr.
k=1

We define the discrete Fourier transform F : Ly(T) — lo = I5(Z) by

F:fr—cp= n € Z. (5.1)

1 dt
— O
=[S

The operator F is unitary and
Fl=F": {entnez— f = cht"
\/7 nez
In terms of the scheme of Section 4 we have here

X = Zn7 LQ(X7 /1’) = lQ(Zn)7
Xy =177, Ly(X1, ) = 12(2),
Y = T(Bn)v LQ(Yv 77) = LQ(T(Bn)a

the unitary operator U is defined as follows

U=Funy @I : Lo(T") @ Lo(7(B"), p) — 12(Z") @ La(7(B"), ),
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where F(,,) = F®...® F, and the function go (sequence in this case) has the form

f/@orTmt pl A+ D\ .
go(T){< PIT(n+A+1) ) T}pezn’ r€r(B),

and Z:L_ = Z+ X ... X Z+ with Z+ = {O} UN.
Introduce the isometric embedding

Ry ¢ L(Z}) — L(Z") ® La(7(B"), u)

where

" 1/2
(2m)" L(n+[p|+A+1) n
Ry : {Cp}peZZ — cp(r) = { ( P T(ntA+1) ) eprts peZL
0, pELM\ZLY
Then the adjoint operator Rf : I2(Z") @ Lo(7(B™), u) — 12(Z™) is defined by

Ry« {fp(r)}pezn —
o T+ lpl+ A+ DY [, 2 T
{ < T A+ D) ) /T(man) P fp(r)ex(l —r*) H redry - )

k=1

Theorem 5.1. The operator R = RoU maps Ly(B", i) onto l3(Z7), and the re-
striction

Rlaz(gn) : AX(B") — 12(Z1)

is an isometric isomorphism.
The adjoint operator

R*=U"Ry : 15(Z7) — A3(B") C Lo(B", 1)

is the isometric isomorphism of lo(Z') onto the subspace A3(B™) of La(B™, py).
Furthermore

RR* =1 : 1o(Z7}) — l(Z1),
R*R=DBgn : Ly(B" py) — A (B"),
where Bgn ) is the Bergman projection of Lo(B™, uuy) onto A2 (B"™).
Theorem 5.2. The isometric tsomorphism
R* =U*Rq : I(Z7) — A3 (B™)

is given by

. 2m)" T(n + [p| + A+ 1)\ "/
R*: {eptpenn — (2m)2 p;L < DT+ A+ D) cp P (5.2)
+
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Corollary 5.3. The inverse isomorphism
R: A(B") — L(Z2)
is given by
R op(z) —

y (@) D(n o fpl + A+ 1)) .

6. Quasi-parabolic case

We represent the space Lo(D, 7)) as the following tensor product
Ly(D,my) = La(C" 1) @ La(R) @ La(Ryy, 1),
and consider the unitary operator Uy = I ® F' ® I acting on it. Here

_ L u)e” S du
(P1E) = o= [ 1w (61

is the standard Fourier transform on La(R).
For the operators in (2.10) we have obviously

10 0N\, _ i )
U12<au“av>U1 = 2<5+av>7
azk

Thus the image A; (D) = Uy (Ao(D)) is the subspace of La(D,ny) which consists
of all functions satisfying the equations

;(54—;})@:0 and <aazk+§zk)<p20, k=1,...,n—1. (6.2)

The first equation is easy to solve, and its general solution has the form
p(#,€,v) = (2, €)™

The function ¢ has to be in Lo(D,ny), which implies that its support on the

variable £ has to be in R . That is

p(2,€,0) = Xr, ()Y (2, )e™*". (6:3)
Further, the function ¢ has to satisfy the second equations in (6.2), that is

(8 + £zk) (2,6 =0, k=1,...,n—1

2k

Introduce in C*~! the polar coordinates, zj, = rity, where 1, € Ry, ¢, € St =T,
k=1,...,n— 1. Then, it is easy to see that

8+§Zk_15’“(6_tka+2§rk>, E=1,..,n—1.
azk 2
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Represent now

Ly(Dymy) = La(C" ' xR xRy )
Ly(RY ™ rdr) @ Ly(T" ') @ La(R) ® La(Ry, my),

where
n—1 — dt
rdr = H redrg, o(T™™ 1 ® <Sl k)
k=1 k=

Introduce the unitary operator Uz = I @ F(,—1) ® I ® I acting from
LoyRY 1 rdr) @ Lo(T™" ) @ La(R) @ La(Ry,my)
onto

Ly(RY™ rdr) @ 1p(Z" ") ® Lo(R) @ La(Ry,my) =
(Z" ", Ly(RY ™ rdr) @ La(R) @ La(Ry,my)),

where F(,_1) = F ® ... ® F, and each F is the one-dimensional discrete Fourier
transform (5.1).

For ¢ of the form (6.3) we have

Usp = xr, (§)e (F @ DY = xr, (€)e " {cp(r, )} pezn-1.

Furthere, the sequence {d,},czn-1 = xr, (€)e "{cy(r, &) }pezn—1 has to satisfy the
equations

0 tr, O

U2'f (g = 2 g 4 26 ) U ez =0, k=T

or equivalently

0 t, O _
UQ* <87‘1€ - E % + 257’k> U2 1{Cp}peznfl = O, k= 1, ey — 1.

The operator
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acts as follows

tk 8 tk; 8 _n—1
5 {cp}pGZ”—l = UQE <ark — E 677% + 257% (27’(’) 2 Z Cp tp
pezn—l
ne wte [ Oc t _
= |7 S g (G et 2 )
pGZ"*I k k
_n—1 ~ ) 1 0 .
= Uy | (2m) 2 Z tzti"ﬂi <8r — fi + 2§7‘k.> p
pGZ""71 k k
_ - pl (0  pr—1
= U |@2n)~"7 >t 5 ( . - + 267 ) Cpeey
pGZ"L71
1 0 Pk — 1 ) }
= S5\ 3 — +28ry | cp—e )
{2 (87% Tk g prek peZn—1
where p = (p1, s pn_1), ex = (0,...,0,1,0,...0), t? = /" - .- t’" ' and fﬁ is tP
with the multiple ¢/* omitted. That is
tr 1o} tr, O 1
U - -~ T 5 2 > U n—
2 2 <8Tk Tk 6tk + §7’k 2 {Cp}pEZ !

1 0 Pk — 1
= {-(=—=- 2 e .
{2 (37% e grk) CP k}pGan

Now the space A3(D) = Uz(A1(D)) consists of all sequences {dp},eczn-1,
where

dp = XRy (g)e_gvcp(rv 5)7 pe Zn_lv

which satisfy the equations

1 0 Pk
- __ 19 = k=1,..,n—1.
2 <67“k Tk + éhrk) =0, e T

These equations are easy to solve and their general solution has the form
¢y =gp( eI pen,

where [r[2 =7 + ... +7r2_,.
Further, each function

dy = Xz, (€) gp(€) 1 e~ S1 Y
has to be in Ly(R} ") ® La(R) ® Ly(Ry, 7)), and moreover we need that
{dp}pezn— € (2", La(RY™Y) ® La(R) ® La(Ry, 1))

In particular, this implies that d, = 0 for all p € Z"~! \Zi_l.
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We set

on+1 (25)\p\+)\+n 2
ap(é)—cp(ﬁ)( c p!F()\+1)) ’
where ¢,(§) € Lo(Ry4) and is prolonged by zero to the negative half-axis, the
constant ¢y is given by (2.2), |p| = p1 + ... + Pn—1, P! = p1! - ... - pp_1!, and
pE Ziﬁl. Then it is easy to see that

”dp”Lz(Ri_1)®L2(R)®L2(R+mA) = llepll Loy,

and
Hdp}pezn—1lliy@n1 L@rYer@eL.@ ) = Ioll@n—1, L@, )
Indeed,
on+1 (25)\p\+>\+n 12 c
2 _ > 2p o= 26(Ir*+v) EA A
= [ e 2 e 202 pdrdgo
5 g\P\+)\+n b E(rit 1) A
— —cr1r+...Tp—1 TV
— /Ri“ lep(€/2)] 72p!F()\+1)r e v drd€dv
§|p|+>\+n N
= 2))2 2 d S g
/R+|cp<s/ P o %, Ve
/ PP o€ttt gy
Ry
By [4], formula 3.351.3, we have
|
P ,—&(r1+F+rn—1) . — D:
/R’;lr e dr g1’

and by [4], formula 3.381.4, we have

/ v e 8 dy = F()\)\ij_rll)
R, §

['hus
d€ —
|2? B / ‘Cp(g)‘zdg ||Cp||%2(R+)'

R

2 _
”dp”Lz(R1_1)®L2(R)®L2(R+,m) - /]R+ lep(€/2)

Note that in terms of the scheme of Section 4 we have here
X =7""1 xR, Lo(X, 1) = 12(Z" 1) @ La(R),
X = Zi_ll xRy, La(Xy,p) = 12(21_11) ® La(Ry),
Y:Ri_ XR-h L2(Yan) :LQ(Ri_ 77”d7”)®L2(R+777/\)7

the unitary operator U is defined as follows
U = UU1Uy: Lo(Dy,1n) —
L(Z" 1) ® Lay(RY ™, rdr) ® La(R) © La(Ry, 1)) =
lQ(Znila LQ(Ri_lv rdr) ® LQ(R) ® LQ(R—H nk))a
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and the function go (function-sequence in this case) has the form

1
gn+l1 (2§)|p|+/\+n 2 )
go(p,7,&,v) = {< ' > 7P e—E(rl"+v) ’
ex p!T(A+1) -

where (r,&,v) € R x Ry x Ry
Summarizing the above we come to the following statement.

Lemma 6.1. The unitary operator U = UsU1Uy maps the Bergman space .Ai (D)
onto the space Az(D) = gol2(Z'} ", Lo(Ry)) which is the closed subspace of
1(Z"Y, Lo(R%1) @ Lo(R) @ La(Ry, 1)) and consisits of all sequences
{dp(r,f,v)}peziq, where the functions d,(r,&,v), p € Zﬁ_l, have the form

dp(’ru 57 ’U) =

1
(BRUT) mestige,  ecrs
with ¢, € La(Ry).

Introduce now the isometric imbedding

Ry : p(Z77 ", La(Ry)) — 1o(Z"7Y, Ly(RT Y rdr) ® La(R) ® La(Ry,72))
by the rule

Ro eyl byt —

2n+1 ) |pl+X+n % R
{XZi—l(p)XR+ (5) < PN ;'?(A n 1) > rP 6_5(|T| +v) Cp(g)} s
pezn—1

where the function ¢, () is extended by zero for £ € R\ R, for each p € Z} "
The adjoint operator

RG : 1o(Z" 7 Ly(RY rdr) @ La(R) @ La(Ry,m)) — (2", La(Ry))
has obviously the form

Rg : {dp(r,§,v)bpezn-1 —

2n+1 (25)\p\+)\+n % 2 c ’U)\
p o—¢(r1*+v) g dr 224 )
{( o o) L R
10»’5ZJr

n
+

Then we have
RiRo=1 : L(Z} " Lo(Ry)) — L(Z La(Ry)),
RoRy =Py : L(Z7 ' Ly(RY 7 rdr) ® La(R) ®@ La(Ry,my)) — Ax(D),
where Ps is the orthogonal projection of

12(Z" Y, Ly(Ry ™ rdr) @ Ly(R) ® Lo(Ry,my)) onto Az (D).
Thus finally we have
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Theorem 6.2. The operator R = R§U maps La(Dy, fix) onto lg(Zi_l,Lg(R+)),
and the restriction

Rlgz(p,) o AXDn) — L(Z}, La(Ry))

is an tsometric isomorphism.

The adjoint operator
R*=U"Ry : 12(Z7 ", Ly(Ry)) — A3(Dy,) C La(Dy, 1n)

is the isometric isomorphism of lo(Z ™", La(R.)) onto the subspace A3(Dy) of
LQ(Dna/j/\)'

Furthermore

RR* =1 : (Z7 ' La(Ry)) — 12(Z 1, La(Ry)),
R*R=Bp,x : Ly(Dy,fin) — A3(Dy),

where Bp,  is the Bergman projection of Lo(Dn, fix) onto A3 (D).
Theorem 6.3. The isometric isomorphism

R*=U"Ry: (2}, La(Ry)) — A3 (Dy)
is given by

A (3] W

i it N E L e
et % [ (S soeress o)
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Proof. Calculate

R = URo: {cp(©hpen
2n+1 9 |p|+A+n % R
o U*{XR+(§)< ox i?!gl“)()url)) e +U)Cp(§)}
pez™!

o 2n+1 2 |pl+A+n %
— US‘U{‘(XRJO(?W)_ Y (CA ;!?(A—kl))

n—1
peELy

e I 6, () <z'>p>

e 2n+1 25 \p|+)\+n 3
’—) ( ’ Z /R (cA p'I‘)\-I—l))

an

T 6 ¢) <z'>pe‘“‘£d€>

_ (n)t Z /R+ (2n+1 (25)p+x+n)écp(€) e de,

|
pezit ex p!lT(A+1)
U
Corollary 6.4. The inverse isomorphism
R: A2 (Dn) — (2, Ly(R.))
is given by
o 3 2£)|p|+)\+n 3
: 2 gn-sg, 2T
Rl — {( m ( NPT +1)
/ ©(2) (Z)P e (Im 2, — |2'[)* dv(z)} . (6.5)
Dy

n—1
pEL]

7. Nilpotent case

The first step here will be the same as in the quasi-parabolic case. We consider
the space

Ly(D,nx) = La(C"1) @ La(R) @ Lo (R, mp),

and the unitary operator Uy = I ® F'® I acting on it, where F' is the Fourier
transform on La(R), see (6.1).
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Then the image A;(D) = Uy1(Ap(D)) is the subspace of La(D,ny) which
consists of all functions satisfying the equations (6.2). The La(D,ny)-solution of
the first equation in (6.2) has the form

90(2,7531}) = XRJr(f)LZJ(Z/,f)e_SU, (71)
and the function ¢ has to satisfy the following equations
9]
(+£Zk) w(zl,f) :07 k:17...7’l’L—1.
Rk

Using the standard Cartesian coordinates =’ = (z1, ..., £,—1) and
Y = (Y1, s Yn_1), where zj, = z1, + iyg, in C"1 = R?~1 x R"~! we have

Ly(Dymx) = Lay(R™1) @ Ly(R™ ) @ La(R) @ Lo (R, ).

Consider the unitary operator Uz = F(,,_1) ® [ @ [ @ I, where F(,,_1) = F®..® F
is (n — 1)-dimensional Fourier transform, acting on above tensor decomposition.
We have

1/ 0 0 i 0 0
Us |- [ +i— k) | Uyt = < L) e (- .
2 [2 (azk Hayk) +§(mk+2yk>:| 2 =5 (éw ayk) +1i€ <8§k +yk)
Thus the image A3(D) = Ua(A1(D)) is the subspace of La(D,ny) which consists
of all functions

P&y, 6 v) = Xz, (OU(E Y, e,

where the function v has to satisfy the following equations

i3 (a5 ) 6 (gt o) |0 =0, k=1in1

Introduce the following change of variables
1 1

—& — Ve, ==&+ Ve, k=1..n-1,

2V€ 2V€
or .

G=VE(ur+ve), we=s—=(u+tuon), k=1..,n-1,
2V€

and the corresponding unitary operator Us acting on La(R"™1) @ Ly(R"!) @
L3 (R) ® La(Ry,ma) by the rule

(%@Whﬂ&@=w(¢aw+d%

where v’ = (u1, ..., Un—1) and v’ = (vy, ..., vp—1).
We have obviously

1 0 0 0
Usi | = — — Ut =i — .
3%{2 <§k+ayk>+§<6§k+yk>:| 3 lﬁ(avk”’“)
Thus the image A3(D) = Us(A2(D)) is the subspace of Ly(R"™1) ® Ly(R" 1) @
Ly(R) ® Lo(R4,my) which consists of all functions

@(u/a vlv 5) U) = XRy (f)i(ulv Ul, g)efﬁv’

ﬁ (—U/ + ’U/) 557/0) )
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satisfying the equations
0
N (+Uk> o v, Ev)=0, k=1,..,n—1,
(%k
or the corresponding functions function {/;(M, v, €) have to satisfy the equations

0 T _ _
(avk—&—vk)zﬁ(u,v,ﬁ)—ﬂ, k=1,...,n—1

These equations are easy to solve and their general solution has the form
4(25))\+1
exI'(\ + 1)

where 1(u’, &) € La(R"™! x R). Moreover, we have that

—1 [v|2

Bl €) = m 2 e xm(s)e%

)éwucs),

[l o@n 1)@ Lo V) oL®)@La®s my) = xRy ()Y, E)||Ly@n—1xr)
= ||¢(U/75)||L2(Rn71x11§+)-
Indeed,

=1 72 _ 4(25)/\+1 ,
3 [v] 26v _F\2S) 2
/]R?n—1><R+ ™ € XR+(£) € C,\F(A + 1) WJ(U ,g)‘

-%%vAdth/dfdv
ne , 26 M1
o [ ePar [ jegr B e
Rn—1 Rn—1xR,

(A+1)
/ e %o
Ry

_ / o(u, &) dur'd€ = [, )12, nr xm -
Rn—1xR,

el

Calculating the integral over v € Ry we have used formula 3.381.4 from [4].
Note that in terms of the scheme of Section 4 we have here

X =R"" xR, Ly(X, p) = Lo(Z" 1) ® La(R),
X1 =R"'"xRy,  La(X1,p) = La(R"1) @ La(Ry),
Y =R"! x R+7 Lz(Y,W) :LZ(Rn71)®L2(R+777A)7

the unitary operator U is defined as follows
U = UsUsUrUp : La(Dn, fin) = L2(R"™1) @ Lo(R" 1) @ La(R) @ La(Ry., 1),

and the function gy has the form

o1 gy b2 429 2 e
go(V' & v) =77 F et (c,\(l"(g)\>—|—1)> , (V€6 0) e R xRy x Ry

Summarizing the above we come to the following statement.



Vol. 99 (9999) Toeplitz operators on the unit ball 21

Lemma 7.1. The unitary operator U = UsUsU1Uy maps the Bergman space
A3(Dy,) onto the space A3(D) = go L2(R"™! x R,) which is the closed subspace of
Loy(R"1) @ Ly(R™ 1) @ Lay(R) ® Lo(Ry,my) and consisits of all functions of the

form )
ot ) =T oo (LB )
where Y(u', &) € Ly(R"™1 x Ry).
Introduce now the isometric imbedding
Ro: Ly(R"™ ' xRy) — Ly(R" 1) @ Ly(R"™) @ Ly(R) @ La(Ry,ny)
by the rule

. ’ — —% _Ev_|v;\2 M 2 .
RO ' w(u ’g) & € XR+(£) <C)\F(A ¥ 1) w(u 75))

where the function (v, €) is extended by zero for £ € R\ R, for each u’ € R"~1.
The adjoint operator

Ry LR @ Ly(R"™1) ® La(R) ® Lo(Ry, ) — La(R™ ! x Ry)
has obviously the form
Ry pu v & v) —
T 6_5“_# (4(2§)>\+1 )2 fl' v € v)dv N dw.
Rn-1xR, al'(A+1) 4
Then we have
RiRy=1 : Ly(R"!'xR;)— Ly(R"* xRy),
RoRy=Ps @ La(R"1) © La(R"™1) @ La(R) ® La(Ry, 1) — Az(D),
where P3 is the orthogonal projection of Ly (R 1)@ Ly (R" 1)@ Lo (R)® La (R, my)

onto A3(D).
Thus finally we have

Theorem 7.2. The operator R = R{U maps La(D,,, iy) onto La(R"* x R,), and
the restriction
Rlaz(p,) : AX(Dn) — La(R"! x Ry)
is an isometric isomorphism.
The adjoint operator
R*=U*Rqy : Ly(R" ' xRy) — A%(D,) C Ly(Dp, i)

is the isometric isomorphism of Lo(R™™! x Ry) onto the subspace A3(D,) of
Lo(Dy, fiy).
Furthermore
RR* =1 : Ly(R"'xR;) — Ly(R" xR,),
R*R=Bp,» : La(Dn,fix) — A3(Dn),
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where Bp, » is the Bergman projection of Lo(Dy,, fix) onto A3(D,,).

For this and the two remaining cases we will not give exact formulas for the
operators R and R*. If needed, these formulas can be easily obtained by direct
though rather lengthy calculations.

8. Quasi-nilpotent case

This case is just a mixture of the two previous cases, quasi-parabolic and nilpotent.
Given an integer 1 < k < n — 2, we will write the points of D,, as z =
(2, w', z,), where 2/ € C¥ and w’ € C" *~!, and the points of D as (2, w’, (),
respectively.
According to this notation we represent

Ly(D,my) = La(CF) @ La(C* 1) @ La(R) ® La(Ry, ).

Applying, as in previous two cases, the unitary operator Uy = I @ I @ F ® I, we
have that the image A; (D) = U;(Ao(D)) consists of all Ly-functions of the form

QO(Z/7 w/a 57 ’U) = X]R+ (f)'(/J(Z/, wlv 6) €—§v7
which satisfy the equations
<882:l +£Zl) w(z/7w/’§) = 07 l = 1""?k)

(8 +£wm) v w' &) = 0, m=1,.,n—k—1.

ow,,,

Now passing to the polar coordinates in C*, z; = rt;, where r; € Ry, t; € S' =T,
I =,1,...,k, and Cartesian coordinates in C* %=1 2/ = (21,....,2,_x_1), ¥ =
(Y1, ey Yn—k—1), Where w,, = Ty, + iYm, m = 1,...,n — k — 1, we have that the
space Lo(D, 1) can be represented in the form

Lo(RY  rdr) @ Lo(T") @ Ly (R"F 1) @ Lo(R™* 1) ® Ly(R) @ Lo (R, my).
Introduce the unitary operator Uy = I @ Fp) @ F_x—1) ® I ® I ® I acting from
Ly (D, ny) onto

Ly(RY, rdr) @ 12(ZF @ Ly(R"™1) @ Ly(R" 1) @ Lo(R) © La(Ry,m2)

= L(ZF, Ly(RE, rdr) @ Ly(R* 1) @ Ly(R" 1) @ La(R) ® La(Ry,m0)),
where Fpy = F ® ... ® F is the k-dimensional discrete Fourier transform and
Fin—p—1) = F®...® F is the (n — k — 1)-dimensional Fourier transform.

Then, by the results of the previous two sections, the image A2 (D) =
Us (A1 (D)) consists of all sequences {d,(r, &'y, &, U)}pezzjr, where the functions

9k+2 (26)\p\+)\+k+1
ex p!lT(A+1)

dp(r, €'y €,0) = ( ) r? e8I+ g (e o 6),
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with (¢,y,€) € R**=1 x R"*=! x Ry, belong to the space La(R%, rdr) @
Loy(R"F=1) @ Ly(R"*71) ® Ly(R) ® La(Ry,ny). Moreover, the corresponding

functions d, (&', y', £) have to satisfy the equations
1 0 0 ~
2 = —— oy a6 =o, —1,..n—k—1.
2{2 (6 +3ym>+§(3§m+y ﬂ p(&090) " !

Introduce the following change of variables

1 1
Um = mﬁm*\/gyma U = ﬁfer\/gyma m=1,.,n—k-1,

or

(=tUm +Vm), m=1,..,n—-k—1,

1
Em:\/g(um‘f'vm)a ym:T\/g

and the corresponding unitary operator Us acting on
Io(ZF, Ly(RY , rdr) @ Loy(R"™* 1) @ Loy(R" 1) @ Ly(R) © La(Ry,my))
by the rule
1

U3 : {dp(ra glvy/7gvv)}p62k = {dp (T, \/g(ul + UI) ) ﬁ (_ul + U/) 7531}) } ’ )
pELk

where v = (u1, ..., up—g—1) and v/ = (v1, ..., Up_g—_1)-
Combining the results of the previous two sections we have that in terms of
the scheme of Section 4 our data now are as follows
X =7F x RPF-1 xR, Lo(X, ) = 15(ZF) @ Ly(R"*~1) @ Ly(R),
X, = Zi x RP—k=1 % R+, LQ(Xl,/_L) = lg(Zi) ® Lg(Rn_k_l) & L2(R+),
Y = R’i x RPF=1 xRy, Ly(Y,n) = LQ(R’err) ® Ly(R" 1) @ Ly(Ry,mn),

the unitary operator U is defined as follows
U - U3U2U1Uo : Lg(Dn,ILNL,\) —
o(ZF, La(RY  rdr) ® Ly(R"™*71) ® Ly(R" ™) @ La(R) @ La(Ry, ),

and the function gg (function-sequence in this case) has the form

1
k-1 2k+2 25 Ipl+A+k+1\ 2 B R R
golp, 7,0’ €,v) = 7~ <cA (pl)F(/\—i-l) ) v e =5,

where (p,r,v',&,v) € Z’j_ X Rﬁ_ x R *=1 xR, xR,.
Summarizing the above we come to the following statement.

Lemma 8.1. The unitary operator U = UsUsU1Uy maps the Bergman space
A3(D,,) onto the space A3(D) = Us(A2(D)) = go la(ZE, Lo(R"*~1 x R.)) which
is the closed subspace of lo(Z"*, Lay(RE ,rdr) @ Ly(R"F~1) @ Ly(R"* 1)@ Ly (R) ®
Ly(Ry,my)) and consisits of all sequences {d,(r, v, v, ¢, ”)}peZi: where the func-
tions dp(r,u',v", &, v), p € Zi, have the form

ek 2k+2 (25)\p\+)\+k+1
dy(r,u' v i
p(r,u,’U,f,’U) ™ e p'F()\—‘rl)

1
2 o |2
) ettt g,
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with c,(u', &) € Ly(R"F1 x Ry).
Moreover,

||{dp}p€Zi|| = ||{Cp}p€ler||l2(Zk,LQ(R"*]"*l XRy)):

We check now the above norm equality. Obviously it is sufficient to check
only that

||dpHL2(Rﬁ,rdr)eaLz(Rn—k—l)@Lz(Rn—f«—l)@Lz(R)@Lz(mm) = llepll Ly @mr—r-1xRr,)-

Calculate
9k+2 (25)\p\+>\+k+1

/RixR"’clxR"klxRxR+ e p!T(A+1)
P2 6725(\r|2+v)*|v/\2 \Cp(u’,§)|2 rdr du' dv' d¢ % v o
ok (9¢)Ipl+k
/ lep (', €)|? du'dg 2o 5), / e 2 gy
R”’_k_1XR+ p R

k
+

A+1
ﬂ_nfg‘fl/ e~ 1V o &/ v e 20y,
Rn—k—l F()\ + 1) R+

By [4], formulas 3.351.3, 3.321.3, and 3.381.4, each of the last three integrals (with
the corresponding multiple) is equal to 1, thus

dy|J? = / e, ) delde = Jjcy .
Rn—k—l XR+

n—k—1

Idp]1* T

Introduce the isometric imbedding Ry of the space lo(Z% , Lo(R"F~1 xR )
into

12(Z", (La(RY rdr) @ Loy(R"F71) @ Lo(R"F71) @ Lo(R) ® La(Ry, 1))

which maps the sequence {c,(v/, E)}pGZ’i to

1
n—k—1 Qk+2 (25)‘p‘+)‘+k+1 2 2 o)
—nok=l P o—E(rlP o) =155 }
(e om0 (2 - ) e Lo}

where the functions c, (v, £) is extended by zero for ¢ € R\R for each u/ € R*~#~1
and each p € Z*.
The adjoint operator R acts from

12(Z%, Ly(RY  rdr) @ Loy(R™F 1) @ Ly(R"* 1) @ Ly(R) @ La(Ry, 1))
onto Io(Z%, Ly(R" %=1 x R} )) as follows

k
+

oin (2642 (2€) PR+ i
R : {d o e
0 { p(T,u , U ’5771)}1162’“ — {Tr ! cx p!lT(A+1)

A

_ 2, .y w12 CA\V
/ rP e €UrlT o)== dp(r,u/ 0" & v) rdr dv' dv .
Rﬁan*k*1XR+ pezi
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Then we have

RiRy = I:1o(Z%, LoR™F 1 xRy)) — 1(ZE, Ly(R"F 1 x Ry))

RyR; = Ps,
where Pj is the orthogonal projection of

(ZF, Ly(RE rdr) @ Loy(R™*71) @ Loy(R* 1) ® Ly(R) ® La(Ry, 7))
onto Aj3(D).

Thus finally we have
Theorem 8.2. The operator R = R{U maps La(Dy,, [in) onto lo(ZX, Loy(R"F=1 x
R.)), and the restriction

R|A§\(Dn) : Ai(Dn) — lg(Zﬁ_,LQ(Rn_k_l X R+))

is an tsometric isomorphism.

The adjoint operator

R*=U*Rg : Io(Zk, Ly(R"" 1 xRy)) — A3(Dy) C La(Dn, fin)

is the isometric isomorphism of lo(Z% , Loy(R"F=1 x R..)) onto the subspace

‘Ai(Dn) Of LQ(Dna ﬁ)\)
Furthermore

RR* =1 : I(ZF,Ly@R" 1 xRy)) — (ZE, Lo(R* 7 x Ry)),
R*R=Bp,x : Ly(Dn, fin) — A3(Dy),
where Bp, x is the Bergman projection of La(Dy, ix) onto .Ai(Dn),

9. Quasi-hyperbolic case

We represent D = C"~! x R x R, in the form C"~! x II, where II is the upper
half-plane, and introduce in D the “non-isotropic” upper semi-sphere

Q={(z,eC xII: |ZP+[¢|=1}.
The points of 2 admit the natural parameterization
2k = Sktk, where s, €[0,1), t, €S', k=1,..,n—1,
¢ = pe'?, where p € (0,1], 6 € (0,7),
and
n—1
d_sitp=1,
k=1
which in turn induces the following representation of the points (2/,() € D =
Cr1x1II
2k :r%sktk, k=1,...,n—1, erpew,

where € Ry
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We represent now D = 7(B"!) x T"~! x Ry x (0,7), where 7(B""1) =
{s = (s1,.,8n-1) € RT" 302 1lsk < 1} is the base (in the sense of a Rein-
hardt domain) of the unit ball B"~! and T" ! = S x ... x S is the n — 1
dimensional torus. Introduce the new coordinate system (s,t,r,6) in D, where
s = (81,.,80-1) € T(B" 1), t = (tl,... th—1) € T""1 r € Ry, and 0 € (0,7),
which is connected with the old one (2/,¢) by the formulas

B |2k | %
Sp = ————,

) =1 =>4+ 1p|, 6=arg(, 9.1
—— = g (0)

or

2 = 73 sgly, ¢=r(l—|s])e”,

where k=1,...,n — 1.

We pass now the operators in equations (2.10) to the new coordinate system.
For a function f = f(s1,...,Sn—1,t1,.., tn-1,7,0), consider

éf _ cosf +isinf (84-2'18)
a¢ 2 alcl - I¢loe
|21 |2n—1]
4 '7tn—a 70
f<\/|2’|2+|p| \/|z’|2+\P\ v
cosf + isin 6 |21 .1 0f
= _— _— = = 74— —_—
: ( Zﬁsz (=7 +IcD? TcT 08
~ cosf+isinf g,ln s; Of 1 af
- > <8r 2;rasl+ r(1—|s]?) 00 )

_ cosf +isinf — 1 of
- 2r < B Zl 1||239>
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Further,
of L Of _t(O0f e OFN (g 0F sin00f
oz Fou T 2 \0lw|  Jmlot) " a1c| ~ I¢] 09
_ 7772 of  2[a]|z Jrﬁ 1 _t Of
2 Osi(lz2+1Ch?  Osk /IR +IC ol Ot

. f o1 |z1] sinf df
_ o <L _ 95
o [ <87" Zasz (7P +1)F) ~ 1T a6

— f—fZ “ b Of 4 Of
dsi |z/|2+|g|% 2,/|zf|2 [k 2|zr] Oty

- [9 (gf K Z o <z'|2|z+l|<>3> ) STZG%]
1 G SR RGN
That is the equations (2.10) are equivalent to
<_"leal 1| |2aa>f_
—isy [cos@ <T?9Zf — ;§35$> — lb—m|z|2?9£1 } f=0,

where k=1,...,n — 1.
From the first of these equations we have

i_,"z Lo
os, T '1— |s|2 06’

of

(9.2)
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substituting into the second we obtain

si of | s Of  ty Of s%cos&@f sksmﬁ of

— |s|? 90 " 2 dsp, 2 Oty — |s|?2 06 —|s]? o6
Sk 8f tr af . Si . . af
SLECA A ~ 1D = 0.
2 9. 2 0ty 217‘3‘2(sm9—|—20059 >30 0
From the last equation, for each k = 1,...,n — 1, we have
sk Of  ty Of . st af
D 9s 2 0ty zl_lsl 5 (sin 6 + i cos 6 1)30

Summing up these equations for £k = 1,...,n — 1 and substituting to (9.2), we have
af 1%~ 0 )
P L Zt o 4 {1 + o1

|

= 0.
1—1sf?

"o T 3 o1, (sin @ + i cos 9)] 20

That is finally the equations (2.10) are equivalent to

_Zt_H{ Ll (sin0+ic039)]8f - 0

o, 1= |52 26
of |, of .o of
S om o, T |sp it st =l =0

where k =1,...,n — 1.
The direct calculation shows that under the change of variables (9.1) we have

n—1 n—1
dt
dv(2',¢) = r"(1 — |s|*) H skdsg H Tk drdf,
itk
k=1 k=1

and
c c
N\ = —2 r’\(l — |s|2)’\—2 sin™ 6.

The intermediate result obtained we formulate in the following lemma.

Lemma 9.1. The space Ao(D) = Uy(A3(Dy,)) consists of all functions
f = f(s,t,r,0) which satisfy the equations

S s> of
= — = E tlatlJrz{ =32 (sin® + i cosd) 20 = 0 (9.3)
of op o8 or _
Skaisk tkaitk 21_7“9|2(Sln9+7/(3089 1)% = 07 (94)

where k =1,....n — 1, and belong to the space
Ly(Domn) = Lo(7(B"1), (1~ |s[*)* sds) ® La(T" )
® Lo(Ry,r*"dr) @ Lo ((0,7), %\ sin* 0df).
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Introduce the unitary operator Uy = I ® F(,,_1) ® M @ I which acts from the
space

Lo(m(B™ 1), (1—|s|*) 1 sds) @ Lo (T )@ Lo (R, 72 dr) @ Lo ((0, 7r) T 2 sin* 0d6)
onto the space
Lo(T(B™ 1), (1 — |s])M1sds) @ 1(Z"71) ® La(R) ® La((0, ), Zsm 2 0do)
= bL(Z" Lay(r(B"Y), (1 - [s*)*M ! sds) © La(R) @ La((0,7), %\ sin* 6df)),

where the Mellin transform M : Ly(Ry,7*™"dr) — Lo(R) is given by

(M)(€) P () dr,

7 )
N 2 Jr,
and F(,,—1) = F®...®F is the (n — 1)-dimensional discrete Fourier transform and
each F is given by (5.1).

We note that

H)0) = 7 [ v
and
MTQM_lw — (5_,_ )\-I-TL—H) W,
or 2
0 __
fktkaT}"kldpk = prdp,, prEZ
k

Now the image A;(D) = U1 (Ao(D)) consists of all sequences d = {dp},ezn-1 the
components

dy = dp(s,€,0) € Lo(t(B" ), (1 — |s|) 1 sds) ® La(R) @ La((0, ), Z sin* 0df)

of which satisfy the equations
9 1% 0 Bk 0 )
— == ti— 41 |1 inf +icosf d
1<T87‘ 2;:1 latl—l—z[ —|—1_‘8|2 (sin® + i cos0) 20 U dp

U
1 2
_ <g+z‘H;+>d +i |p‘d +[ s (sinﬁ—l—icose)} Ody
0,

1—|s|? 00
_ (9.5)
where |p| = p1 + ... + pn_1, and
0 1o} . 28% . . 0 1
Uy (skm—tkm—i—zl_w(smﬂ—&—ZCOSG— )89) U dy, =
od . 2s? ) ) od
Sk 8; — prdp + 21_7‘2‘2(51116‘ +icosf — 1)8701’ = 0, (9.6)

where k =1,....,n— 1, p= (p1,...,pn_1) € Z" L.
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Equation (9.5) is easy to solve. Using [4], formula 2.558.4, we have

[ Antlp|+1 i s ) pan 0 _Is?
2(54—1#)arctan[(l—“ils@)tan§+17‘5|2

dp(s7 67 9) = C,ip(87 6) 6_

Introduce the following temporary notations

Atnt|p|+1 - 1s1? o, _IsI?
B - 672(§+z+)arctan|:<lfz17|5‘2)tan §+17‘5|2]
- 5
|s]?

o = 17‘3‘2.

Then d, = &;, E. By (9.5) we have

Atnt|p|+1
oy ___SHITHE op
00 1+ a(sinf + icos®)
Calculate
ad, ad, . ~ OF
e _ "ppyg o7
sy, 0sp. + P dsy,
d, ~ ) 1 1—itan$
_ apEdpE2<§+i +ntlpl+ > ttan g 2‘10!,
sy, 2 1+ [(1—ia)tan g + o] Osk
where
da (1 —s]?)2sk + |s]*2ss, 5
— = = 2s5(1 .
o5 (1= 5P e
Thus
od, od, A+n+p|+1 ~
P2 _fFP_F ——— | 2s(1 2Ad
ask ask <£ +7/ 2 sk( +a) P
where
Y
4 - 2(1 —itan3)

1+ [(1—ia)tang—|—a]2

20 _ 95qin @ [}
2 cos 5 22511120082

cos? & + (1 — 2iac — a2)sin® § + 2a(1 — ia) sin & cos & + a2 cos? §

2
14 cosf —isinf
1+ a?cosf+ a(l —ia)sin€ —ia(l — cosb)
14 cosf —isinf
(1 —ia)[1 + a(sinf +icosh)]
Thus finally

ad,
P _F
8sk

ad, A+n+]p|+1Y 2s,(1+ @)?(1 4 cosf — isinb) ~
—— —E({+i . . , -
sy, 2 (1 —ia)[1 + a(sinf + i cos 9))
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Substituting the above in (9.6) and canceling out E, we have

S%_ €+i)\+n+|p|+1 252(1+ a)?(1 4 cosf —isinf) ~
" O 2 (1—ia)[l + a(sinf + icos@)] ”

~ A+n+pl+1\ 2s2(1+a)(sinf +icosf — 1) ~

prdy Z(€+Z 2 1+ a(sind + icosf) dy
~ A+n+pl+1 252 (1 + ) ~
_ e d k Bd
sy, RO (“’ 2 (1—ia)[1 + a(sind +icos)] =~ 7

= 0,
where
B = (I1+a)(1+cosf—isinf)+ (i+ a)(sinf +icosd —1)

= (1—19)[1+ asinf +icosh)].
That is we have

d, ~ A 1\ 2s2(1 —4)(1 ~
Ska;l —Pkdp—(§+i +ntlpl+ ) spd =) +a)dp20a

0sy, 2 1—ia
where
l+a 1 B 1
1—ia (1—|s[2) (1_ 1’15‘52) L—(1+41)s|?

Thus finally the equation (9.6) is reduced to

~ A+n+p+1 201 —i)si ~
pkd;v (5"’2 2 1—(1+Z)|8|2 dp_ov (97)

Sk -2

8Sk B

where k =1,....,n— 1, p= (p1, ..., Pn_1) € Z" L.
The common general solution of (9.7) for k =1,...,n — 1 is given by

dy = &(€) s"[L = (1 +1)|s]’]
Thus the general solution of the equations (9.5) and (9.6) has the form
dp(5,6,0) = (&) [l — (1+14)|sf’]

Atnt|p|+1 . |s|? 0 s|?
72(£+znf‘p‘) arctan[(lle‘_lls‘g) tan §+1‘_9“S|2]

Andtlpl4l
_ n 2\P| +’L§.

Atntlp|+1 ,
— n 2‘1’\ +Zf

(&

But, for each p € Z"~1, the function d,, has to be in Ly(7(B" 1), (1—|s]?)*T1sds)®
Lo(R)®Lo((0,7), < sin™ 6d6). This implies first that d,, = 0 for all p € Z"~1\Z} 1.
Second, introduce

ap(6) = / SP(1— sPPHL = (1= i)|sf?)|- Ot ntIpl2ie
T(Br—1)x(0,7)

2 2
_4(5+i%)mmn[(1_i H H

_1
v2>tang+ﬁi| C) . by ’
e —|s] 1—[s[2) Zsm 0 sdsdf . (9.8)
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Then, setting ¢, (£) = a,(€) ¢,(€) with ¢, € Lo(R), we have that for each p € Z'}

Hdp||LQ(T(IB%"—l),(l—\s|2)/\+1sds)®L2(]R)®L2((0,ﬂ'),CT)‘ sin* 0d0) — HCPHLz(]R)'

Note that in terms of the scheme of Section 4 we have here

X =71 xR, Lao(X, p) = 12(Z" 1) ® La(R),

X1 :Ziil XRa L?(Xh/’[’) :l2(Z171>®L2(R+)7

Y =7(B" 1) x (0,7), Ly(Y,n) = La(7(B" 1), (1 — |s|>)M1sds)

® La((0,7), & sin* 0d0),
the unitary operator U is defined as follows

U=UUy : Ly(Dy,fin) —

(2L La(r(B"), (1= [s[*)**sds) © Ly(R) @ Ly((0,7), = sin* 6d6)),
and the function go (function-sequence in this case) has the form

90(5, ga 9) = {QO(p7 S, 57 0)}1062171 s

where
A 1,
—%-ﬂf

90(p,5,6,0) = (&) s"[L - (1+19)]s[?]

_ Atnt|p|+1 i ls? o s
. 2<§+z 5 )arctan[(l 217‘8‘2>tan2+17|5‘2

)

here p € Z'77" and (s,£,60) € 7(B"71) x R x (0, ).
Summarizing the above we come to the following statement.

Lemma 9.2. The unitary operator U = U1Uy maps the Bergman space Ai(Dn)
onto the space A1 (D) = gol2(Z} ™", L2(R)) which is the closed subspace of

L(Z7Y, La(r(B™1), (1 — [s|*)*sds) ® La(R) ® Lo ((0, ), % sin® 0df)

and consisits of all sequences {dy(s,§, 9)}19621*17 where the functions
dp = dy(s,£,0), pe Z'", have the form
. _AdndlplHl
dy = cp(€) ap() sl — (L +a)|sf]" = ¢
672(£+i7’\+"'§|p|+1 ) arctan[(lfi 1:‘52‘2> tan &+ 1L§|ls2\2}

with ¢, € Ly(R) and «, given by (9).
Moreover

R Hliy 21, La(r@n=1),0- 1512) 1 sds)@ Lo (R)D Lo ((0,7), S sin® 66)) =
||{Cp}||12(zf1, La(R))

Introduce the isometric imbedding Ry of the space lo(Z" ', L»(R)) into the
space

ZQ(ZT-IL—_lv LZ(T(Bnil)a (1 - |S|2))\+1Sd8) & LQ(R) & LQ((07 ﬂ-)a % Sin)\ edo))
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by the rule
Ry : {%(5)};,;621*1 U {Cp(g) O‘p(g) 5;)(575’ 9)}peZ"*1’
where the functions 8, = §,(s,&,0) are given by

_ Adntlpl+1 i lsI? o _Isl?
Akl e 2+t )"“Ctan[(l 117\sw2>tan2+1—\s|2

Bp = s"[1-(1+)|s*]

(9.9)
We note that

1
2

&)= [ 1By (5. & 0)2(1 — o[22 sin’ b sdsdd
F(Br=1)x (0,7) 4
The adjoint operator R which acts from
L(Z5, Lo(m(B™Y), (1 — |s|*)M 1 sds) @ La(R) @ La((0,7), % sin* 0df))

onto the space lo(Z" !, L»(R)) has obviously the form
RS : {dp(57€7 9)}p€Z"*1 —

{Oép(f) /(Bn_l) © )Bp(s’é.ae) dp(sagaa) (1 - |8|2))\+12\Sin>\98d8d0}

pez}?
Then we have
RiRy = I: L(Z7 ' Ly(R)) — L(Z7 ', La(R)),
RyR;, = P,
where P; is the orthogonal projection of lo(Z" ™!, Lo(7(B" 1), (1 — |s|?) sds) ®
Lo(R) ® Lo((0, ), & sin® 0d)) onto A (D).
Then finally we have

Theorem 9.3. The operator R = R{U maps La(Dy,, fix) onto lo(Z' ", Lo(R)), and
the restriction
R|A§(Dn) : Ai(Dn) - lQ(ZT—&lil?IQ(R))
is an isometric isomorphism.
The adjoint operator

R*=U*Ry : (Z} ", Ly(R)) — A3(Dy) C La(Dy, fin)
is the isometric isomorphism of lo(Z" "', Ly(R)) onto the subspace A3(D,) of

L2 (Dn ’ /7/\) .
Furthermore

RR* =1 : (Z7 " La(R)) — 1o(Z7 1, La(R)),
R'R=DBp,x & La(Dy,jin) — A3(Dn),
where Bp,, x is the Bergman projection of Lo(Dy, fix) onto A3 (D,,).
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10. Toeplitz operators with special symbols

In this section we show that in each case of the previous five sections there exists a
class of bounded measurable symbols a, such that the corresponding Toeplitz op-
erators T, are unitary equivalent to certain multiplication operators 7,I. In each
case the symbols are invariant with respect to the action of the corresponding com-
mutative subgroup of Section 3. The specific form of 7, and the space in which this
multiplication operator acts depend essentially on the case under consideration.
This fact implies an important joint feature, in each case the C*-algebra generated
by corresponding Toeplitz operators is commutative. Furthermore, being unitary
equivalent to a multiplication operator 7,1 such a Toeplitz operator thus admits a
spectral type representation, which gives an easy access to its important properties:
boundedness, compactness, spectral properties, invariant subspaces, etc.

10.1. Quasi-elliptic case

We will call a function a(z), z € D, quasi-elliptic if it is separately radial, i.e.,
a(z) = a(r) = a(ry, ..., ), or equivalently if a is invariant under the action of the
quasi-elliptic group. The following result has been proved in [10].

Theorem 10.1. Let a = a(r) be a bounded measurable quasi-elliptic function. Then
the Toeplitz operator T, acting on A3(B™) is unitary equivalent to the multiplica-
tion operator voI = RToR* acting on l3(Z), where R and R* are given by (5.3)
and (5.2) respectively. The sequence g\ = {%,/\(P)}pezz; is given by

2"F(n+|p|+)\+1)/ 2% 2 T

Yar(p) = a(r)r? (1 —r rrdr

2 PIT(A+1) Ly T T kl;[l S
L(n+[p|+A+1)

p!T(A+1)

wherep € 27, AB") = {r = (r1,...,rn) : r1+...4+7, €[0,1), 1. >0, k=1, ...,n},
dr =dry...dryp, and /1 = (\/T1,....\/Tn)-

10.2. Quasi-parabolic case

= / a(v/T) 1P (1= (11 4 ... + 1)) dr,
A(B")

We will call a function a(z), z € D,,, quasi-parabolic if a(z) = a(r,y,) =
a(ri,...,Tn—1,1mz,), i.e., a is invariant under the action of the quasi-parabolic
group.

Theorem 10.2. Let a = a(r,yn) be a bounded measurable quasi-parabolic function.
Then the Toeplitz operator T, acting on A3 (Dy,) is unitary equivalent to the multi-
plication operator v,1 = RT,R* acting on lo(Z" ", Lo(Ry)), where R and R* are
given by (6.5) and (6.4) respectively. The sequence v, = {Va(p, f)}pezrl, EeR,,
is given by

5 (p f) _ (2£)P+A+n/ a(\/F v )Tp 6725(”+T1+"'+T”’1)U>‘ drdv
a\l> p'F()\—‘r 1) ]Ri ) 1 n—1 )

(10.1)
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where \/r = (\/T1, s VTp_1)-

Proof. The operator T, is obviously unitary equivalent to the operator

RT,R* = RBp,aBp, \R* = R(R*R)a(R*R)R*
= (RR*)RaR*(RR*) = RaR*
= RiULUUpa(r,y,)Us ' U U PRy
= RyUUia(r,v+ |r*) U Uy ' Ry
= Rya(r,v+|r)*)Ro
T.

Now, for ¢ = {c,(§)}

pezn—1s We have
T

2n+1 (2§)|p|+>\+n ) 2

Tc = R} {a(r,v + \T|2)XR+(§) < P o—Er?+v) cp(f)}

|
cx p!T(A+1) I
2t (%)‘pH_M_n 2y .2 2
= a T,U"’ r r pe—2§(\r\ +U)
{ ex plT(A+1) /Ri ( ")
cp(f)% v Tdrdv}
pez’ !
(2§)|p|+x+n/
—_— a(T,v+ri+...+r,_1)rP
e~ 26(trit A1) cp(§) R drdv}
pEZl_l
= {Va(pa €) : Cp(g)}pezifla
with
(%)”“’L"/ P =26 (Tt 1) A
W(p, &) = , e A VLT T drdv,
Ya(p, &) AT D) Ria(\/;v—krl—&- +rp_1)rPe v drdv
where p € Z17', € € Ry, and /7 = (V7y, ooy VTl y)- O

10.3. Nilpotent case

Recall that the nilpotent group R"~! x R acts on D,, as follows. For (b,h) €
R ! x R,
Ton @ (2,20) — (2 4 b, 2, + h + 2i2" - b+ i[b]?).
We note that both quantities ¢’ = Im 2’ and Im z, — |2/|? are invariant under the
action of this group.
We will call a function a(z), z € D, nilpotent if a(z) = a(y’,Im z, — |2'|?),
i.e., a is invariant under the action of the nilpotent group.
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Theorem 10.3. Let a = a(y’,Im 2, — |2'|?) be a bounded measurable nilpotent func-
tion. Then the Toeplitz operator T, acting on A3(D,,) is unitary equivalent to the
multiplication operator v,I = RT,R* acting on La(R"™! x R, ), where R and R*
are given in Section 7. The function v, = Yo (v, &), where v’ € R"~1 and £ € R,
is given by
(2£)>\+1 1

PSRN al5—=
T DA+ 1) Jro-ixr,  2VE

(= +0'),v) e X011 Ay d.

’Ya(u,a f) -
(10.2)

Proof. The operator T, is obviously unitary equivalent to the operator
RT,R* = RBp, raBp, \R* = R(R"R)a(R*R)R"
= (RR*)RaR*(RR*) = RaR"
RyUsUU U a(y', Tm 2, — |2/ *)Uy UL U U Ry
RyUsUUy a(y',v) Uy 'US ' Uy ' Ry
= RjUsa(y',v)U; 'Ry

= R} a(2—\1/g(fu’ + "), v)Ro

= T.
Now,
Ty = Ré a(%\/g(—ul—kvl)w)w*nzl effvflv;‘ X]R+(f)
4EOMT T
e ez A2EMT 1
= gz i a —u +v),v
o, PPESTAC VAR
P(u', &) %U’\dvldv
= ’Ya(u/ag) : 1/}(“’,5)7
with
26) M1 1 o2
o' € :717(17/ a(——=(—u' +v'),v) e 2T A ! dw,
%t 8) 7z DA+ 1) JrRr-1xR, (2\/5( he)
where u/ = (u1, ..., up—1) € R} and € € Ry. O

10.4. Quasi-nilpotent case

For an integer 1 < k < n —2, we keep using the notation z = (2, w’, z,) for points
of D,,, where 2/ € C* and w’ € C"*~1. Recall that the quasi-nilpotent group
T* x R*=%=1 x R acts on D, as follows. For (¢,a,h) € TF x R*~*~1 x R,

Tapny t (2w, z,) — (82,0 + b, 2, + b+ 20w’ - b+i[b]?).
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We note that the quantities r, where r = (rq, ..., rg) with r; = |2/, ¥’ = Imw’, and
Im z,, — |w’|? are invariant under the action of this group.

We will call a function a(z), z € D,,, quasi-nilpotent if a(z) = a(r,y’,Im 2z, —
|w’|?), i.e., a is invariant under the action of the quasi-nilpotent group, correspond-
ing to the above parameter k.

Theorem 10.4. Let a = a(r,y’,Imz, — |w'|?) be a bounded measurable quasi-
nilpotent function. Then the Toeplitz operator T, acting on A3(D,) is unitary
equivalent to the multiplication operator v,I = RT,R* acting on

lo(Z%, Ly(R"F~1 x Ry)), where R and R* are given in Section 8. The sequence

Yo = (P &)} ez (u',€) € RP =1 x R, is given by

e |p|+A+E+1
_moho1 (26)

1
a(vr, —=(—u' + v ) v +r1 + ... +7%)
/]Rj_x]R”klx]RJr 2V/¢€

7P e~ 26(v i) = )0 drdv’dv, (10.3)

where ¥ = (VFy, oo VT).

Proof. The operator T, is obviously unitary equivalent to the operator

RT, R*

RBp, xaBp, \R* = R(R*R)a(R*R)R"
(RR*)RaR*(RR*) = RaR*

= RUsUU\UyaUy U U ' US Ry

= RyUsUUya(r,y v+ r|2) U U U Ry
= RyUsa(r,y,v+|r|*) Us 'Ry

1
— R _ ! 2R
halr 5 (= + )0+ ) Ro
= T
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We have

T{Cp (ulv f) }pEZ’i

1 n—k—1
R , . /’ 2\, _—"—
s {atr g+ o P

1
k Atk 2 ’
LA C I S N T W.6)
cx p'T(A+1) PR
pELF

ok 262 (25)‘p‘+/\+k+1
-7 o pITOA+1)

(p)xr. (£)

k
+

1
a(r, =—=(—u' + '), v+ |r|?)
/R’ix]R"—k‘—l xRy 2V/¢€

P20 o= 26(Ir*+o) = v’ | ey (i, €) rdr d/ % o dv}
peZk
g [p|+A+k+1
_ eSS (2¢)r
p!T(A+1)

1
a(vr, —=(—u" + V'), v +7r1 + ... +7%)
/R’;xw—k—l xRy 2V¢

12
rP o= 28 (vtrit. )=V C]D(u'7 §) o d?“d@/dv}
peZk

= {Wa(pa u/7§) 'cp(ulvg)}pel’j_u

with
(p1/,€) —aspes (2)PPEHEH
a ,u 9 = Ty L 1)
YalP pIT(A+1)
1
a(\r —=(—u 4+ V), 0+ 71 4 ... +14)
/ﬂ&ﬁxR"bklxR+ 2\/E
P e~ 26t A) =V N e
where p € Zk W/ € Ri_k_l, §eRy, and 1= (Vry, .., V1) U

10.5. Quasi-hyperbolic case
Recall that the quasi-hyperbolic group T"~! x R, acts on D, as follows. For
(t,r) € TP x Ry,

T @ (2, 20) — (r%tz',rzn).
We will call a function a(z), z € D,,, quasi-hyperbolic if a is invariant under the
action of this group.

A convenient in our context way to describe such invariant functions is as
follows. Consider the group of non-isotropic dilations {4,}, r € R,, acting on
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Rﬁ_l x IT by the rule

1 1
57‘ : ((117~-~7Qn—170 — (TQQM "'7T2qn—1ar<)'

Then each function a = a(qy, ..., gn—1,¢) with is non-isotropic homogeneous of
zero order on Rﬁ_l x IT depends only on its values on the non-isotropic upper half
sphere

n—1

O ={(q1, 0 @1, Q) ERT XTI > @+ (¢ =1},
k=1

and thus, passing to the polar coordinates in the upper half-plane II, is a function
of the form

a= d(qlv <5 qn—1, P, 9) =a ( a an_1 P 6) )

VI +p T VIaP+p ld? + 0

where |¢[2 = 32721 ¢2, p = |¢|, and 6 = arg .
Further, we parameterize the points of 4 by points s = (s1, ..., 8p—1,6) of
7(B"1) x (0,7) as follows

e s, k=1,..,n—1, P |s|>, and 6 =06.
2
Vigl*+p lal> +p

Thus each function on Q is of the form a(s, ), where s = (s1, ..., 8,—1) € T7(B"™1)
and 6 € (0,7).

Now each quasi-hyperbolic function, defined in D,,, can be uniquely repre-
sented in the form

a=a ( 1] 201 arg(z, — z|z'|2)> , (10.4)

VIFP + T = ilPI IR+ [en =il P

where a is a function, defined in 7(B"~!) x (0, 7), and this correspondence is one
to one.

Theorem 10.5. Let a be a bounded measurable quasi-hyperbolic function of the form
(10.4). Then the Toeplitz operator T, acting on A3(D,,) is unitary equivalent to
the multiplication operator 7,1 = RT,R* acting on lo(Z"~", L»(R)), where R and
R* are given in Section 9. The sequence v, = {va(p, f)}pezfl7 ¢ € R, is given by

C .
Ya(p, &) = a?)(f)/ a(s,0)|6p(s, &, 0)|2 (1- \5\2))‘“1)‘ sin™ 0 sdsdf,
T(B"~1)x(0,7)

(10.5)
where the functions a,(§) and B,(s,&,0) are given by (9) and (9.9), respectively.
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Proof. The operator T, is obviously unitary equivalent to the operator
RT,R* = RBp, »aBp, \R* = R(R*R)a(R*R)R*
(RR*)RaR*(RR*) = RaR*
RyUL\Uya Uy *UT Ry
RyUya(s,0) U 'Ry
= Rja(s,0)Ry
T.

Now,

T{ep(&)}y = Rolals,0)) ap(€) Bp(s,€,0) cp(E)}pepn
= {%2)(5)/ a(s, 0) By (s,€,0)% cp(€) (1 — |s|)*
T(B*—1)x(0,7)

% sin* sdsda}

pez}
= {’YG (pa 5) . Cp(g)}pezi*1 )
with

lp.€) = a2(©) | 0(s.6) B, (5.€.0)% (1 — |s) 1 sin 0 s,
(Br-1)x (0,7) 4
where p = (p1, ..., pn—1) € Zﬁfl, & € R, and the functions «, (&) and B,(s, &, 0) are
given by (9) and (9.9), respectively. O
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